Skip to main content

Silk and Silk-Based Composites: Opportunities and Challenges

  • Chapter
  • First Online:

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

Abstract

Increasing demand for lightweight material has moved the industries to switchover to the polymer-based composite materials. The polymer composite materials mainly use synthetic fibers like carbon fibers and glass fibers, which generally show better mechanical properties. The integration of these composites has increased drastically from aerospace to automobile industries. Further, the drawback of non-biodegradability is always associated with the synthetic fiber-reinforced polymer composites. Natural fibers, on the other hand, are cheap, readily available, and biodegradable, which is thought to be a better alternative to synthetic fibers. Among the natural fibers, silk fiber is one of the most durable fibers and has excellent mechanical properties like stiffness, strength, and ductility, etc. Nowadays, silk fiber is being used extensively for the engineering and medical applications due to its several attractive properties in which environment-friendliness is hugely alluring for the researchers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Koniuszewska AG, Kaczmar JW (2016) Application of polymer-based composite materials in transportation. Prog Rubber Plast Recycl Technol 32(1):1

    Article  Google Scholar 

  2. Lalit R, Mayank P, Ankur K (2018) Natural fibers and biopolymers characterization: a future potential composite material. Strojnícky casopis J Mech Eng 68(1):33–50

    Article  Google Scholar 

  3. Khanam PN, Al-Maadeed MA, Khanam, PN (2015) Silk as a reinforcement in polymer matrix composites. In: Advances in silk science and technology, pp 143–170)

    Google Scholar 

  4. Choudhury AKR (2015) Advances in the finishing of silk fabrics. In: Advances in silk science and technology, pp 81–110

    Google Scholar 

  5. Hardy JG, Scheibel TR (2010) Composite materials based on silk proteins. Prog Polym Sci 35(9):1093–1115

    Article  CAS  Google Scholar 

  6. Kaur J, Rajkhowa R, Tsuzuki T, Millington K, Zhang J, Wang X (2013) Photoprotection by silk cocoons. Biomacromolecules 14(10):3660–3667

    Article  CAS  Google Scholar 

  7. Jin HJ, Kaplan DL (2003) Mechanism of silk processing in insects and spiders. Nature 424(6952):1057

    Article  CAS  Google Scholar 

  8. Lovett ML, Cannizzaro CM, Vunjak-Novakovic G, Kaplan DL (2008) Gel spinning of silk tubes for tissue engineering. Biomaterials 29(35):4650–4657

    Article  CAS  Google Scholar 

  9. Vepari C, Kaplan DL (2007) Silk as a biomaterial. Prog Polym Sci 32(8–9):991–1007

    Article  CAS  Google Scholar 

  10. Chandrakala MV, Maribashetty VG, Jyothi HK (1998) Application of phytoecdysteroids in sericulture. Curr Sci 74(4):341–346

    Google Scholar 

  11. Tsukada M, Nagura M, Ishikawa H, Shiozaki H (1991) Structural characteristics of silk fibers treated with epoxides. J Appl Polym Sci 43(4):643–649

    Article  CAS  Google Scholar 

  12. Ho MP, Wang H, Lau KT, Lee JH, Hui D (2012) Interfacial bonding and degumming effects on silk fibre/polymer biocomposites. Compos B Eng 43(7):2801–2812

    Article  CAS  Google Scholar 

  13. Noorunnisa Khanam P, Ramachandra Reddy G, Raghu K, Venkata Naidu S (2010) Tensile, flexural, and compressive properties of coir/silk fiber-reinforced hybrid composites. J Reinf Plast Compos 29(14):2124–2127

    Article  Google Scholar 

  14. Heim M, Keerl D, Scheibel T (2009) Spider silk: from soluble protein to extraordinary fiber. Angew Chem Int Ed 48(20):3584–3596

    Article  CAS  Google Scholar 

  15. Pérez-Rigueiro J, Viney C, Llorca J, Elices M (2000) Mechanical properties of single-brin silkworm silk. J Appl Polym Sci 75(10):1270–1277

    Article  Google Scholar 

  16. Cheung HY, Ho MP, Lau KT, Cardona F, Hui D (2009) Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Compos B Eng 40(7):655–663

    Article  Google Scholar 

  17. Kluge JA, Rabotyagova O, Leisk GG, Kaplan DL (2008) Spider silks and their applications. Trends Biotechnol 26(5):244–251

    Article  CAS  Google Scholar 

  18. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Kaplan DL et al (2003) Silk-based biomaterials. Biomaterials 24(3):401–416

    Google Scholar 

  19. Tsukada M, Imai T, Freddi G, Lenka S, Kasai N (1998) Grafting of vinyl monomers onto silk using redox systems. Yellowing of silk. J Appl Polym Sci 69(2):239–246

    Article  CAS  Google Scholar 

  20. Poole AJ, Church JS, Huson MG (2008) Environmentally sustainable fibers from regenerated protein. Biomacromolecules 10(1):1–8

    Article  Google Scholar 

  21. Marsano E, Canetti M, Conio G, Corsini P, Freddi G (2007) Fibers based on cellulose–silk fibroin blend. J Appl Polym Sci 104(4):2187–2196

    Article  CAS  Google Scholar 

  22. Xue CH, Chen J, Yin W, Jia ST, Ma JZ (2012) Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles. Appl Surf Sci 258(7):2468–2472

    Article  CAS  Google Scholar 

  23. Wang X, Gao W, Xu S, Xu W (2012) Luminescent fibers: in situ synthesis of silver nanoclusters on silk via ultraviolet light-induced reduction and their antibacterial activity. Chem Eng J 210:585–589

    Article  CAS  Google Scholar 

  24. Gulrajani ML, Gupta D, Periyasamy S, Muthu SG (2008) Preparation and application of silver nanoparticles on silk for imparting antimicrobial properties. J Appl Polym Sci 108(1):614–623

    Article  CAS  Google Scholar 

  25. Riguero JP, Viney C, Llorca J, Elices M (2000) Mechanical properties of silkworm silk in liquid media. Polymer 41:8433–8437

    Article  Google Scholar 

  26. Corsini P, Rigueiro JP, Guinea GV, Plaza GR, Elices M, Marsano E, Carnasciali MM, Freddi G (2007) Influence of the draw ratio on the tensile and fracture behavior of NMMO regenerated silk fibers. J. Polym Sci Polym Phys 45(18):2568–2579

    Article  CAS  Google Scholar 

  27. Zulkifli R, Peiand KS, Azhari CH (2008) Interlaminar fracture properties of multi-layer woven silk fibre/ polyester composites. Asian J Appl Sci 1(2):177–184

    Article  CAS  Google Scholar 

  28. Cheung HY, Lau KT, Tao XM, Hui D (2008) A potential material for tissue engineering: silkworm silk/PLA biocomposite. Compos B Eng 39(6):1026–1033

    Article  Google Scholar 

  29. Fu SY, Feng XQ, Lauke B, Mai YW (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos B Eng 39(6):933–961

    Article  Google Scholar 

  30. Shubhra QT, Alam AKMM, Beg MDH (2011) Mechanical and degradation characteristics of natural silk fiber reinforced gelatin composites. Mater Lett 65(2):333–336

    Article  CAS  Google Scholar 

  31. Cunniff PM, Fossey SA, Auerbach MA, Song JW, Kaplan DL, Adams WW, Vezie DL (1994) Mechanical and thermal properties of dragline silk from the spider Nephila clavipes. Polym Adv Technol 5(8):401–410

    Article  CAS  Google Scholar 

  32. Pins GD, Christiansen DL, Patel R, Silver FH (1997) Self-assembly of collagen fibers. Influence of fibrillar alignment and decorin on mechanical properties. Biophys J 73(4):2164

    Article  CAS  Google Scholar 

  33. Engelberg I, Kohn J (1991) Physico-mechanical properties of degradable polymers used in medical applications: a comparative study. Biomaterials 12(3):292–304

    Article  CAS  Google Scholar 

  34. Gosline JM, Guerette PA, Ortlepp CS, Savage KN (1999) The mechanical design of spider silks: from fibroin sequence to mechanical function. J Exp Biol 202(23):3295–3303

    CAS  Google Scholar 

  35. Zulkifli R, Azhari CH, Ghazali MJ, Ismail AR, Sulong AB (2009) Interlaminar fracture toughness of multi-layer woven silk/epoxy composites treated with coupling agent. Eur J Sci Res 27(3):454–462

    Google Scholar 

  36. Sreekumar PA, Joseph K, Unnikrishnan G, Thomas S (2007) A comparative study on mechanical properties of sisal-leaf fibre-reinforced polyester composites prepared by resin transfer and compression moulding techniques. Compos Sci Technol 67(3–4):453–461

    Article  CAS  Google Scholar 

  37. Koçak D, Taşdemir M, Usta I, Merdan N, Akalin M (2008) Mechanical, thermal, and microstructure analysis of silk-and cotton-waste-fiber-reinforced high-density polyethylene composites. Polym-Plast Technol Eng 47(5):502–507

    Article  Google Scholar 

  38. Lee SM, Cho D, Park WH, Lee SG, Han SO, Drzal LT (2005) Novel silk/poly (butylene succinate) biocomposites: the effect of short fibre content on their mechanical and thermal properties. Compos Sci Technol 65(3–4):647–657

    Article  CAS  Google Scholar 

  39. Setua DK, Dutta B (1984) Short silk fiber-reinforced polychloroprene rubber composites. J Appl Polym Sci 29(10):3097–3114

    Article  CAS  Google Scholar 

  40. Taşdemır M, Koçak D, Usta İ, Akalin M, Merdan N (2007) Properties of polypropylene composite produced with silk and cotton fiber waste as reinforcement. Int J Polym Mater 56(12):1155–1165

    Article  Google Scholar 

  41. Taşdemır M, Koçak D, Usta I, Akalin M, Merdan N (2008) Properties of recycled polycarbonate/waste silk and cotton fiber polymer composites. Int J Polym Mater 57(8):797–805

    Article  Google Scholar 

  42. Priya SP, Ramakrishna HV, Rai KS (2006) Utilization of waste silk fabric as reinforcement in epoxy phenol cashew nut shell liquid toughened epoxy resin: studies on mechanical properties. J Compos Mater 40(14):1301–1311

    Article  CAS  Google Scholar 

  43. Shubhra QT, Alam AKMM, Khan MA, Saha M, Saha D, Gafur MA (2010) Study on the mechanical properties, environmental effect, degradation characteristics and ionizing radiation effect on silk reinforced polypropylene/natural rubber composites. Compos A Appl Sci Manuf 41(11):1587–1596

    Article  Google Scholar 

  44. Chen S, Cheng L, Huang H, Zou F, Zhao HP (2017) Fabrication and properties of poly (butylene succinate) biocomposites reinforced by waste silkworm silk fabric. Compos A Appl Sci Manuf 95:125–131

    Article  CAS  Google Scholar 

  45. Veerapratap S, Song JI, Luo N, Zhang J, Rajulu AV, Rao KC (2012) Tensile properties of short waste silk fibers/wheat protein isolate green composites. Mater Lett 77:86–88

    Article  Google Scholar 

  46. Ho MP, Lau KT, Wang H, Bhattacharyya D (2011) Characteristics of a silk fibre reinforced biodegradable plastic. Compos B Eng 42(2):117–122

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalit Ranakoti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ranakoti, L., Gupta, M.K., Rakesh, P.K. (2019). Silk and Silk-Based Composites: Opportunities and Challenges. In: Rakesh, P., Singh, I. (eds) Processing of Green Composites. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-13-6019-0_7

Download citation

Publish with us

Policies and ethics