Skip to main content

Reproductive Toxicity Induction in Nematodes Exposed to Environmental Toxicants or Stresses

  • Chapter
  • First Online:
Target Organ Toxicology in Caenorhabditis elegans

Abstract

Reproductive organs are important secondary targeted organs for environmental toxicants in nematodes. We here mainly introduced and discussed the potential reproductive toxicity of environmental toxicants or stresses on brood size, generation time, egg-laying, gonad development, and gametogenesis in hermaphrodite nematodes. Moreover, we further introduced and discussed the potential reproductive toxicity of environmental toxicants or stresses on male nematodes, such as toxicity in increasing the rate of male formation, toxicity on male structures, sex-specific response to environmental exposure, and effects from the mating behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang D-Y (2018) Nanotoxicology in Caenorhabditis elegans. Springer, Singapore

    Book  Google Scholar 

  2. Wang D-Y (2018) Molecular Toxicology in Caenorhabditis elegans. Springer, Singapore

    Book  Google Scholar 

  3. Ding X-C, Rui Q, Wang D-Y (2018) Functional disruption in epidermal barrier enhances toxicity and accumulation of graphene oxide. Ecotoxicol Environ Saf 163:456–464

    Article  CAS  Google Scholar 

  4. Xiao G-S, Zhao L, Huang Q, Du H-H, Guo D-Q, Xia M-X, Li G-M, Chen Z-X, Wang D-Y (2018) Biosafety assessment of water samples from Wanzhou watershed of Yangtze Three Gorges Reservoir in the quiet season in Caenorhabditis elegans. Sci Rep 8:14102

    Article  Google Scholar 

  5. Wang D-Y, Yu Y-L, Li Y-X, Wang Y, Wang D-Y (2014) Dopamine receptors antagonistically regulate behavioral choice between conflicting alternatives in C. elegans. PLoS ONE 9:e115985

    Article  Google Scholar 

  6. Li Y-X, Wang Y, Hu Y-O, Zhong J-X, Wang D-Y (2011) Modulation of the assay system for the sensory integration of 2 sensory stimuli that inhibit each other in nematode Caenorhabditis elegans. Neurosci Bull 27:69–82

    Article  Google Scholar 

  7. Ruan Q-L, Qiao Y, Zhao Y-L, Xu Y, Wang M, Duan J-A, Wang DY. (2016) Beneficial effects of Glycyrrhizae radix extract in preventing oxidative damage and extending the lifespan of Caenorhabditis elegans. J Ethnopharmacol 177: 101–110

    Article  CAS  Google Scholar 

  8. Yu Y-L, Zhi L-T, Wu Q-L, Jing L-N, Wang D-Y (2018) NPR-9 regulates innate immune response in Caenorhabditis elegans by antagonizing activity of AIB interneurons. Cell Mol Immunol 15:27–37

    Article  CAS  Google Scholar 

  9. Zhi L-T, Yu Y-L, Jiang Z-X, Wang D-Y (2017) mir-355 functions as an important link between p38 MAPK signaling and insulin signaling in the regulation of innate immunity. Sci Rep 7:14560

    Article  Google Scholar 

  10. Yu Y-L, Zhi L-T, Guan X-M, Wang D-Y, Wang D-Y (2016) FLP-4 neuropeptide and its receptor in a neuronal circuit regulate preference choice through functions of ASH-2 trithorax complex in Caenorhabditis elegans. Sci Rep 6:21485

    Article  CAS  Google Scholar 

  11. Guo Y-L, Yang Y-C, Wang D-Y (2009) Induction of reproductive deficits in nematode Caenorhabditis elegans exposed to metals at different developmental stages. Reprod Toxicol 28:90–95

    Article  CAS  Google Scholar 

  12. Smith MA Jr, Zhang Y, Polli JR, Wu H, Zhang B, Xiao P, Farwell MA, Pan X (2013) Impacts of chronic low-level nicotine exposure on Caenorhabditis elegans reproduction: identification of novel gene targets. Reprod Toxicol 40:69–75

    Article  CAS  Google Scholar 

  13. Wu Q-L, He K-W, Liu P-D, Li Y-X, Wang D-Y (2011) Association of oxidative stress with the formation of reproductive toxicity from mercury exposure on hermaphrodite nematode Caenorhabditis elegans. Environ Toxicol Pharmacol 32:175–184

    Article  CAS  Google Scholar 

  14. Teshiba E, Miyahara K, Takeya H (2016) Glucose-induced abnormal egg-laying rate in Caenorhabditis elegans. Biosci Biotechnol Biochem 80:1436–1439

    Article  CAS  Google Scholar 

  15. Kumar S, Aninat C, Michaux G, Morel F (2010) Anticancer drug 5-fluorouracil induces reproductive and developmental defects in Caenorhabditis elegans. Reprod Toxicol 29:415–420

    Article  CAS  Google Scholar 

  16. Estevez AO, Mueller CL, Morgan KL, Szewczyk NJ, Teece L, Miranda-Vizuete A, Estevez M (2012) Selenium induces cholinergic motor neuron degeneration in Caenorhabditis elegans. Neurotoxicology 33:1021–1032

    Article  CAS  Google Scholar 

  17. Allard P, Colaiácovo MP (2010) Bisphenol A impairs the double-strand break repair machinery in the germline and causes chromosome abnormalities. Proc Natl Acad Sci U S A 107:20405–20410

    Article  CAS  Google Scholar 

  18. Webster CM, Deline ML, Watts JL (2013) Stress response pathways protect germ cells from omega-6 polyunsaturated fatty acid-mediated toxicity in Caenorhabditis elegans. Dev Biol 373:14–25

    Article  CAS  Google Scholar 

  19. Zhao Y-L, Wu Q-L, Li Y-P, Wang D-Y (2013) Translocation, transfer, and in vivo safety evaluation of engineered nanomaterials in the non-mammalian alternative toxicity assay model of nematode Caenorhabditis elegans. RSC Adv 3:5741–5757

    Article  CAS  Google Scholar 

  20. Shao H-M, Han Z-Y, Krasteva N, Wang D-Y (2018) Identification of signaling cascade in the insulin signaling pathway in response to nanopolystyrene particles. Nanotoxicology. https://doi.org/10.1080/17435390.2018.1530395

  21. Wang Q-Q, Zhao S-Q, Zhao Y-L, Rui Q, Wang D-Y (2014) Toxicity and translocation of graphene oxide in Arabidopsis plants under stress conditions. RSC Adv 4:60891–60901

    Article  CAS  Google Scholar 

  22. Polli JR, Zhang Y, Pan X (2014) Dispersed crude oil amplifies germ cell apoptosis in Caenorhabditis elegans, followed a CEP-1-dependent pathway. Arch Toxicol 88:543–551

    CAS  PubMed  Google Scholar 

  23. Yang H-C, Chen T-L, Wu Y-H, Cheng K-P, Lin Y-H, Cheng M-L, Ho H-Y, Lo SJ, DT-Y C (2013) Glucose 6-phosphate dehydrogenase deficiency enhances germ cell apoptosis and causes defective embryogenesis in Caenorhabditis elegans. Cell Death Dis 4:e616

    Article  CAS  Google Scholar 

  24. Allard P, Kleinstreuer NC, Knudsen TB, Colaiácovo MP (2013) A C. elegans screening platform for the rapid assessment of chemical disruption of germline function. Environ Health Perspect 121:717–724

    Article  Google Scholar 

  25. O’Donnell B, Huo L, Polli JR, Qiu L, Collier DN, Zhang B, Pan X (2017) ZnO nanoparticles enhanced germ cell apoptosis in Caenorhabditis elegans, in comparison with ZnCl2. Toxicol Sci 156:336–343

    PubMed  Google Scholar 

  26. Wang S, Zhao Y, Wu L, Tang M, Su C, Hei TK, Yu Z (2007) Induction of germline cell cycle arrest and apoptosis by sodium arsenite in Caenorhabditis elegans. Chem Res Toxicol 20:181–186

    Article  CAS  Google Scholar 

  27. Zhao Y-L, Wu Q-L, Wang D-T (2016) An epigenetic signal encoded protection mechanism is activated by graphene oxide to inhibit its induced reproductive toxicity in Caenorhabditis elegans. Biomaterials 79:15–24

    Article  CAS  Google Scholar 

  28. Wang S, Geng Z, Wang Y, Tong Z, Yu H (2012) Essential roles of p53 and MAPK cascades in microcystin-LR-induced germline apoptosis in Caenorhabditis elegans. Environ Sci Technol 46:3442–3448

    Article  CAS  Google Scholar 

  29. Wang S, Wu L, Wang Y, Luo X, Lu Y (2009) Copper-induced germline apoptosis in Caenorhabditis elegans: the independent roles of DNA damage response signaling and the dependent roles of MAPK cascades. Chem-Biol Int 180:151–157

    Article  CAS  Google Scholar 

  30. Pei B, Wang S, Guo X, Wang J, Yang G, Hang H, Wu L (2008) Arsenite-induced germline apoptosis through a MAPK-dependent, p53-independent pathway in Caenorhabditis elegans. Chem Res Toxicol 21:1530–1535

    Article  CAS  Google Scholar 

  31. Wang Y, Wang S, Luo X, Yang Y, Jian F, Wang X, Xie L (2014) The roles of DNA damage-dependent signals and MAPK cascades in tributyltin-induced germline apoptosis in Caenorhabditis elegans. Chemosphere 108:231–238

    Article  CAS  Google Scholar 

  32. Wang S, Tang M, Pei B, Xiao X, Wang J, Hang H, Wu L (2008) Cadmium-induced germline apoptosis in Caenorhabditis elegans: the roles of HUS1, p53, and MAPK signaling pathways. Toxicol Sci 102:345–351

    Article  CAS  Google Scholar 

  33. Cheng Z, Tian H, Chu H, Wu J, Li Y, Wang Y (2014) The effect of tributyltin chloride on Caenorhabditis elegans germline is mediated by a conserved DNA damage checkpoint pathway. Toxicol Lett 225:413–421

    Article  CAS  Google Scholar 

  34. Du H, Wang M, Dai H, Hong W, Wang M, Wang J, Weng N, Nie Y, Xu A (2015) Endosulfan isomers and sulfate metabolite induced reproductive toxicity in Caenorhabditis elegans involves genotoxic response genes. Environ Sci Technol 49:2460–2468

    Article  CAS  Google Scholar 

  35. VanDuyn N, Settivari R, Wong G, Nass R (2010) SKN-1/Nrf2 inhibits dopamine neuron degeneration in a Caenorhabditis elegans model of methylmercury toxicity. Toxicol Sci 118:613–624

    Article  CAS  Google Scholar 

  36. Chen Y, Shu L, Qiu Z, Lee DY, Settle SJ, Que Hee S, Telesca D, Yang X, Allard P (2016) Exposure to the BPA substitute Bisphenol S causes unique alterations of germline function. PLoS Genet 12:e1006223

    Article  Google Scholar 

  37. Guo X, Bian P, Liang J, Wang Y, Li L, Wang J, Yuan H, Chen S, Xu A, Wu L (2014) Synergistic effects induced by a low dose of diesel particulate extract and ultraviolet-A in Caenorhabditis elegans: DNA damage-triggered germ cell apoptosis. Chem Res Toxicol 27:990–1001

    Article  CAS  Google Scholar 

  38. You X, Xi J, Cao Y, Zhang J, Luan Y (2017) 4-Bromodiphenyl ether induces germ cell apoptosis by induction of ROS and DNA damage in Caenorhabditis elegans. Toxicol Sci 157:510–518

    Article  CAS  Google Scholar 

  39. Ruan Q-L, Ju J-J, Li Y-H, Li X-B, Liu R, Liang G-Y, Zhang J, Pu Y-P, Wang D-Y, Yin L-H (2012) Chlorpyrifos exposure reduces reproductive capacity owing to a damaging effect on gametogenesis in the nematode Caenorhabditis elegans. J Appl Toxicol 32:527–535

    Article  CAS  Google Scholar 

  40. Li Y, Zhang M, Chen P, Liu R, Liang G, Yin L, Pu Y (2015) Effects of microcystin-LR exposure on spermiogenesis in nematode Caenorhabditis elegans. Int J Mol Sci 16:22927–22937

    Article  CAS  Google Scholar 

  41. Kong L, Gao X, Zhu J, Zhang T, Xue Y, Tang M (2017) Reproductive toxicity induced by nickel nanoparticles in Caenorhabditis elegans. Environ Toxicol 32:1530–1538

    Article  CAS  Google Scholar 

  42. Yin J-C, Liu R, Jian Z-H, Yang D, Pu Y-P, Yin L-H, Wang D-Y (2018) Di (2-ethylhexyl) phthalate-induced reproductive toxicity involved in DNA damage-dependent oocyte apoptosis and oxidative stress in Caenorhabditis elegans. Ecotoxicol Environ Saf 163:298–306

    Article  CAS  Google Scholar 

  43. Liu P-D, He K-W, Li Y-X, Wu Q-L, Yang P, Wang D-Y (2012) Exposure to mercury causes formation of male-specific structural deficits by inducing oxidative damage in nematodes. Ecotoxicol Environ Saf 79:90–100

    Article  CAS  Google Scholar 

  44. Ruszkiewicz JA, de Macedo GT, Miranda-Vizuete A, Bowman AB, Bornhorst J, Schwerdtle5 T, Soares FAA, Aschner M (2018) Sex-specific response of Caenorhabditis elegans to methylmercury toxicity. Neurotox Res. https://doi.org/10.1007/s12640-018-9949-4

    Article  Google Scholar 

  45. Shi C, Murphy CT (2014) Mating induces shrinking and death in Caenorhabditis mothers. Science 343:536–540

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, D. (2019). Reproductive Toxicity Induction in Nematodes Exposed to Environmental Toxicants or Stresses. In: Target Organ Toxicology in Caenorhabditis elegans. Springer, Singapore. https://doi.org/10.1007/978-981-13-6010-7_7

Download citation

Publish with us

Policies and ethics