Skip to main content

Mechanical Behavior of Epoxy-Based Green Composites

  • Chapter
  • First Online:
Processing of Green Composites

Abstract

Keeping in view the environmental concerns and depleting petroleum-based resources, the present work proposes to develop epoxy-based green composites based on bagasse filler. The fabricated composite has been investigated for static mechanical properties, i.e., tensile strength, flexural strength, and fracture toughness. Properties have been investigated for varying percentage of filler loading and crosshead speeds. The investigation has revealed an improvement in static mechanical properties, thereby suggesting its application for a wide range of engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. May-Pat A, Valadez-González A, Herrera-Franco PJ (2013) Effect of fiber surface treatments on the essential work of fracture of HDPE-continuous henequen fiber-reinforced composites. Polym Test 32(6):1114–1122

    Article  CAS  Google Scholar 

  2. Liang R, Hota G (2013) Fiber-reinforced polymer (FRP) composites in environmental engineering applications. In: Developments in fiber-reinforced polymer (FRP) composites for civil engineering, pp 410–468

    Google Scholar 

  3. Ticoalu A, Aravinthan T, Cardona F (2010) A review of current development in natural fiber composites for structural and infrastructure applications. In: Proceedings of the southern region engineering conference (SREC 2010), pp 113–117. Engineers Australia

    Google Scholar 

  4. Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37(11):1552–1596

    Article  CAS  Google Scholar 

  5. Shalwan A, Yousif BF (2013) In state of art: mechanical and tribological behaviour of polymeric composites based on natural fibres. Mater Des 48:14–24

    Article  CAS  Google Scholar 

  6. Xie Y, Hill CA, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos A Appl Sci Manuf 41(7):806–819

    Article  Google Scholar 

  7. Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50(8):962–1079

    Article  CAS  Google Scholar 

  8. Shinoj S, Visvanathan R, Panigrahi S, Kochubabu M (2011) Oil palm fiber (OPF) and its composites: a review. Ind Crops Prod 33(1):7–22

    Article  CAS  Google Scholar 

  9. Elsunni M, Collier J (1996) Processing of sugarcane rind into non-woven fibers. Am Soc Sugar Cane Technol 16:94–110

    Google Scholar 

  10. Pandey A, Soccol CR, Nigam P, Soccol VT (2000) Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresource technology. Biores Technol 74(1):69–80

    Article  CAS  Google Scholar 

  11. Trejo-Hernandez MR, Ortiz A, Okoh AI, Morales D, Quintero R (2007) Biodegradation of heavy crude oil Maya using spent compost and sugar cane bagasse wastes. Chemosphere 68(5):848–855

    Article  CAS  Google Scholar 

  12. Mulinari DR, Voorwald HJ, Cioffi MOH, Da Silva MLC, da Cruz TG, Saron C (2009) Sugarcane bagasse cellulose/HDPE composites obtained by extrusion. Compos Sci Technol 69(2):214–219

    Article  CAS  Google Scholar 

  13. Hernández-Salas JM, Villa-Ramírez MS, Veloz-Rendón JS, Rivera-Hernández KN, González-César RA, Plascencia-Espinosa MA, Trejo-Estrada SR (2009) Comparative hydrolysis and fermentation of sugarcane and agave bagasse. Biores Technol 100(3):1238–1245

    Article  Google Scholar 

  14. Walford SN (2008) Sugarcane bagasse: how easy is it to measure its constituents? Proc S Afr Sugar Technol Assoc 81:266–273

    Google Scholar 

  15. Reddy MR, Chandrasekharaiah M, Govindaiah T, Reddy GVN (1993) Effect of physical processing on the nutritive value of sugarcane bagasse in goats and sheep. Small Rumin Res 10(1):25–31

    Article  Google Scholar 

  16. Paturau JM (1989) By-products of the cane sugar industry. An introduction to their industrial utilization. Elsevier Science Publishers BV

    Google Scholar 

  17. Rassiah K, Nagapan SRMJ, Jidin RM (2012) The effect of sodium hydroxide (NAOH) on water absorption and biodegradability of low density polyethylene (LDPE)/sugarcane bagasse (SCB) composites. Can J Mech Sci Eng 3(1):19–24

    Google Scholar 

  18. Zizumbo A, Licea-Claveríe A, Lugo-Medina E, García-Hernández E, Madrigal D, Zitzumbo R (2011) Polystyrene composites prepared with polystyrene grafted-fibers of sugarcane bagasse as reinforcing material. J Mex Chem Soc 55(1):33–41

    CAS  Google Scholar 

  19. Wirawan R, Sapuan SM, Robiah Y, Khalina A (2010) Flexural properties of sugarcane bagasse pith and rind reinforced poly (vinyl chloride). IOP Conf Ser Mater Sci Eng 11(1):012011 IOP Publishing

    Article  Google Scholar 

  20. Mahapatra SS, Chaturvedi V (2009) Modelling and analysis of abrasive wear performance of composites using Taguchi approach. Int J Eng Sci Technol 1(1):123–135

    Google Scholar 

  21. El-Tayeb NSM (2008) A study on the potential of sugarcane fibers/polyester composite for tribological applications. Wear 265(1–2):223–235

    Article  CAS  Google Scholar 

  22. Stael GC, Tavares MIB, d’Almeida JRM (2001) Evaluation of sugar cane bagasse waste as reinforcement in EVA matrix composite materials. Polym-Plast Technol Eng 40(2):217–223

    Article  CAS  Google Scholar 

  23. Cao Y, Shibata S, Fukumoto I (2006) Mechanical properties of biodegradable composites reinforced with bagasse fibre before and after alkali treatments. Compos A Appl Sci Manuf 37(3):423–429

    Article  Google Scholar 

  24. Luz SMD, Goncalves AR, Del’Arco AP Jr (2007) Mechanical behavior and microstructural analysis of sugarcane bagasse fibers reinforced polypropylene composites. Compos A Appl Sci Manuf 38(6):1455–1461

    Article  Google Scholar 

  25. Luz SM, Del Tio J, Rocha GJM, Gonçalves AR, Del’Arco AP Jr (2008) Cellulose and cellulignin from sugarcane bagasse reinforced polypropylene composites: effect of acetylation on mechanical and thermal properties. Compos A Appl Sci Manuf 39(9):1362–1369

    Article  Google Scholar 

  26. Mulinari DR, Voorwald HJ, Cioffi MOH, da Silva MLC, Luz SM (2009) Preparation and properties of HDPE/sugarcane bagasse cellulose composites obtained for thermokinetic mixer. Carbohydr Polym 75(2):317–321

    Article  CAS  Google Scholar 

  27. Aigbodion VS, Hassan SB, Dauda ET, Mohammed RA (2010) The development of mathematical model for the prediction of ageing behaviour for Al-Cu-Mg/bagasse ash particulate composites. J Miner Mater Charact Eng 9(10):907

    Google Scholar 

  28. Bras J, Hassan ML, Bruzesse C, Hassan EA, El-Wakil NA, Dufresne A (2010) Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites. Ind Crops Prod 32(3):627–633

    Article  CAS  Google Scholar 

  29. Mishra P, Acharya SK (2010) Anisotropy abrasive wear behavior of bagasse fiber reinforced polymer composite. Int J Eng Sci Technol 2(11)

    Google Scholar 

  30. Bozlur RM, Sibata S, Diba SF, Uono M (2010) Effect of holding time and the amount of fiber content on the flexural properties of bagasse/bamboo fiber reinforced biodegradable composite. In: Proceedings of international conference on environmental aspects of Bangladesh (ICEAB10), Japan

    Google Scholar 

  31. Mishra P, Acharya SK (2010) Solid particle erosion of bagasse fiber reinforced epoxy composite. Int J Phys Sci 5(2):109–115

    CAS  Google Scholar 

  32. Cerqueira EF, Baptista CARP, Mulinari DR (2011) Mechanical behaviour of polypropylene reinforced sugarcane bagasse fibers composites. Procedia Eng 10:2046–2051

    Article  CAS  Google Scholar 

  33. Cavdar AD, Kalaycioglu H, Mengeloğlu F (2015) Technological properties of thermoplastic composites filled with fire retardant and tea mill waste fiber. J Compos Mater 50(12):1627–1634

    Google Scholar 

  34. Ndiaye D, Fanton E, Morlat-Therias S, Vidal L, Tidjani A, Gardette J (2008) Durability of wood polymer composites: Part 1. Influence of wood on the photochemical properties. J Compos Sci Techn 68:2779–2784

    Google Scholar 

  35. Ndiaye D, Verney V, Askanian H, Commereuc S, Tidjani A (2013) Morphology, thermal behavior and dynamic rheological properties of wood polypropylene composites. Mater Sci Appl 4(11):730–738

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushik Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zindani, D., Kumar, K., Paulo Davim, J. (2019). Mechanical Behavior of Epoxy-Based Green Composites. In: Rakesh, P., Singh, I. (eds) Processing of Green Composites. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-13-6019-0_6

Download citation

Publish with us

Policies and ethics