Skip to main content

Recent Trends of Nano-material as Antimicrobial Agents

  • Chapter
  • First Online:
Nanotechnology in Modern Animal Biotechnology

Abstract

Nanomaterial has been employed as an alternative to antibiotics, diagnostic tools and delivery of therapeutics. In particular, nanomaterial has grabbed the attention of researchers due to their antimicrobial properties due to the emergence of multi-drug resistance of several micro-organisms. The present chapter highlights the antimicrobial nanomaterials with their mechanism of action along with their broad spectrum applications such as silver nanomaterial is antimicrobial in nature and is effective in drug delivery. Metallic, non-metallic and natural/ biodegradable nanomaterials have been discussed as potential antimicrobial and their mode of action. The mechanism of antimicrobial nanomaterial is poorly understood, but oxidative stress, non-oxidative action, inhibition of cell adhesion, decline in biofilm formation, obstructed quoram sensing and metal ion release are attributed to be as the major reasons. In addition, the limitation and toxicity with the clinical and environmental applications are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Raouf, N., Al-Enazi, N. M., & Ibraheem, I. B. (2017). Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arabian Journal of Chemistry, 10, S3029–S3039.

    Article  CAS  Google Scholar 

  • Akhtar, M. J., Ahamed, M., Kumar, S., Khan, M. M., Ahmad, J., & Alrokayan, S. A. (2012). Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. International Journal of Nanomedicine, 7, 845.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Allahverdiyev, A. M., Abamor, E. S., Bagirova, M., & Rafailovich, M. (2011). Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbiology, 6(8), 933–940.

    Article  CAS  Google Scholar 

  • Andreini, C., Bertini, I., Cavallaro, G., Holliday, G. L., & Thornton, J. M. (2008). Metal ions in biological catalysis: From enzyme databases to general principles. Journal of Biological Inorganic Chemistry, 13(8), 1205–1218.

    Article  CAS  Google Scholar 

  • Armentano, I., Arciola, C. R., Fortunati, E., Ferrari, D., Mattioli, S., Amoroso, C. F., … Visai, L. (2014). The interaction of bacteria with engineered nanostructured polymeric materials: A review. The Scientific World Journal, 2014.

    Google Scholar 

  • Ansari, H., Shabanian, M., & Khonakdar, H. A. (2017). Using a β-Cyclodextrin-functional Fe3O4 as a Reinforcement of PLA: Synthesis, Thermal, and Combustion Properties. Polymer-Plastics Technology and Engineering, 56(12), 1366–1373.

    Article  CAS  Google Scholar 

  • Avalos, A., Haza, A. I., Mateo, D., & Morales, P. (2016). Interactions of manufactured silver nanoparticles of different sizes with normal human dermal fibroblasts. International Wound Journal, 13(1), 101–109.

    Article  Google Scholar 

  • Bahri-Laleh, N., Correa, A., Mehdipour-Ataei, S., Arabi, H., Haghighi, M. N., Zohuri, G., …Cavallo, L. (2011). Moving up and down the titanium oxidation state in Ziegler− Natta catalysis. Macromolecules, 44(4), 778–783.

    Article  CAS  Google Scholar 

  • Baranwal, A., Srivastava, A., Kumar, P., Bajpai, V. K., Maurya, P. K., & Chandra, P. (2018). Prospects of nanostructure materials and their composites as antimicrobial agents. Frontiers in Microbiology, 9, 422.

    Article  Google Scholar 

  • Blecher, K., Nasir, A., & Friedman, A. (2011). The growing role of nanotechnology in combating infectious disease. Virulence, 2(5), 395–401.

    Article  Google Scholar 

  • Chang, Y.-N., Zhang, M., Xia, L., Zhang, J., & Xing, G. (2012). The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials, 5(12), 2850–2871.

    Article  CAS  Google Scholar 

  • Chen, P. C., Mwakwari, S. C., & Oyelere, A. K. (2008). Gold nanoparticles: From nanomedicine to nanosensing. Nanotechnology, Science and Applications, 1, 45.

    Article  CAS  Google Scholar 

  • Cheng, G., Dai, M., Ahmed, S., Hao, H., Wang, X., & Yuan, Z. (2016). Antimicrobial drugs in fighting against antimicrobial resistance. Frontiers in Microbiology, 7, 470.

    PubMed  PubMed Central  Google Scholar 

  • Chupani, L., Zusková, E., Niksirat, H., Panáček, A., Lünsmann, V., Haange, S.-B., … Jehmlich, N. (2017). Effects of chronic dietary exposure of zinc oxide nanoparticles on the serum protein profile of juvenile common carp (Cyprinus carpio L.). Science of the Total Environment, 579, 1504–1511.

    Google Scholar 

  • Chwalibog, A., Sawosz, E., Hotowy, A., Szeliga, J., Mitura, S., Mitura, K., … Sokolowska, A. (2010). Visualization of interaction between inorganic nanoparticles and bacteria or fungi. International Journal of Nanomedicine, 5, 1085.

    Google Scholar 

  • Dizaj, S. M., Lotfipour, F., Barzegar-Jalali, M., Zarrintan, M. H., & Adibkia, K. (2014). Antimicrobial activity of the metals and metal oxide nanoparticles. Materials Science and Engineering: C, 44, 278–284.

    Article  CAS  Google Scholar 

  • Drake, P. L., & Hazelwood, K. J. (2005). Exposure-related health effects of silver and silver compounds: A review. The Annals of Occupational Hygiene, 49(7), 575–585.

    CAS  PubMed  Google Scholar 

  • Egger, S., Lehmann, R. P., Height, M. J., Loessner, M. J., & Schuppler, M. (2009). Antimicrobial properties of a novel silver-silica nanocomposite material. Applied and Environmental Microbiology, 75(9), 2973–2976.

    Article  CAS  Google Scholar 

  • Espitia, P. J. P., Soares, N. D. F. F., Teófilo, R. F., dos Reis Coimbra, J. S., Vitor, D. M., Batista, R. A., … Medeiros, E. A. A. (2013). Physical–mechanical and antimicrobial properties of nanocomposite films with pediocin and ZnO nanoparticles. Carbohydrate Polymers, 94(1), 199–208.

    Google Scholar 

  • Fabian, E., Landsiedel, R., Ma-Hock, L., Wiench, K., Wohlleben, W., & Van Ravenzwaay, B. (2008). Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats. Archives of Toxicology, 82(3), 151–157.

    Article  CAS  Google Scholar 

  • Fernando, S., Gunasekara, T., & Holton, J. (2018). Antimicrobial nanoparticles: Applications and mechanisms of action. Sri Lankan Journal of Infectious Diseases, 8(1), 2–11.

    Article  Google Scholar 

  • Franklin, N. M., Rogers, N. J., Apte, S. C., Batley, G. E., Gadd, G. E., & Casey, P. S. (2007). Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): The importance of particle solubility. Environmental Science & Technology, 41(24), 8484–8490.

    Article  CAS  Google Scholar 

  • Friedman, A. J., Han, G., Navati, M. S., Chacko, M., Gunther, L., Alfieri, A., & Friedman, J. M. (2008). Sustained release nitric oxide releasing nanoparticles: Characterization of a novel delivery platform based on nitrite containing hydrogel/glass composites. Nitric Oxide, 19(1), 12–20.

    Article  CAS  Google Scholar 

  • Friedman, A. J., Blecher, K., Schairer, D., Tuckman-Vernon, C., Nacharaju, P., Sanchez, D., … Nosanchuk, J. D. (2011). Improved antimicrobial efficacy with nitric oxide releasing nanoparticle generated S-nitrosoglutathione. Nitric Oxide, 25(4), 381–386.

    Google Scholar 

  • Friedman, A. J., Phan, J., Schairer, D. O., Champer, J., Qin, M., Pirouz, A., … Modlin, R. L. (2013). Antimicrobial and anti-inflammatory activity of chitosan–alginate nanoparticles: A targeted therapy for cutaneous pathogens. Journal of Investigative Dermatology, 133(5), 1231–1239.

    Google Scholar 

  • Girardi, F. A., Bruch, G. E., Peixoto, C. S., Dal Bosco, L., Sahoo, S. K., Gonçalves, C. O., … Barros, D. M. (2017). Toxicity of single-wall carbon nanotubes functionalized with polyethylene glycol in zebrafish (Danio rerio) embryos. Journal of Applied Toxicology, 37(2), 214–221.

    Google Scholar 

  • Goodman, C. M., McCusker, C. D., Yilmaz, T., & Rotello, V. M. (2004). Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chemistry, 15(4), 897–900.

    Article  CAS  Google Scholar 

  • Grassian, V. H., O’Shaughnessy, P. T., Adamcakova-Dodd, A., Pettibone, J. M., & Thorne, P. S. (2007). Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environmental Health Perspectives, 115(3), 397.

    Article  CAS  Google Scholar 

  • Griffith, L. G., & Swartz, M. A. (2006). Capturing complex 3D tissue physiology in vitro. Nature Reviews Molecular Cell Biology, 7(3), 211.

    Article  CAS  Google Scholar 

  • Griffitt, R. J., Weil, R., Hyndman, K. A., Denslow, N. D., Powers, K., Taylor, D., & Barber, D. S. (2007). Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environmental Science & Technology, 41(23), 8178–8186.

    Article  CAS  Google Scholar 

  • Gunalan, S., Sivaraj, R., & Rajendran, V. (2012). Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Progress in Natural Science: Materials International, 22(6), 693–700.

    Article  Google Scholar 

  • Hajipour, M. J., Fromm, K. M., Ashkarran, A. A., de Aberasturi, D. J., de Larramendi, I. R., Rojo, T., … Mahmoudi, M. (2012). Antibacterial properties of nanoparticles. Trends in Biotechnology, 30(10), 499–511.

    Google Scholar 

  • Han, G., Martinez, L. R., Mihu, M. R., Friedman, A. J., Friedman, J. M., & Nosanchuk, J. D. (2009). Nitric oxide releasing nanoparticles are therapeutic for Staphylococcus aureus abscesses in a murine model of infection. PLoS One, 4(11), e7804.

    Article  Google Scholar 

  • Hsueh, P.-R. (2010). New Delhi metallo-β-lactamase-1 (NDM-1): An emerging threat among Enterobacteriaceae. Journal of the Formosan Medical Association, 109(10), 685–687.

    Article  CAS  Google Scholar 

  • Huang, L., Dai, T., Xuan, Y., Tegos, G. P., & Hamblin, M. R. (2011). Synergistic combination of chitosan acetate with nanoparticle silver as a topical antimicrobial: Efficacy against bacterial burn infections. Antimicrobial Agents and Chemotherapy, 55(7), 3432–3438.

    Article  CAS  Google Scholar 

  • Huh, A. J., & Kwon, Y. J. (2011). “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of Controlled Release, 156(2), 128–145.

    Article  CAS  Google Scholar 

  • Jadhav, S., Gaikwad, S., Nimse, M., & Rajbhoj, A. (2011). Copper oxide nanoparticles: synthesis, characterization and their antibacterial activity. Journal of Cluster Science, 22(2), 121–129.

    Article  CAS  Google Scholar 

  • Jeong, M. S., Park, J. S., Song, S. H., & Jang, S. B. (2007). Characterization of antibacterial nanoparticles from the scallop, Ptinopecten yessoensis. Bioscience, Biotechnology, and Biochemistry, 71(9), 2242–2247.

    Article  CAS  Google Scholar 

  • Jiang, W., Mashayekhi, H., & Xing, B. (2009). Bacterial toxicity comparison between nano-and micro-scaled oxide particles. Environmental pollution, 157(5), 1619–1625.

    Article  CAS  Google Scholar 

  • Karlsson, H. L., Cronholm, P., Gustafsson, J., & Moller, L. (2008). Copper oxide nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and carbon nanotubes. Chemical Research in Toxicology, 21(9), 1726–1732.

    Article  CAS  Google Scholar 

  • Kumar, B. N. P., Mahaboobi, S., & Satyam, S. (2017). Chitosan in Medicine–A Mini Review. J Mol Pharm Org Process Res, 5(134), 2.

    Google Scholar 

  • Lakshminarayanan, R., Ye, E., Young, D. J., Li, Z., Loh, X. J. (2018). Recent advances in the development of antimicrobial nanoparticles for combating resistant pathogens. Advanced Healthcare Materials, 1701400.

    Google Scholar 

  • Lam, S. J., Wong, E. H., Boyer, C., & Qiao, G. G. (2017). Antimicrobial polymeric nanoparticles. Progress in Polymer Science, 63, 561–570.

    Google Scholar 

  • Lara, H. H., Ayala-Núñez, N. V., Turrent, L. D. C. I., & Padilla, C. R. (2010). Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World Journal of Microbiology and Biotechnology, 26(4), 615–621.

    Article  CAS  Google Scholar 

  • Lee, J., Mahendra, S., & Alvarez, P. J. (2010). Nanomaterials in the construction industry: A review of their applications and environmental health and safety considerations. ACS Nano, 4(7), 3580–3590.

    Article  CAS  Google Scholar 

  • Lin, D., & Xing, B. (2008). Root uptake and phytotoxicity of ZnO nanoparticles. Environmental Science & Technology, 42(15), 5580–5585.

    Article  CAS  Google Scholar 

  • Liu, Z., Young, A. W., Hu, P., Rice, A. J., Zhou, C., Zhang, Y., & Kallenbach, N. R. (2007). Tuning the membrane selectivity of antimicrobial peptides by using multivalent design. ChemBioChem, 8(17), 2063–2065.

    Article  CAS  Google Scholar 

  • Liu, Y., He, L., Mustapha, A., Li, H., Hu, Z. Q., & Lin, M. (2009). Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157: H7. Journal of applied microbiology, 107(4), 1193–1201.

    Article  CAS  Google Scholar 

  • Liu, C., Xie, X., & Cui, Y. (2012). Antimicrobial nanomaterials for water disinfection. In Nano-antimicrobials (pp. 465–494). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Luganini, A., Giuliani, A., Pirri, G., Pizzuto, L., Landolfo, S., & Gribaudo, G. (2010). Peptide-derivatized dendrimers inhibit human cytomegalovirus infection by blocking virus binding to cell surface heparan sulfate. Antiviral Research, 85(3), 532–540.

    Article  CAS  Google Scholar 

  • Luo, Y., Hossain, M., Wang, C., Qiao, Y., An, J., Ma, L., & Su, M. (2013). Targeted nanoparticles for enhanced X-ray radiation killing of multidrug-resistant bacteria. Nanoscale, 5(2), 687–694.

    Article  CAS  Google Scholar 

  • Lyon, D. Y., Adams, L. K., Falkner, J. C., & Alvarez, P. J. (2006). Antibacterial activity of fullerene water suspensions: Effects of preparation method and particle size. Environmental Science & Technology, 40(14), 4360–4366.

    Article  CAS  Google Scholar 

  • Magrez, A., Kasas, S., Salicio, V., Pasquier, N., Seo, J. W., Celio, M., … Forró, L. (2006). Cellular toxicity of carbon-based nanomaterials. Nano Letters, 6(6), 1121–1125.

    Google Scholar 

  • Ocsoy, I., Temiz, M., Celik, C., Altinsoy, B., Yilmaz, V., & Duman, F. (2017). A green approach for formation of silver nanoparticles on magnetic graphene oxide and highly effective antimicrobial activity and reusability. Journal of Molecular Liquids, 227, 147–152.

    Article  CAS  Google Scholar 

  • Organization, W. H. (2016). Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection: Recommendations for a public health approach. Geneva: World Health Organization.

    Google Scholar 

  • Organization, W. H. (2018). High levels of antibiotic resistance found worldwide, new data shows. Saudi Medical Journal, 39(4), 430–431.

    Google Scholar 

  • Patra, H. K., Banerjee, S., Chaudhuri, U., Lahiri, P., & Dasgupta, A. K. (2007). Cell selective response to gold nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 3(2), 111–119.

    Article  CAS  Google Scholar 

  • Pires, J., Siriwardena, T. N., Stach, M., Tinguely, R., Kasraian, S., Luzzaro, F., … Endimiani, A. (2015). In vitro activity of the novel antimicrobial peptide dendrimer G3KL against multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 59(12), 7915–7918.

    Google Scholar 

  • Pushparaj Selvadoss, P., Nellore, J., Balaraman Ravindrran, M., Sekar, U., & Tippabathani, J. (2018). Enhancement of antimicrobial activity by liposomal oleic acid-loaded antibiotics for the treatment of multidrug-resistant Pseudomonas aeruginosa. Artificial Cells, Nanomedicine, and Biotechnology, 46(2), 268–273.

    Article  CAS  Google Scholar 

  • Qi, L., Xu, Z., Jiang, X., Hu, C., & Zou, X. (2004). Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate research, 339(16), 2693–2700.

    Article  CAS  Google Scholar 

  • Qiu, Z., Yu, Y., Chen, Z., Jin, M., Yang, D., Zhao, Z., … Qian, D. (2012). Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera. Proceedings of the National Academy of Sciences, 109(13), 4944–4949.

    Google Scholar 

  • Riley, R. S., & Day, E. S. (2017). Gold nanoparticle-mediated photothermal therapy: Applications and opportunities for multimodal cancer treatment. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 9(4), e1449.

    Google Scholar 

  • Schwartz, B., Bell, D. M., & Hughes, J. M. (1997). Preventing the emergence of antimicrobial resistance: A call for action by clinicians, public health officials, and patients. JAMA, 278(11), 944–945.

    Article  CAS  Google Scholar 

  • Scorciapino, M. A., Serra, I., Manzo, G., & Rinaldi, A. C. (2017). Antimicrobial dendrimeric peptides: structure, activity and new therapeutic applications. International journal of molecular sciences, 18(3), 542.

    Article  Google Scholar 

  • Shiohara, A., Hoshino, A., Hanaki, K., Suzuki, K., & Yamamoto, K. (2004). On the cytotoxicity caused by quantum dots. Microbiology and Immunology, 48, 669–675.

    Article  CAS  Google Scholar 

  • Silva, L. F., Oliveira, M. L., Neace, E. R., O’Keefe, J. M., Henke, K. R., & Hower, J. C. (2011). Nanominerals and ultrafine particles in sublimates from the Ruth Mullins coal fire, Perry County, Eastern Kentucky, USA. International Journal of Coal Geology, 85(2), 237–245.

    Article  CAS  Google Scholar 

  • Simon-Deckers, A., Loo, S., Mayne-L’hermite, M., Herlin-Boime, N., Menguy, N., Reynaud, C., …Carriere, M. (2009). Size-, composition-and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environmental science & technology, 43(21), 8423–8429.

    Article  CAS  Google Scholar 

  • Sperling, R. A., & Parak, W. J. (2010). Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 368(1915), 1333–1383.

    Article  CAS  Google Scholar 

  • Srisitthiratkul, C., Pongsorrarith, V., & Intasanta, N. (2011). The potential use of nanosilver-decorated titanium dioxide nanofibers for toxin decomposition with antimicrobial and self-cleaning properties. Applied Surface Science, 257(21), 8850–8856.

    Article  CAS  Google Scholar 

  • Wang, H., Kou, X., Pei, Z., Xiao, J. Q., Shan, X., & Xing, B. (2011). Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology, 5(1), 30–42.

    Article  Google Scholar 

  • Xia, T., Kovochich, M., Brant, J., Hotze, M., Sempf, J., Oberley, T., … Nel, A. E. (2006). Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Letters, 6(8), 1794–1807.

    Google Scholar 

  • Zeyons, O., Thill, A., Chauvat, F., Menguy, N., Cassier-Chauvat, C., Oréar, C., … Spalla, O. (2009). Direct and indirect CeO2 nanoparticles toxicity for Escherichia coli and Synechocystis. Nanotoxicology, 3(4), 284–295.

    Google Scholar 

  • Zhang, L. W., William, W. Y., Colvin, V. L., & Monteiro-Riviere, N. A. (2008). Biological interactions of quantum dot nanoparticles in skin and in human epidermal keratinocytes. Toxicology and Applied Pharmacology, 228(2), 200–211.

    Article  CAS  Google Scholar 

  • Zhang, L., Pornpattananangkul, D., Hu, C.-M., & Huang, C.-M. (2010). Development of nanoparticles for antimicrobial drug delivery. Current Medicinal Chemistry, 17(6), 585–594.

    Article  CAS  Google Scholar 

  • Zhu, L., Chang, D. W., Dai, L., & Hong, Y. (2007). DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells. Nano Letters, 7(12), 3592–3597.

    Article  CAS  Google Scholar 

  • Zhu, X., Chang, Y., & Chen, Y. (2010). Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere, 78(3), 209–215.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawan Kumar Maurya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aggarwal, T. et al. (2019). Recent Trends of Nano-material as Antimicrobial Agents. In: Singh, S., Maurya, P. (eds) Nanotechnology in Modern Animal Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-13-6004-6_5

Download citation

Publish with us

Policies and ethics