Skip to main content

Silver-Based Polymeric Nanocomposites as Antimicrobial Coatings for Biomedical Applications

  • Chapter
  • First Online:
Nanotechnology in Modern Animal Biotechnology

Abstract

Hospital-acquired infections (HAIs) pose one of the major challenges to therapeutic applications of biomedical devices under clinically relevant conditions. A paradigm shift in understanding and pathogenesis of biofilm formation has constantly been forcing professionals to adopt some novel and effective, yet affordable anti-adhesive/anti-biofilm technologies for successful long-term implantation of devices without infections. The intriguing physicochemical properties of a biomaterial’s surface is crucial to develop novel coating technologies where the anti-fouling feature of the device must also be accompanied with its long-term antibacterial performance without introducing toxicity to mammalian cells and the drug resistance. One of the best strategies to minimize nosocomial infections is through using biocompatible polymers that exhibit either an innate biocidal characteristic or may be surface-modified to impart antimicrobial features to a biomaterial by introducing biocidal agents, such as antibiotics, antimicrobial peptides, and more recently silver nanoparticles (AgNPs). Nano-silver has been widely accepted as the most efficacious metal that is well-adorned with antimicrobial properties due to its oligodynamic action, multifaceted mechanisms of biocidal action and low cytotoxicity to humans. The present chapter thus provides an exhaustive information about various surface modifications strategies for biomaterial coatings, which can be employed to immobilize silver nanoparticles onto polymeric composites with a few common goals, i.e. broad-spectrum antimicrobial nature, higher efficacy, stability and promoting reuse. Various nano-silver based polymeric composites of both natural and synthetic origin will be discussed as potential coating materials candidates for implants (vascular grafts, endotracheal tubes, and catheters), wound dressings, surgical mesh and other porous scaffolds. The application of AgNPs-polymeric nanocomposites into several forms such as thin films, fibers, hydrogels, and multilayered structures will be correlated with their clinical relevance. Lastly, potential toxicity and safety concerns using these nanocomposites will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham, A. N., Sharma, T. K., Bansal, V., & Shukla, R. (2018). Phytochemicals as dynamic surface ligands to control nanoparticle–protein interactions. ACS Omega, 3, 2220–2229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agarwala, M., Barman, T., Gogoi, D., Choudhury, B., Pal, A. R., & Yadav, R. (2014). Highly effective antibiofilm coating of silver–polymer nanocomposite on polymeric medical devices deposited by one step plasma process. Journal of Biomedical Materials Research Part B Applied Biomaterials, 102, 1223–1235.

    Article  CAS  PubMed  Google Scholar 

  • Agnihotri, S., & Dhiman, N. K. (2017). Development of nano-antimicrobial biomaterials for biomedical applications. In A. Tripathi & J. S. Melo (Eds.), Advances in biomaterials for biomedical applications (pp. 479–545). Singapore: Springer.

    Chapter  Google Scholar 

  • Agnihotri, S., Mukherji, S., & Mukherji, S. (2012). Antimicrobial chitosan–PVA hydrogel as a nanoreactor and immobilizing matrix for silver nanoparticles. Applied Nanoscience, 2, 179–188.

    Article  CAS  Google Scholar 

  • Agnihotri, S., Mukherji, S., & Mukherji, S. (2013). Immobilized silver nanoparticles enhance contact killing and show highest efficacy: Elucidation of the mechanism of bactericidal action of silver. Nanoscale, 5, 7328–7340.

    Article  CAS  PubMed  Google Scholar 

  • Agnihotri, S., Mukherji, S., & Mukherji, S. (2014). Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Advances, 4, 3974–3983.

    Article  CAS  Google Scholar 

  • Agnihotri, S., Bajaj, G., Mukherji, S., & Mukherji, S. (2015). Arginine-assisted immobilization of silver nanoparticles on ZnO nanorods: An enhanced and reusable antibacterial substrate without human cell cytotoxicity. Nanoscale, 7, 7415–7429.

    Article  CAS  PubMed  Google Scholar 

  • Agnihotri, S., Dhiman, N. K., & Tripathi, A. (2018). Antimicrobial surface modification of polymeric biomaterials. In A. Tiwari (Ed.), Handbook of antimicrobial coatings (pp. 435–486). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Ajitha, B., Reddy, Y. A. K., Jeon, H.-J., & Ahn, C. W. (2018). Synthesis of silver nanoparticles in an eco-friendly way using Phyllanthus amarus leaf extract: Antimicrobial and catalytic activity. Advanced Powder Technology, 29, 86–93.

    Article  CAS  Google Scholar 

  • Alexander, J. W. (2009). History of the medical use of silver. Surgical Infections, 10, 289–292.

    Article  PubMed  Google Scholar 

  • An, Y. H., & Friedman, R. J. (1998). Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. Journal of Biomedical Materials Research, 43, 338–348.

    Article  CAS  PubMed  Google Scholar 

  • Anjum, S., Sharma, A., Tummalapalli, M., Joy, J., Bhan, S., & Gupta, B. (2015). A novel route for the preparation of silver loaded polyvinyl alcohol nanogels for wound care systems. International Journal of Polymeric Materials and Polymeric Biomaterials, 64, 894–905.

    Article  CAS  Google Scholar 

  • Aramwit, P., & Sangcakul, A. (2007). The effects of sericin cream on wound healing in rats. Bioscience, Biotechnology, and Biochemistry, 71, 2473–2477.

    Article  CAS  PubMed  Google Scholar 

  • Arockianathan, P. M., Sekar, S., Kumaran, B., & Sastry, T. (2012). Preparation, characterization and evaluation of biocomposite films containing chitosan and sago starch impregnated with silver nanoparticles. International Journal of Biological Macromolecules, 50, 939–946.

    Article  PubMed  CAS  Google Scholar 

  • Arora, S., Jain, J., Rajwade, J., & Paknikar, K. (2008). Cellular responses induced by silver nanoparticles: In vitro studies. Toxicology Letters, 179, 93–100.

    Article  CAS  PubMed  Google Scholar 

  • Asai, T., Lee, M.-H., Arrecubieta, C., von Bayern, M. P., Cespedes, C. A., Baron, H. M., et al. (2007). Cellular coating of the left ventricular assist device textured polyurethane membrane reduces adhesion of Staphylococcus aureus. The Journal of Thoracic and Cardiovascular Surgery, 133, 1147–1153.

    Article  CAS  PubMed  Google Scholar 

  • AshaRani, P., Low Kah Mun, G., Hande, M. P., & Valiyaveettil, S. (2008). Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 3, 279–290.

    Article  CAS  Google Scholar 

  • Atiyeh, B. S., Costagliola, M., Hayek, S. N., & Dibo, S. A. (2007). Effect of silver on burn wound infection control and healing: Review of the literature. Burns, 33, 139–148.

    Article  PubMed  Google Scholar 

  • Augustine, R., & Rajarathinam, K. (2012). Synthesis and characterization of silver nanoparticles and its immobilization on alginate coated sutures for the prevention of surgical wound infections and the in vitro release studies. International Journal of Nano Dimension, 2, 205.

    CAS  Google Scholar 

  • Baek, K., Liang, J., Lim, W. T., Zhao, H., Kim, D. H., & Kong, H. (2015). In situ assembly of antifouling/bacterial silver nanoparticle-hydrogel composites with controlled particle release and matrix softening. ACS Applied Materials and Interfaces, 7, 15359–15367.

    Article  CAS  PubMed  Google Scholar 

  • Bakare, R., Hawthrone, S., Vails, C., Gugssa, A., Karim, A., Stubbs, J., 3rd, et al. (2016). Antimicrobial and cell viability measurement of bovine serum albumin capped silver nanoparticles (Ag/BSA) loaded collagen immobilized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) film. Journal of Colloid and Interface Science, 465, 140–148.

    Article  CAS  PubMed  Google Scholar 

  • Bal, K., Bal, Y., Cote, G., & Chagnes, A. (2012). Morphology and antimicrobial properties of Luffa cylindrica fibers/chitosan biomaterial as micro-reservoirs for silver delivery. Materials Letters, 79, 238–241.

    Article  CAS  Google Scholar 

  • Banerjee, I., Pangule, R. C., & Kane, R. S. (2011). Antifouling coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Advanced Materials, 23, 690–718.

    Article  CAS  PubMed  Google Scholar 

  • Bang, B. W., Jeong, S., Lee, D. H., Lee, J. I., Lee, S. C., & Kang, S.-G. (2012). The biodurability of covering materials for metallic stents in a bile flow phantom. Digestive Diseases and Sciences, 57, 1056–1063.

    Article  CAS  PubMed  Google Scholar 

  • Bat, E., Zhang, Z., Feijen, J., Grijpma, D. W., & Poot, A. A. (2014). Biodegradable elastomers for biomedical applications and regenerative medicine. Regenerative Medicine, 9, 385–398.

    Article  CAS  PubMed  Google Scholar 

  • Bazaka, K., Jacob, M. V., Crawford, R. J., & Ivanova, E. P. (2012). Efficient surface modification of biomaterial to prevent biofilm formation and the attachment of microorganisms. Applied Microbiology and Biotechnology, 95, 299–311.

    Article  CAS  PubMed  Google Scholar 

  • Beyth, N., Yudovin-Farber, I., Perez-Davidi, M., Domb, A. J., & Weiss, E. I. (2010). Polyethyleneimine nanoparticles incorporated into resin composite cause cell death and trigger biofilm stress in vivo. Proceedings of the National Academy of Sciences of the United States of America, 107, 22038–22043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bharti, S., Agnihotri, S., Mukherji, S., & Mukherji, S. (2015). Effectiveness of immobilized silver nanoparticles in inactivation of pathogenic bacteria. Journal of Environmental Research And Development, 9, 849–856.

    CAS  Google Scholar 

  • Bhowmick, S., Mohanty, S., & Koul, V. (2016). Fabrication of transparent quaternized PVA/silver nanocomposite hydrogel and its evaluation as an antimicrobial patch for wound care systems. Journal of Materials Science. Materials in Medicine, 27, 160.

    Article  PubMed  CAS  Google Scholar 

  • Bindhu, M., & Umadevi, M. (2013). Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 101, 184–190.

    Article  CAS  PubMed  Google Scholar 

  • Blecher, K., Nasir, A., & Friedman, A. (2011). The growing role of nanotechnology in combating infectious disease. Virulence, 2, 395–401.

    Article  PubMed  Google Scholar 

  • Bosetti, M., Masse, A., Tobin, E., & Cannas, M. (2002). Silver coated materials for external fixation devices: In vitro biocompatibility and genotoxicity. Biomaterials, 23, 887–892.

    Article  CAS  PubMed  Google Scholar 

  • Braydich-Stolle, L., Hussain, S., Schlager, J. J., & Hofmann, M.-C. (2005). In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicological Sciences, 88, 412–419.

    Article  CAS  PubMed  Google Scholar 

  • Bridges, A. W., & García, A. J. (2008). Anti-inflammatory polymeric coatings for implantable biomaterials and devices. Journal of Diabetes Science and Technology, 2, 984–994.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bryaskova, R., Pencheva, D., Kale, G. M., Lad, U., & Kantardjiev, T. (2010). Synthesis, characterisation and antibacterial activity of PVA/TEOS/Ag-Np hybrid thin films. Journal of Colloid and Interface Science, 349, 77–85.

    Article  CAS  PubMed  Google Scholar 

  • Burd, A., Kwok, C. H., Hung, S. C., Chan, H. S., Gu, H., Lam, W. K., et al. (2007). A comparative study of the cytotoxicity of silver-based dressings in monolayer cell, tissue explant, and animal models. Wound Repair and Regeneration, 15, 94–104.

    Article  PubMed  Google Scholar 

  • Bushnell, B. D., McWilliams, A. D., Whitener, G. B., & Messer, T. M. (2008). Early clinical experience with collagen nerve tubes in digital nerve repair. Journal of Hand Surgery-American, 33, 1081–1087.

    Article  Google Scholar 

  • Busscher, H. J., Van Der Mei, H. C., Subbiahdoss, G., Jutte, P. C., Van Den Dungen, J. J., Zaat, S. A., et al. (2012). Biomaterial-associated infection: Locating the finish line in the race for the surface. Science Translational Medicine, 4, 153rv110.

    Article  CAS  Google Scholar 

  • Cai, R., Tao, G., He, H., Guo, P., Yang, M., Ding, C., et al. (2017). In situ synthesis of silver nanoparticles on the polyelectrolyte-coated sericin/PVA film for enhanced antibacterial application. Materials, 10, 967.

    Article  PubMed Central  CAS  Google Scholar 

  • Camargo, P. H. C., Satyanarayana, K. G., & Wypych, F. (2009). Nanocomposites: Synthesis, structure, properties and new application opportunities. Materials Research, 12, 1–39.

    Article  CAS  Google Scholar 

  • Cao, X., Tang, M., Liu, F., Nie, Y., & Zhao, C. (2010). Immobilization of silver nanoparticles onto sulfonated polyethersulfone membranes as antibacterial materials. Colloids and Surfaces. B, Biointerfaces, 81, 555–562.

    Article  CAS  PubMed  Google Scholar 

  • Carlson, G. A., Dragoo, J. L., Samimi, B., Bruckner, D. A., Bernard, G. W., Hedrick, M., et al. (2004). Bacteriostatic properties of biomatrices against common orthopaedic pathogens. Biochemical and Biophysical Research Communications, 321, 472–478.

    Article  CAS  PubMed  Google Scholar 

  • Carvalho, D., Sousa, T., Morais, P., & Piedade, A. (2016). Polymer/metal nanocomposite coating with antimicrobial activity against hospital isolated pathogen. Applied Surface Science, 379, 489–496.

    Article  CAS  Google Scholar 

  • Chakraborty, D., Sharma, V., Agnihotri, S., Mukherji, S., & Mukherji, S. (2017). Disinfection of water in a batch reactor using chloridized silver surfaces. Journal of Water Process Engineering, 16, 41–49.

    Article  Google Scholar 

  • Chan, C., Cheng, H., Djurišić, A. B., Ng, A., Leung, F. C., & Chan, W. K. (2011). Multicomponent antimicrobial transparent polymer coatings. Journal of Applied Polymer Science, 122, 1572–1578.

    Article  CAS  Google Scholar 

  • Chen, X., & Schluesener, H. (2008). Nanosilver: A nanoproduct in medical application. Toxicology Letters, 176, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Chen, A., Wang, H., & Li, X. (2005). One-step process to fabricate Ag–polypyrrole coaxial nanocables. Chemical Communications, 14, 1863–1864.

    Article  Google Scholar 

  • Chen, W., Liu, Y., Courtney, H., Bettenga, M., Agrawal, C., Bumgardner, J., et al. (2006). In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials, 27, 5512–5517.

    Article  CAS  PubMed  Google Scholar 

  • Chernousova, S., & Epple, M. (2013). Silver as antibacterial agent: Ion, nanoparticle, and metal. Angewandte Chemie International Edition, 52, 1636–1653.

    Article  CAS  PubMed  Google Scholar 

  • Chia, T. W. R., Nguyen, V. T., McMeekin, T., Fegan, N., & Dykes, G. A. (2011). Stochasticity of bacterial attachment and its predictability by the extended Derjaguin-Landau-Verwey-Overbeek theory. Applied and Environmental Microbiology, 77, 3757–3764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chitichotpanya, P., Inprasit, T., & Chitichotpanya, C. (2017). In vitro assessment of antibacterial potential and mechanical properties of Ag-TiO2/WPU on medical cotton optimized with response surface methodology. Journal of Natural Fibers, 1–12.

    Google Scholar 

  • Choi, O. K., & Hu, Z. Q. (2009). Nitrification inhibition by silver nanoparticles. Water Science and Technology, 59, 1699–1702.

    Article  CAS  PubMed  Google Scholar 

  • Choi, J. S., Yang, H.-J., Kim, B. S., Kim, J. D., Kim, J. Y., Yoo, B., et al. (2009). Human extracellular matrix (ECM) powders for injectable cell delivery and adipose tissue engineering. Journal of Controlled Release, 139, 2–7.

    Article  CAS  PubMed  Google Scholar 

  • Choudhury, A. (2009). Polyaniline/silver nanocomposites: Dielectric properties and ethanol vapour sensitivity. Sensors and Actuators B: Chemical, 138, 318–325.

    Article  CAS  Google Scholar 

  • Chu, P. K., Chen, J., Wang, L., & Huang, N. (2002). Plasma-surface modification of biomaterials. Materials Science and Engineering R: Reports, 36, 143–206.

    Article  Google Scholar 

  • Chung, S., Ingle, N. P., Montero, G. A., Kim, S. H., & King, M. W. (2010). Bioresorbable elastomeric vascular tissue engineering scaffolds via melt spinning and electrospinning. Acta Biomaterialia, 6, 1958–1967.

    Article  CAS  PubMed  Google Scholar 

  • Ciobanu, C., Groza, A., Iconaru, S., Popa, C., Chapon, P., Chifiriuc, M., et al. (2015). Antimicrobial activity evaluation on silver doped hydroxyapatite/polydimethylsiloxane composite layer. BioMed Research International, 2015, 926513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cloutier, M., Mantovani, D., & Rosei, F. (2015). Antibacterial coatings: Challenges, perspectives, and opportunities. Trends in Biotechnology, 33, 637–652.

    Article  CAS  PubMed  Google Scholar 

  • Coma, V. (2013). Polysaccharide-based biomaterials with antimicrobial and antioxidant properties. Polímeros, 23, 287–297.

    CAS  Google Scholar 

  • Cometa, S., Bonifacio, M. A., Baruzzi, F., de Candia, S., Giangregorio, M. M., Giannossa, L. C., et al. (2017). Silver-loaded chitosan coating as an integrated approach to face titanium implant-associated infections: Analytical characterization and biological activity. Analytical and Bioanalytical Chemistry, 409, 7211–7221.

    Article  CAS  PubMed  Google Scholar 

  • Dahlin, R. L., Kasper, F. K., & Mikos, A. G. (2011). Polymeric nanofibers in tissue engineering. Tissue Engineering Part B, Reviews, 17, 349–364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daima, H. K., Selvakannan, P. R., Kandjani, A. E., Shukla, R., Bhargava, S. K., & Bansal, V. (2014). Synergistic influence of polyoxometalate surface corona towards enhancing the antibacterial performance of tyrosine-capped Ag nanoparticles. Nanoscale, 6, 758–765.

    Article  CAS  PubMed  Google Scholar 

  • Dallas, P., Sharma, V. K., & Zboril, R. (2011). Silver polymeric nanocomposites as advanced antimicrobial agents: Classification, synthetic paths, applications, and perspectives. Advances in Colloid and Interface, 166, 119–135.

    Article  CAS  Google Scholar 

  • Damm, C. (2005). Silver ion release from polymethyl methacrylate silver nanocomposites. Polymers and Polymer Composites, 13, 649.

    Article  CAS  Google Scholar 

  • Dastjerdi, R., Mojtahedi, M., Shoshtari, A., & Khosroshahi, A. (2010). Investigating the production and properties of Ag/TiO2/PP antibacterial nanocomposite filament yarns. The Journal of the Textile Institute, 101, 204–213.

    Article  CAS  Google Scholar 

  • Dayyoub, E., Frant, M., Pinnapireddy, S. R., Liefeith, K., & Bakowsky, U. (2017). Antibacterial and anti-encrustation biodegradable polymer coating for urinary catheter. International Journal of Pharmaceutics, 531, 205–214.

    Article  CAS  PubMed  Google Scholar 

  • Domènech Garcia, B., Muñoz Tapia, M., Muraviev, D., & Macanás de Benito, J. (2014). Fabrication of polymer-metal nanocomposites with complex polymeric matrices for bactericidal and catalytic applications. Barcelona: Universitat Autònoma de Barcelona.

    Google Scholar 

  • Donlan, R. M. (2001). Biofilms and device-associated infections. Emerging Infectious Diseases, 7, 277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dowling, D., Donnelly, K., McConnell, M., Eloy, R., & Arnaud, M. (2001). Deposition of anti-bacterial silver coatings on polymeric substrates. Thin Solid Films, 398, 602–606.

    Article  Google Scholar 

  • Dubas, S. T., Wacharanad, S., & Potiyaraj, P. (2011). Tunning of the antimicrobial activity of surgical sutures coated with silver nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 380, 25–28.

    Article  CAS  Google Scholar 

  • Dutta, P. K., Dutta, J., & Tripathi, V. (2004). Chitin and chitosan: Chemistry, properties and applications. Journal of Scientific and Industrial Research, 63, 20–31.

    CAS  Google Scholar 

  • El Hajj, F., Hasan, A., Nakhleh, J., Osta, M., Darwish, G., Karam, P., et al. (2015). Nanosilver loaded GelMA hydrogel for antimicrobial coating of biomedical implants. In IEEE: 2015 International Conference on Advances in Biomedical Engineering (ICABME) (pp. 189–192).

    Google Scholar 

  • El-Sayed, A. A., El Gabry, L., & Allam, O. (2010). Application of prepared waterborne polyurethane extended with chitosan to impart antibacterial properties to acrylic fabrics. Journal of Materials Science. Materials in Medicine, 21, 507–514.

    Article  CAS  Google Scholar 

  • El-Sayed, A. A., Salama, M., Salem, T., & Rehan, M. (2016). Synergistic combination of reduction and polymerization reactions to prepare silver/waterborne polyurethane nanocomposite for coating applications. Indian Journal of Science and Technology, 9, 1–10.

    Article  CAS  Google Scholar 

  • Eraković, S., Janković, A., Veljović, D., Palcevskis, E., Mitrić, M., Stevanović, T., et al. (2012). Corrosion stability and bioactivity in simulated body fluid of silver/hydroxyapatite and silver/hydroxyapatite/lignin coatings on titanium obtained by electrophoretic deposition. The Journal of Physical Chemistry. B, 117, 1633–1643.

    Article  PubMed  CAS  Google Scholar 

  • Feng, W., Gao, X., McClung, G., Zhu, S., Ishihara, K., & Brash, J. L. (2011). Methacrylate polymer layers bearing poly (ethylene oxide) and phosphorylcholine side chains as non-fouling surfaces: In vitro interactions with plasma proteins and platelets. Acta Biomaterialia, 7, 3692–3699.

    Article  CAS  PubMed  Google Scholar 

  • Fischer, M., Vahdatzadeh, M., Konradi, R., Friedrichs, J., Maitz, M. F., Freudenberg, U., et al. (2015). Multilayer hydrogel coatings to combine hemocompatibility and antimicrobial activity. Biomaterials, 56, 198–205.

    Article  CAS  PubMed  Google Scholar 

  • Fortunati, E., Latterini, L., Rinaldi, S., Kenny, J., & Armentano, I. P. L. G. A. (2011). Ag nanocomposites: In vitro degradation study and silver ion release. Journal of Materials Science. Materials in Medicine, 22, 2735–2744.

    Article  CAS  PubMed  Google Scholar 

  • Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M., Morelli, G., et al. (2015). Silver nanoparticles as potential antibacterial agents. Molecules, 20, 8856–8874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galya, T., Sedlařík, V., Kuřitka, I., Novotný, R., Sedlaříková, J., & Sáha, P. (2008). Antibacterial poly (vinyl alcohol) film containing silver nanoparticles: Preparation and characterization. Journal of Applied Polymer Science, 110, 3178–3185.

    Article  CAS  Google Scholar 

  • Gao, Y., & Cranston, R. (2008). Recent advances in antimicrobial treatments of textiles. Textile Research Journal, 78, 60–72.

    Article  CAS  Google Scholar 

  • Gianolio, D. A., Philbrook, M., Avila, L. Z., Young, L. E., Plate, L., Santos, M. R., et al. (2008). Hyaluronan-tethered opioid depots: Synthetic strategies and release kinetics in vitro and in vivo. Bioconjugate Chemistry, 19, 1767–1774.

    Article  CAS  PubMed  Google Scholar 

  • Gottenbos, B., Van Der Mei, H., Busscher, H., Grijpma, D., & Feijen, J. (1999). Initial adhesion and surface growth of Pseudomonas aeruginosa on negatively and positively charged poly (methacrylates). Journal of Materials Science. Materials in Medicine, 10, 853–855.

    Article  CAS  PubMed  Google Scholar 

  • Gravante, G., Caruso, R., Sorge, R., Nicoli, F., Gentile, P., & Cervelli, V. (2009). Nanocrystalline silver: A systematic review of randomized trials conducted on burned patients and an evidence-based assessment of potential advantages over older silver formulations. Annals of Plastic Surgery, 63, 201–205.

    Article  CAS  PubMed  Google Scholar 

  • Gristina, A. G. (1987). Biomaterial-centered infection: Microbial adhesion versus tissue integration. Science, 237, 1588–1595.

    Article  CAS  PubMed  Google Scholar 

  • Groza, A., Ciobanu, C. S., Popa, C. L., Iconaru, S. L., Chapon, P., Luculescu, C., et al. (2016). Structural properties and antifungal activity against Candida albicans biofilm of different composite layers based on Ag/Zn doped hydroxyapatite-polydimethylsiloxanes. Polymers, 8, 131.

    Article  CAS  PubMed Central  Google Scholar 

  • Gunatillake, P., Mayadunne, R., & Adhikari, R. (2006). Recent developments in biodegradable synthetic polymers. Biotechnology Annual Review, 12, 301–347.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, A., & Silver, S. (1998). Molecular genetics: Silver as a biocide: Will resistance become a problem? Nature Biotechnology, 16, 888–888.

    Article  CAS  PubMed  Google Scholar 

  • Hajipour, M. J., Fromm, K. M., Ashkarran, A. A., de Aberasturi, D. J., de Larramendi, I. R., Rojo, T., et al. (2012). Antibacterial properties of nanoparticles. Trends in Biotechnology, 30, 499–511.

    Article  CAS  PubMed  Google Scholar 

  • Hall-Stoodley, L., & Stoodley, P. (2009). Evolving concepts in biofilm infections. Cellular Microbiology, 11, 1034–1043.

    Article  CAS  PubMed  Google Scholar 

  • Harkes, G., Feijen, J., & Dankert, J. (1991). Adhesion of Escherichia coli on to a series of poly (methacrylates) differing in charge and hydrophobicity. Biomaterials, 12, 853–860.

    Article  CAS  PubMed  Google Scholar 

  • Hazer, D. B., Sakar, M., Dere, Y., Altinkanat, G., Ziyal, M. I., & Hazer, B. (2016). Antimicrobial effect of polymer-based silver nanoparticle coated pedicle screws: Experimental research on biofilm inhibition in rabbits. Spine, 41, E323–E329.

    Article  PubMed  Google Scholar 

  • He, H., Cai, R., Wang, Y., Tao, G., Guo, P., Zuo, H., et al. (2017). Preparation and characterization of silk sericin/pva blend film with silver nanoparticles for potential antimicrobial application. International Journal of Biological Macromolecules, 104, 457–464.

    Article  CAS  PubMed  Google Scholar 

  • Hegemann, D., Hossain, M. M., & Balazs, D. J. (2007). Nanostructured plasma coatings to obtain multifunctional textile surfaces. Progress in Organic Coating, 58, 237–240.

    Article  CAS  Google Scholar 

  • Hermansson, M. (1999). The DLVO theory in microbial adhesion. Colloids and Surfaces. B, Biointerfaces, 14, 105–119.

    Article  CAS  Google Scholar 

  • Hetrick, E. M., & Schoenfisch, M. H. (2006). Reducing implant-related infections: Active release strategies. Chemical Society Reviews, 35, 780–789.

    Article  CAS  PubMed  Google Scholar 

  • Hill, M., Baldwin, L., Slaughter, J., Walsh, W., & Weitkamp, J. (2010). A silver–alginate-coated dressing to reduce peripherally inserted central catheter (PICC) infections in NICU patients: A pilot randomized controlled trial. Journal of Perinatology, 30, 469.

    Article  CAS  PubMed  Google Scholar 

  • Hirakura, T., Yasugi, K., Nemoto, T., Sato, M., Shimoboji, T., Aso, Y., et al. (2010). Hybrid hyaluronan hydrogel encapsulating nanogel as a protein nanocarrier: New system for sustained delivery of protein with a chaperone-like function. Journal of Controlled Release, 142, 483–489.

    Article  CAS  PubMed  Google Scholar 

  • Hofmann, G. (1992). Biodegradable implants in orthopaedic surgery—A review on the state-of-the-art. Clinical Materials, 10, 75–80.

    Article  CAS  PubMed  Google Scholar 

  • Høiby, N., Bjarnsholt, T., Givskov, M., Molin, S., & Ciofu, O. (2010). Antibiotic resistance of bacterial biofilms. International Journal of Antimicrobial Agents, 35, 322–332.

    Article  PubMed  CAS  Google Scholar 

  • Huang, J., Murata, H., Koepsel, R. R., Russell, A. J., & Matyjaszewski, K. (2007). Antibacterial polypropylene via surface-initiated atom transfer radical polymerization. Biomacromolecules, 8, 1396–1399.

    Article  CAS  PubMed  Google Scholar 

  • Huang, Z., Tian, J., Yu, B., Xu, Y., & Feng, Q. (2009). A bone-like nano-hydroxyapatite/collagen loaded injectable scaffold. Biomedical Materials, 4, 055005.

    Article  PubMed  CAS  Google Scholar 

  • Huang, L., Dai, T., Xuan, Y., Tegos, G. P., & Hamblin, M. R. (2011). Synergistic combination of chitosan acetate with nanoparticle silver as a topical antimicrobial: Efficacy against bacterial burn infections. Antimicrobial Agents and Chemotherapy, 55, 3432–3438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huh, A. J., & Kwon, Y. J. (2011). “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of Controlled Release, 156, 128–145.

    Article  CAS  PubMed  Google Scholar 

  • Hung, H.-S., & Hsu, S.-H. (2007). Biological performances of poly (ether) urethane–silver nanocomposites. Nanotechnology, 18, 475101.

    Article  CAS  Google Scholar 

  • Hunt, N. C. (2010). An alginate hydrogel matrix for the localised delivery of a fibroblast/keratinocyte co-culture to expedite wound healing. Birmingham: University of Birmingham.

    Google Scholar 

  • Hussain, S., Hess, K., Gearhart, J., Geiss, K., & Schlager, J. (2005). In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicology In Vitro, 19, 975–983.

    Article  CAS  PubMed  Google Scholar 

  • Iamphongsai, S., Eshraghi, Y., Totonchi, A., Midler, J., Abdul-Karim, F. W., & Guyuron, B. (2009). Effect of different suture materials on cartilage reshaping. Aesthetic Surgery Journal, 29, 93–97.

    Article  PubMed  Google Scholar 

  • Ibrahim, H. M. (2015). Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. Journal of Radiation Research and Applied Science, 8, 265–275.

    Article  Google Scholar 

  • Iconaru, S., Chifiriuc, M., & Groza, A. (2017). Structural and antimicrobial evaluation of silver doped hydroxyapatite-polydimethylsiloxane thin layers. Journal of Nanomaterials, 2017, 7492515.

    Article  CAS  Google Scholar 

  • Ifuku, S., Tsukiyama, Y., Yukawa, T., Egusa, M., Kaminaka, H., Izawa, H., et al. (2015). Facile preparation of silver nanoparticles immobilized on chitin nanofiber surfaces to endow antifungal activities. Carbohydrate Polymers, 117, 813–817.

    Article  CAS  PubMed  Google Scholar 

  • Ionescu, A., Brambilla, E., Travan, A., Marsich, E., Donati, I., Gobbi, P., et al. (2015). Silver–polysaccharide antimicrobial nanocomposite coating for methacrylic surfaces reduces Streptococcus mutans biofilm formation in vitro. Journal of Dentistry, 43, 1483–1490.

    Article  CAS  PubMed  Google Scholar 

  • Ito, K., Saito, A., Fujie, T., Miyazaki, H., Kinoshita, M., Saitoh, D., et al. (2016). Development of a ubiquitously transferrable silver-nanoparticle-loaded polymer nanosheet as an antimicrobial coating. Journal of Biomedical Materials Research Part B Applied Biomaterials, 104, 585–593.

    Article  CAS  PubMed  Google Scholar 

  • Jagur-Grodzinski, J. (1999). Biomedical application of functional polymers. Reactive and Functional Polymers, 39, 99–138.

    Article  CAS  Google Scholar 

  • Jagur-Grodzinski, J. (2006). Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies. Polymers for Advanced Technologies, 17, 395–418.

    Article  CAS  Google Scholar 

  • Jain, J., Arora, S., Rajwade, J. M., Omray, P., Khandelwal, S., & Paknikar, K. M. (2009). Silver nanoparticles in therapeutics: Development of an antimicrobial gel formulation for topical use. Molecular Pharmaceutics, 6, 1388–1401.

    Article  CAS  PubMed  Google Scholar 

  • Jennings, J. A., Pulgarin, D. A. V., Kunwar, D. L., Babu, J., Mishra, S., & Bumgardner, J. (2015). Bacterial inhibition by chitosan coatings loaded with silver-decorated calcium phosphate microspheres. Thin Solid Films, 596, 83–86.

    Article  CAS  Google Scholar 

  • Jia, Q., Shan, S., Jiang, L., Wang, Y., & Li, D. (2012). Synergistic antimicrobial effects of polyaniline combined with silver nanoparticles. Journal of Applied Polymer Science, 125, 3560–3566.

    Article  CAS  Google Scholar 

  • Jiang, S., & Teng, C. P. (2017). Fabrication of silver nanowires-loaded polydimethylsiloxane film with antimicrobial activities and cell compatibility. Materials Science and Engineering C, Materials for Biological Applications, 70, 1011–1017.

    Article  CAS  PubMed  Google Scholar 

  • Kaetsu, I., Yoshida, M., & Yamada, A. (1980). Controlled slow release of chemotherapeutic drugs for cancer from matrices prepared by radiation polymerization at low temperatures. Journal of Biomedical Materials Research. Part A, 14, 185–197.

    Article  CAS  Google Scholar 

  • Kakkar, R., Madgula, K., Nehru, Y. S., & Kakkar, J. (2015). Polyvinyl alcohol-melamine formaldehyde films and coatings with silver nano particles as wound dressings in diabetic foot disease. European Chemical Bulletin, 4, 98–105.

    CAS  Google Scholar 

  • Kanazawa, A., Ikeda, T., & Endo, T. (1993). Novel polycationic biocides: Synthesis and antibacterial activity of polymeric phosphonium salts. Journal of Polymer Science: Part A, 31, 335–343.

    CAS  Google Scholar 

  • Kantouch, F., & El-Sayed, A. A. (2011). Acid dyeable and printable acrylic fabrics treated with cationic aqueous polyurethane. Journal of Applied Polymer Science, 119, 2595–2601.

    Article  CAS  Google Scholar 

  • Karthikeyan, K., Sekar, S., Devi, M. P., Inbasekaran, S., Lakshminarasaiah, C., & Sastry, T. (2011). Fabrication of novel biofibers by coating silk fibroin with chitosan impregnated with silver nanoparticles. Journal of Materials Science. Materials in Medicine, 22, 2721–2726.

    Article  CAS  PubMed  Google Scholar 

  • Khwanmuang, P., Naparswad, C., Archakunakorn, S., Waicharoen, C., & Chitichotpanya, C. (2017a). Optimization of in situ synthesis of Ag/PU nanocomposites using response surface methodology for self-disinfecting coatings. Progress in Organic Coating, 110, 104–113.

    Article  CAS  Google Scholar 

  • Khwanmuang, P., Rotjanapan, P., Phuphuakrat, A., Srichatrapimuk, S., & Chitichotpanya, C. (2017b). In vitro assessment of Ag-TiO2/polyurethane nanocomposites for infection control using response surface methodology. Reactive and Functional Polymers, 117, 120–130.

    Article  CAS  Google Scholar 

  • Kim, S. H., Opdahl, A., Marmo, C., & Somorjai, G. A. (2002). AFM and SFG studies of pHEMA-based hydrogel contact lens surfaces in saline solution: Adhesion, friction, and the presence of non-crosslinked polymer chains at the surface. Biomaterials, 23, 1657–1666.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. H., Park, H., & Seo, S. W. (2017). In situ synthesis of silver nanoparticles on the surface of PDMS with high antibacterial activity and biosafety toward an implantable medical device. Nano Convergence, 4, 33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knetsch, M. L., & Koole, L. H. (2011). New strategies in the development of antimicrobial coatings: The example of increasing usage of silver and silver nanoparticles. Polymers, 3, 340–366.

    Article  CAS  Google Scholar 

  • Komura, M., Komura, H., Kanamori, Y., Tanaka, Y., Suzuki, K., Sugiyama, M., et al. (2008). An animal model study for tissue-engineered trachea fabricated from a biodegradable scaffold using chondrocytes to augment repair of tracheal stenosis. Journal of Pediatric Surgery, 43, 2141–2146.

    Article  PubMed  Google Scholar 

  • Kong, H., & Jang, J. (2008). Antibacterial properties of novel poly (methyl methacrylate) nanofiber containing silver nanoparticles. Langmuir, 24, 2051–2056.

    Article  CAS  PubMed  Google Scholar 

  • Körner, E., Aguirre, M. H., Fortunato, G., Ritter, A., Rühe, J., & Hegemann, D. (2010). Formation and distribution of silver nanoparticles in a functional plasma polymer matrix and related Ag+ release properties. Plasma Processes and Polymers, 7, 619–625.

    Article  CAS  Google Scholar 

  • Krane, S. M. (2008). The importance of proline residues in the structure, stability and susceptibility to proteolytic degradation of collagens. Amino Acids, 35, 703.

    Article  CAS  PubMed  Google Scholar 

  • Kucekova, Z., Kasparkova, V., Humpolicek, P., Sevcikova, P., & Stejskal, J. (2013). Antibacterial properties of polyaniline-silver films. Chemical Papers, 67, 1103–1108.

    Article  CAS  Google Scholar 

  • Kumar, M. N. R. (2000). A review of chitin and chitosan applications. Reactive and Functional Polymers, 46, 1–27.

    Article  CAS  Google Scholar 

  • Kumar, A., Vemula, P. K., Ajayan, P. M., & John, G. (2008). Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nature Materials, 7, 236–241.

    Article  CAS  PubMed  Google Scholar 

  • Kumbar, S., Laurencin, C., & Deng, M. (2014). Natural and synthetic biomedical polymers. Amsterdam: Newnes.

    Google Scholar 

  • Kundu, S. C., Dash, B. C., Dash, R., & Kaplan, D. L. (2008). Natural protective glue protein, sericin bioengineered by silkworms: Potential for biomedical and biotechnological applications. Progress in Polymer Science, 33, 998–1012.

    Article  CAS  Google Scholar 

  • Lee, H., Mok, H., Lee, S., Oh, Y.-K., & Park, T. G. (2007). Target-specific intracellular delivery of siRNA using degradable hyaluronic acid nanogels. Journal of Controlled Release, 119, 245–252.

    Article  CAS  PubMed  Google Scholar 

  • Lee, T. H., Jang, B. S., Jung, M. K., Pack, C. G., Choi, J.-H., & Park, D. H. (2016). Fabrication of a silver particle-integrated silicone polymer-covered metal stent against sludge and biofilm formation and stent-induced tissue inflammation. Scientific Reports, 6, 35446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lendlein, A. (2010). Polymers in biomedicine. Macromolecular Bioscience, 10, 993–997.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., & Lenhart, J. J. (2012). Aggregation and dissolution of silver nanoparticles in natural surface water. Environmental Science and Technology, 46, 5378–5386.

    Article  CAS  PubMed  Google Scholar 

  • Li, W., Zhou, J., Gu, J. S., & Yu, H. Y. (2010). Fouling control in a submerged membrane-bioreactor by the membrane surface modification. Journal of Applied Polymer Science, 115, 2302–2309.

    Article  CAS  Google Scholar 

  • Li, L., Jones, P. M., & Hsia, Y.-T. (2011). Characterization of a nanometer-thick sputtered polytetrafluoroethylene film. Applied Surface Science, 257, 4478–4485.

    Article  CAS  Google Scholar 

  • Li, P., Zhang, X., Xu, R., Wang, W., Liu, X., Yeung, K. W., et al. (2013). Electrochemically deposited chitosan/Ag complex coatings on biomedical NiTi alloy for antibacterial application. Surface and Coating Technology, 232, 370–375.

    Article  CAS  Google Scholar 

  • Li, W., Xu, D., Hu, Y., Cai, K., & Lin, Y. (2014). Surface modification of titanium substrates with silver nanoparticles embedded sulfhydrylated chitosan/gelatin polyelectrolyte multilayer films for antibacterial application. Journal of Materials Science. Materials in Medicine, 25, 1435–1448.

    Article  CAS  PubMed  Google Scholar 

  • Li, L., Wang, Y., & Zhu, Y. (2018). Facile preparation and good performance of nano-Ag/metallocene polyethylene antibacterial coatings. Journal of Coating Technology and Research, 15, 593–602.

    Article  CAS  Google Scholar 

  • Liao, J., Anchun, M., Zhu, Z., & Quan, Y. (2010). Antibacterial titanium plate deposited by silver nanoparticles exhibits cell compatibility. International Journal of Nanomedicine, 5, 337.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, J. J., Lin, W. C., Li, S. D., Lin, C. Y., & Hsu, S. H. (2013). Evaluation of the antibacterial activity and biocompatibility for silver nanoparticles immobilized on nano silicate platelets. ACS Applied Materials and Interfaces, 5, 433–443.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Zheng, Z., Zara, J. N., Hsu, C., Soofer, D. E., Lee, K. S., et al. (2012). The antimicrobial and osteoinductive properties of silver nanoparticle/poly (DL-lactic-co-glycolic acid)-coated stainless steel. Biomaterials, 33, 8745–8756.

    Article  CAS  PubMed  Google Scholar 

  • Liu, G., Li, K., Luo, Q., Wang, H., & Zhang, Z. (2017). PEGylated chitosan protected silver nanoparticles as water-borne coating for leather with antibacterial property. Journal of Colloid and Interface Science, 490, 642–651.

    Article  CAS  PubMed  Google Scholar 

  • Lloyd, L., Kennedy, J., Methacanon, P., Paterson, M., & Knill, C. (1998). Carbohydrate polymers as wound management aids. Carbohydrate Polymers, 37, 315–322.

    Article  CAS  Google Scholar 

  • Loo, C.-Y., Young, P. M., Lee, W.-H., Cavaliere, R., Whitchurch, C. B., & Rohanizadeh, R. (2014). Non-cytotoxic silver nanoparticle-polyvinyl alcohol hydrogels with anti-biofilm activity: Designed as coatings for endotracheal tube materials. Biofouling, 30, 773–788.

    Article  CAS  PubMed  Google Scholar 

  • Lu, W., Senapati, D., Wang, S., Tovmachenko, O., Singh, A. K., Yu, H., et al. (2010). Effect of surface coating on the toxicity of silver nanomaterials on human skin keratinocytes. Chemical Physics Letters, 487, 92–96.

    Article  CAS  Google Scholar 

  • Lynch, A. S., & Robertson, G. T. (2008). Bacterial and fungal biofilm infections. Annual Review of Medicine, 59, 415–428.

    Article  CAS  PubMed  Google Scholar 

  • Lyutakov, O., Kalachyova, Y., Solovyev, A., Vytykacova, S., Svanda, J., Siegel, J., et al. (2015). One-step preparation of antimicrobial silver nanoparticles in polymer matrix. Journal of Nanoparticle Research, 17, 120.

    Article  CAS  Google Scholar 

  • Ma, P. X. (2004). Scaffolds for tissue fabrication. Materials Today, 7, 30–40.

    Article  CAS  Google Scholar 

  • Ma, K., Gong, L., Cai, X., Huang, P., Cai, J., Huang, D., et al. (2017). A green single-step procedure to synthesize ag-containing nanocomposite coatings with low cytotoxicity and efficient antibacterial properties. International Journal of Nanomedicine, 12, 3665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maitz, M. F. (2015). Applications of synthetic polymers in clinical medicine. Biosurface and Biotribology, 1, 161–176.

    Article  Google Scholar 

  • Marsich, E., Travan, A., Donati, I., Turco, G., Kulkova, J., Moritz, N., et al. (2013). Biological responses of silver-coated thermosets: An in vitro and in vivo study. Acta Biomaterialia, 9, 5088–5099.

    Article  CAS  PubMed  Google Scholar 

  • Matsuno, T., Nakamura, T., Kuremoto, K.-I., Notazawa, S., Nakahara, T., Hashimoto, Y., et al. (2006). Development of β-tricalcium phosphate/collagen sponge composite for bone regeneration. Dental Materials Journal, 25, 138–144.

    Article  CAS  PubMed  Google Scholar 

  • McArthur, S. L., McLean, K. M., Kingshott, P., St John, H. A., Chatelier, R. C., & Griesser, H. J. (2000). Effect of polysaccharide structure on protein adsorption. Colloids and Surfaces. B, Biointerfaces, 17, 37–48.

    Article  CAS  Google Scholar 

  • Mejia, M., Restrepo, G., Marin, J., Sanjines, R., Pulgarín, C., Mielczarski, E., et al. (2010). Magnetron-sputtered Ag surfaces. New evidence for the nature of the Ag ions intervening in bacterial inactivation. ACS Applied Materials and Interfaces, 2, 230–235.

    Article  CAS  PubMed  Google Scholar 

  • Meyers, R. A. (1995). Molecular biology and biotechnology: A comprehensive desk reference. New York: Wiley.

    Google Scholar 

  • Middleton, J. C., & Tipton, A. J. (2000). Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 21, 2335–2346.

    Article  CAS  PubMed  Google Scholar 

  • Mishra, S. K., Teotia, A. K., Kumar, A., & Kannan, S. (2017). Mechanically tuned nanocomposite coating on titanium metal with integrated properties of biofilm inhibition, cell proliferation, and sustained drug delivery. Nanomedicine: Nanotechnology, Biology and Medicine, 13, 23–35.

    Article  CAS  Google Scholar 

  • Mittal, V. (2013). Polymer nanocomposite coatings. Boca Raton: CRC Press, Taylor and Francis.

    Book  Google Scholar 

  • Moghimi, S. M., Hunter, A. C., & Murray, J. C. (2001). Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacological Reviews, 53, 283–318.

    CAS  PubMed  Google Scholar 

  • Moodley, J. S., Krishna, S. B. N., Pillay, K., & Govender, P. (2018). Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential. Advances in Natural Sciences: Nanoscience and Nanotechnology, 9, 015011.

    Google Scholar 

  • Mori, Y., Ono, T., Miyahira, Y., Nguyen, V. Q., Matsui, T., & Ishihara, M. (2013). Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus. Nanoscale Research Letters, 8, 93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., et al. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16, 2346.

    Article  CAS  PubMed  Google Scholar 

  • Mountziaris, P. M., Tzouanas, S. N., & Mikos, A. G. (2010). Dose effect of tumor necrosis factor-α on in vitro osteogenic differentiation of mesenchymal stem cells on biodegradable polymeric microfiber scaffolds. Biomaterials, 31, 1666–1675.

    Article  CAS  PubMed  Google Scholar 

  • Mukherji, S., Ruparelia, J., & Agnihotri, S. (2012). Antimicrobial activity of silver and copper nanoparticles: Variation in sensitivity across various strains of bacteria and fungi. In N. Cioffi & M. Rai (Eds.), Nano-antimicrobials: Progress and prospects (pp. 225–251). Berlin: Springer.

    Chapter  Google Scholar 

  • Muñoz-Bonilla, A., & Fernández-García, M. (2012). Polymeric materials with antimicrobial activity. Progress in Polymer Science, 37, 281–339.

    Article  CAS  Google Scholar 

  • Nair, L. S., & Laurencin, C. T. (2007). Biodegradable polymers as biomaterials. Progress in Polymer Science, 32, 762–798.

    Article  CAS  Google Scholar 

  • Nanlin, S., Xuemei, G., Hemin, J., Jun, G., Chao, S., & Ke, Y. (2009). Antibacterial effect of the conducting polyaniline. Journal of Materials Science and Technology, 22, 289–290.

    Google Scholar 

  • Nanno, K., Sugiyasu, K., Daimon, T., Yoshikawa, H., & Myoui, A. (2009). Synthetic alginate is a carrier of OP-1 for bone induction. Clinical Orthopaedics and Related Research, 467, 3149.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nganga, S., Travan, A., Marsich, E., Donati, I., Söderling, E., Moritz, N., et al. (2013). In vitro antimicrobial properties of silver–polysaccharide coatings on porous fiber-reinforced composites for bone implants. Journal of Materials Science. Materials in Medicine, 24, 2775–2785.

    Article  CAS  PubMed  Google Scholar 

  • Nhi, T. T., Khon, H. C., Hoai, N. T. T., Bao, B. C., Quyen, T. N., Van Toi, V., et al. (2016). Fabrication of electrospun polycaprolactone coated withchitosan-silver nanoparticles membranes for wound dressing applications. Journal of Materials Science. Materials in Medicine, 27, 156.

    Article  PubMed  CAS  Google Scholar 

  • Nohr, R. S., & Gavin Macdonald, J. (1994). New biomaterials through surface segregation phenomenon: New quaternary ammonium compounds as antibacterial agents. Journal of Biomaterials Science Polymer Edition, 5, 607–619.

    Article  CAS  PubMed  Google Scholar 

  • Nune, S. K., Chanda, N., Shukla, R., Katti, K., Kulkarni, R. R., Thilakavathi, S., et al. (2009). Green nanotechnology from tea: Phytochemicals in tea as building blocks for production of biocompatible gold nanoparticles. Journal of Materials Chemistry, 19, 2912–2920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ocsoy, I., Didar, T., Sumeyye, M., Cagla, C., Ahmet, K., & Funda, U. (2018). Biomolecules incorporated metallic nanoparticles synthesis and their biomedical applications. Materials Letters, 212, 45–50.

    Article  CAS  Google Scholar 

  • Oktay, B., & Kayaman-Apohan, N. (2013). Polydimethylsiloxane (PDMS)-based antibacterial organic–inorganic hybrid coatings. Journal of Coating Technology and Research, 10, 785–798.

    Article  CAS  Google Scholar 

  • Orive, G., De Castro, M., Kong, H.-J., Hernández, R. M., Ponce, S., Mooney, D. J., et al. (2009). Bioactive cell-hydrogel microcapsules for cell-based drug delivery. Journal of Controlled Release, 135, 203–210.

    Article  CAS  PubMed  Google Scholar 

  • Orlowski, P., Tomaszewska, E., Gniadek, M., Baska, P., Nowakowska, J., Sokolowska, J., et al. (2014). Tannic acid modified silver nanoparticles show antiviral activity in herpes simplex virus type 2 infection. PLoS One, 9, e104113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pal, S., Tak, Y. K., & Song, J. M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology, 73, 1712–1720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan, X., Redding, J. E., Wiley, P. A., Wen, L., McConnell, J. S., & Zhang, B. (2010). Mutagenicity evaluation of metal oxide nanoparticles by the bacterial reverse mutation assay. Chemosphere, 79, 113–116.

    Article  CAS  PubMed  Google Scholar 

  • Panáček, A., Kvitek, L., Prucek, R., Kolář, M., Večeřová, R., Pizúrová, N., et al. (2006). Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity. The Journal of Physical Chemistry. B, 110, 16248–16253.

    Article  PubMed  CAS  Google Scholar 

  • Pang, X., & Zhitomirsky, I. (2008). Electrodeposition of hydroxyapatite–silver–chitosan nanocomposite coatings. Surface and Coating Technology, 202, 3815–3821.

    Article  CAS  Google Scholar 

  • Pangas, S. A., Saudye, H., Shea, L. D., & Woodruff, T. K. (2003). Novel approach for the three-dimensional culture of granulosa cell–oocyte complexes. Tissue Engineering, 9, 1013–1021.

    Article  CAS  PubMed  Google Scholar 

  • Panyam, J., & Labhasetwar, V. (2003). Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced Drug Delivery Reviews, 55, 329–347.

    Article  CAS  PubMed  Google Scholar 

  • Pardini, O., & Amalvy, J. (2008). FTIR, 1H-NMR spectra, and thermal characterization of water-based polyurethane/acrylic hybrids. Journal of Applied Polymer Science, 107, 1207–1214.

    Article  CAS  Google Scholar 

  • Park, K. D., Kim, Y. S., Han, D. K., Kim, Y. H., Lee, E. H. B., Suh, H., et al. (1998). Bacterial adhesion on PEG modified polyurethane surfaces. Biomaterials, 19, 851–859.

    Article  CAS  PubMed  Google Scholar 

  • Park, G. E., Pattison, M. A., Park, K., & Webster, T. J. (2005). Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds. Biomaterials, 26, 3075–3082.

    Article  CAS  PubMed  Google Scholar 

  • Paul, A., Kaverina, E., & Vasiliev, A. (2015). Synthesis of silver/polymer nanocomposites by surface coating using carbodiimide method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 482, 44–49.

    Article  CAS  Google Scholar 

  • Pavithra, D., & Doble, M. (2008). Biofilm formation, bacterial adhesion and host response on polymeric implants—issues and prevention. Biomedical Materials, 3, 034003.

    Article  CAS  PubMed  Google Scholar 

  • Pelgrift, R. Y., & Friedman, A. J. (2013). Nanotechnology as a therapeutic tool to combat microbial resistance. Advanced Drug Delivery Reviews, 65, 1803–1815.

    Article  CAS  PubMed  Google Scholar 

  • Petrochenko, P. E., Zheng, J., Casey, B. J., Bayati, M. R., Narayan, R. J., & Goering, P. L. (2017). Nanosilver-PMMA composite coating optimized to provide robust antibacterial efficacy while minimizing human bone marrow stromal cell toxicity. Toxicology In Vitro, 44, 248–255.

    Article  CAS  PubMed  Google Scholar 

  • Pishbin, F., Simchi, A., Ryan, M., & Boccaccini, A. (2010). A study of the electrophoretic deposition of bioglass® suspensions using the Taguchi experimental design approach. Journal of the European Ceramic Society, 30, 2963–2970.

    Article  CAS  Google Scholar 

  • Pishbin, F., Mourino, V., Gilchrist, J. B., McComb, D. W., Kreppel, S., Salih, V., et al. (2013). Single-step electrochemical deposition of antimicrobial orthopaedic coatings based on a bioactive glass/chitosan/nano-silver composite system. Acta Biomaterialia, 9, 7469–7479.

    Article  CAS  PubMed  Google Scholar 

  • Poelaert, J., Depuydt, P., De Wolf, A., Van de Velde, S., Herck, I., & Blot, S. (2008). Polyurethane cuffed endotracheal tubes to prevent early postoperative pneumonia after cardiac surgery: A pilot study. The Journal of Thoracic and Cardiovascular Surgery, 135, 771–776.

    Article  PubMed  Google Scholar 

  • Polívková, M., Hubáček, T., Staszek, M., Švorčík, V., & Siegel, J. (2017). Antimicrobial treatment of polymeric medical devices by silver nanomaterials and related technology. International Journal of Molecular Sciences, 18, 419.

    Article  PubMed Central  CAS  Google Scholar 

  • Prabhakar, P. K., Raj, S., Anuradha, P., Sawant, S. N., & Doble, M. (2011). Biocompatibility studies on polyaniline and polyaniline–silver nanoparticle coated polyurethane composite. Colloids and Surfaces. B, Biointerfaces, 86, 146–153.

    Article  CAS  PubMed  Google Scholar 

  • Pugazhendhi, A., Prabakar, D., Jacob, J. M., Karuppusamy, I., & Saratale, R. G. (2018). Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria. Microbial Pathogenesis, 114, 41–45.

    Article  CAS  PubMed  Google Scholar 

  • Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27, 76–83.

    Article  CAS  PubMed  Google Scholar 

  • Rajasekaran, E., Jency, S., & Panneerselvam, K. (2011). Carbon profile of commercially important sericin proteins of silkworm, bombyx mori. Journal of Advanced Bioinformatics Applications and Research ISSN, 2, 173–176.

    CAS  Google Scholar 

  • Roosjen, A., van der Mei, H. C., Busscher, H. J., & Norde, W. (2004). Microbial adhesion to poly (ethylene oxide) brushes: Influence of polymer chain length and temperature. Langmuir, 20, 10949–10955.

    Article  CAS  PubMed  Google Scholar 

  • Sadu, R. B., Chen, D. H., Kucknoor, A. S., Guo, Z., & Gomes, A. J. (2014). Silver-doped TiO 2/polyurethane nanocomposites for antibacterial textile coating. BioNanoScience, 4, 136–148.

    Article  Google Scholar 

  • Saez, S., Fasciani, C., Stamplecoskie, K. G., Gagnon, L. B.-P., Mah, T.-F., Marin, M. L., et al. (2015). Photochemical synthesis of biocompatible and antibacterial silver nanoparticles embedded within polyurethane polymers. Photochemical and Photobiological Sciences, 14, 661–664.

    Article  CAS  PubMed  Google Scholar 

  • Salwiczek, M., Qu, Y., Gardiner, J., Strugnell, R. A., Lithgow, T., McLean, K. M., et al. (2014). Emerging rules for effective antimicrobial coatings. Trends in Biotechnology, 32, 82–90.

    Article  CAS  PubMed  Google Scholar 

  • Samuel, U., & Guggenbichler, J. (2004). Prevention of catheter-related infections: The potential of a new nano-silver impregnated catheter. International Journal of Antimicrobial Agents, 23, 75–78.

    Article  CAS  Google Scholar 

  • Sanyasi, S., Majhi, R. K., Kumar, S., Mishra, M., Ghosh, A., Suar, M., et al. (2016). Polysaccharide-capped silver nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells. Scientific Reports, 6, 24929.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sardella, E., Favia, P., Gristina, R., Nardulli, M., & d’Agostino, R. (2006). Plasma-aided micro-and nanopatterning processes for biomedical applications. Plasma Processes and Polymers, 3, 456–469.

    Article  CAS  Google Scholar 

  • Sawant, S. N., Selvaraj, V., Prabhawathi, V., & Doble, M. (2013). Antibiofilm properties of silver and gold incorporated PU, PCLm, PC and PMMA nanocomposites under two shear conditions. PLoS One, 8, e63311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seshadri, D. T., & Bhat, N. V. (2005). Use of polyaniline as an antimicrobial agent in textiles. Indian Journal of Fibre and Textile Research, 30, 204–206.

    CAS  Google Scholar 

  • Shameli, K., Ahmad, M. B., Yunus, W. M. Z. W., Ibrahim, N. A., Rahman, R. A., Jokar, M., et al. (2010). Silver/poly (lactic acid) nanocomposites: Preparation, characterization, and antibacterial activity. International Journal of Nanomedicine, 5, 573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shantiaee, Y., Dianat, S. O., Mohammad Khani, H., & Akbarzadeh Baghban, A. (2011). Cytotoxicity comparison of nanosilver coated gutta-percha with Guttaflow and normal gutta-percha on L929 fibroblast with MTT assay. Shahid Beheshti University Dental Journal, 29, 62–68.

    Google Scholar 

  • Shi, Z., Zhou, H., Qing, X., Dai, T., & Lu, Y. (2012). Facile fabrication and characterization of poly (tetrafluoroethylene)@ polypyrrole/nano-silver composite membranes with conducting and antibacterial property. Applied Surface Science, 258, 6359–6365.

    Article  CAS  Google Scholar 

  • Shukla, R., Nune, S. K., Chanda, N., Katti, K., Mekapothula, S., Kulkarni, R. R., et al. (2008). Soybeans as a phytochemical reservoir for the production and stabilization of biocompatible gold nanoparticles. Small, 4, 1425–1436.

    Article  CAS  PubMed  Google Scholar 

  • Shukla, R., Chanda, N., Zambre, A., Upendran, A., Katti, K., Kulkarni, R. R., et al. (2012). Laminin receptor specific therapeutic gold nanoparticles (198AuNP-EGCg) show efficacy in treating prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 109, 12426–12431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui, N., Bhardwaj, A., Hada, R., Yadav, V. S., & Goyal, D. (2018). Synthesis, characterization and antimicrobial study of poly (methyl methacrylate)/Ag nanocomposites. Vacuum, 153, 6–11.

    Article  CAS  Google Scholar 

  • Silvestry-Rodriguez, N., Sicairos-Ruelas, E. E., Gerba, C. P., & Bright, K. R. (2007). Silver as a disinfectant. Reviews of environmental contamination and toxicology (pp. 23–45). New York: Springer.

    Book  Google Scholar 

  • Smith, R. S., Zhang, Z., Bouchard, M., Li, J., Lapp, H. S., Brotske, G. R., et al. (2012). Vascular catheters with a nonleaching poly-sulfobetaine surface modification reduce thrombus formation and microbial attachment. Science Translational Medicine, 4, 153ra132–153ra132.

    PubMed  Google Scholar 

  • Smolinske, S. C. (1992). CRC handbook of food, drug, and cosmetic excipients. Boca Raton: CRC press.

    Google Scholar 

  • Son, H. Y., Ryu, J. H., Lee, H., & Nam, Y. S. (2013). Silver-polydopamine hybrid coatings of electrospun poly (vinyl alcohol) nanofibers. Macromolecular Materials and Engineering, 298, 547–554.

    Article  CAS  Google Scholar 

  • Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for gram-negative bacteria. Journal of Colloid and Interface Science, 275, 177–182.

    Article  CAS  PubMed  Google Scholar 

  • Sotiriou, G. A., & Pratsinis, S. E. (2010). Antibacterial activity of nanosilver ions and particles. Environmental Science and Technology, 44, 5649–5654.

    Article  CAS  PubMed  Google Scholar 

  • Sousa, C., Teixeira, P., & Oliveira, R. (2009). Influence of surface properties on the adhesion of Staphylococcus epidermidis to acrylic and silicone. International Journal of Biomaterials, 2009, 718017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stejskal, J., Sapurina, I., & Trchová, M. (2010). Polyaniline nanostructures and the role of aniline oligomers in their formation. Progress in Polymer Science, 35, 1420–1481.

    Article  CAS  Google Scholar 

  • Sun, L., Singh, A. K., Vig, K., Pillai, S. R., & Singh, S. R. (2008a). Silver nanoparticles inhibit replication of respiratory syncytial virus. Journal of Biomedical Nanotechnology, 4, 149–158.

    CAS  Google Scholar 

  • Sun, B., Ranganathan, B., & Feng, S.-S. (2008b). Multifunctional poly (D, L-lactide-co-glycolide)/montmorillonite (PLGA/MMT) nanoparticles decorated by Trastuzumab for targeted chemotherapy of breast cancer. Biomaterials, 29, 475–486.

    Article  PubMed  CAS  Google Scholar 

  • Sundrarajan, M., & Rukmani, A. (2013). Durable antibacterial finishing on cotton by impregnation of limonene microcapsules. Advance Chemistry Letters, 1, 40–43.

    Article  CAS  Google Scholar 

  • Sung, J. H., Ji, J. H., Yoon, J. U., Kim, D. S., Song, M. Y., Jeong, J., et al. (2008). Lung function changes in Sprague-Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhalation Toxicology, 20, 567–574.

    Article  CAS  PubMed  Google Scholar 

  • Sussman, E. M., Casey, B. J., Dutta, D., & Dair, B. J. (2015). Different cytotoxicity responses to antimicrobial nanosilver coatings when comparing extract-based and direct-contact assays. Journal of Applied Toxicology, 35, 631–639.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, M., & Mochizuki, A. (2010). Clarification of the blood compatibility mechanism by controlling the water structure at the blood–poly (meth) acrylate interface. Journal of Biomaterials Science. Polymer Edition, 21, 1849–1863.

    Article  CAS  PubMed  Google Scholar 

  • Tang, C., Sun, W., Lu, J., & Yan, W. (2014). Role of the anions in the hydrothermally formed silver nanowires and their antibacterial property. Journal of Colloid and Interface Science, 416, 86–94.

    Article  CAS  PubMed  Google Scholar 

  • Thallinger, B., Prasetyo, E. N., Nyanhongo, G. S., & Guebitz, G. M. (2013). Antimicrobial enzymes: An emerging strategy to fight microbes and microbial biofilms. Biotechnology Journal, 8, 97–109.

    Article  CAS  PubMed  Google Scholar 

  • Thirumurugan, G., Shaheedha, S., & Dhanaraju, M. (2009). In vitro evaluation of antibacterial activity of silver nanoparticles synthesised by using Phytophthora infestans. International Journal of ChemTech Research, 1, 714–716.

    CAS  Google Scholar 

  • Thorsteinsson, T., Loftsson, T., & Masson, M. (2003). Soft antibacterial agents. Current Medicinal Chemistry, 10, 1129–1136.

    Article  CAS  PubMed  Google Scholar 

  • Tran, N., Kelley, M. N., Tran, P. A., Garcia, D. R., Jarrell, J. D., Hayda, R. A., et al. (2015). Silver doped titanium oxide–PDMS hybrid coating inhibits staphylococcus aureus and Staphylococcus epidermidis growth on PEEK. Materials Science and Engineering C, Materials for Biological Applications, 49, 201–209.

    Article  CAS  PubMed  Google Scholar 

  • Trefry, J. C., & Wooley, D. P. (2012). Rapid assessment of antiviral activity and cytotoxicity of silver nanoparticles using a novel application of the tetrazolium-based colorimetric assay. Journal of Virological Methods, 183, 19–24.

    Article  CAS  PubMed  Google Scholar 

  • Triandafillu, K., Balazs, D., Aronsson, B.-O., Descouts, P., Quoc, P. T., Van Delden, C., et al. (2003). Adhesion of Pseudomonas aeruginosa strains to untreated and oxygen-plasma treated poly(vinyl chloride) (PVC) from endotracheal intubation devices. Biomaterials, 24, 1507–1518.

    Article  CAS  PubMed  Google Scholar 

  • Uttayarat, P., Perets, A., Li, M., Pimton, P., Stachelek, S. J., Alferiev, I., et al. (2010). Micropatterning of three-dimensional electrospun polyurethane vascular grafts. Acta Biomaterialia, 6, 4229–4237.

    Article  CAS  PubMed  Google Scholar 

  • Vishwasrao, C., Momin, B., & Ananthanarayan, L. (2018). Green synthesis of silver nanoparticles using sapota fruit waste and evaluation of their antimicrobial activity. Waste and Biomass Valorization, 1–11.

    Google Scholar 

  • Von Eiff, C., Jansen, B., Kohnen, W., & Becker, K. (2005). Infections associated with medical devices. Drugs, 65, 179–214.

    Article  Google Scholar 

  • Wang, Y., Challa, P., Epstein, D. L., & Yuan, F. (2004). Controlled release of ethacrynic acid from poly (lactide-co-glycolide) films for glaucoma treatment. Biomaterials, 25, 4279–4285.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., Lawson, R., Ray, P. C., & Yu, H. (2011). Toxic effects of gold nanoparticles on Salmonella typhimurium bacteria. Toxicology and Industrial Health, 27, 547–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, B.-L., Liu, X.-S., Ji, Y., Ren, K.-F., & Ji, J. (2012). Fast and long-acting antibacterial properties of chitosan-Ag/polyvinylpyrrolidone nanocomposite films. Carbohydrate Polymers, 90, 8–15.

    Article  PubMed  CAS  Google Scholar 

  • Wang, R., Neoh, K. G., Kang, E. T., Tambyah, P. A., & Chiong, E. (2015a). Antifouling coating with controllable and sustained silver release for long-term inhibition of infection and encrustation in urinary catheters. Journal of Biomedical Materials Research Part B Applied Biomaterials, 103, 519–528.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Guo, X., Pan, R., Han, D., Chen, T., Geng, Z., et al. (2015b). Electrodeposition of chitosan/gelatin/nanosilver: A new method for constructing biopolymer/nanoparticle composite films with conductivity and antibacterial activity. Materials Science and Engineering C, Materials for Biological Applications, 53, 222–228.

    Article  CAS  PubMed  Google Scholar 

  • Wattanodorn, Y., Jenkan, R., Atorngitjawat, P., & Wirasate, S. (2014). Antibacterial anionic waterborne polyurethanes/Ag nanocomposites with enhanced mechanical properties. Polymer Testing, 40, 163–169.

    Article  CAS  Google Scholar 

  • Wypij, M., Czarnecka, J., Świecimska, M., Dahm, H., Rai, M., & Golinska, P. (2018). Synthesis, characterization and evaluation of antimicrobial and cytotoxic activities of biogenic silver nanoparticles synthesized from Streptomyces xinghaiensis OF1 strain. World Journal of Microbiology and Biotechnology, 34, 23.

    Article  PubMed  CAS  Google Scholar 

  • Xu, X., Yang, Q., Wang, Y., Yu, H., Chen, X., & Jing, X. (2006). Biodegradable electrospun poly (L-lactide) fibers containing antibacterial silver nanoparticles. European Polymer Journal, 42, 2081–2087.

    Article  CAS  Google Scholar 

  • Xu, H. H., Weir, M. D., & Simon, C. G. (2008). Injectable and strong nano-apatite scaffolds for cell/growth factor delivery and bone regeneration. Dental Materials, 24, 1212–1222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, D., Su, Y., Zhao, L., Meng, F., Liu, C., Guan, Y., et al. (2017). Antibacterial and antifouling properties of a polyurethane surface modified with perfluoroalkyl and silver nanoparticles. Journal of Biomedical Materials Research. Part A, 105, 531–538.

    Article  CAS  PubMed  Google Scholar 

  • Yan, Y., Zhang, X., Li, C., Huang, Y., Ding, Q., & Pang, X. (2015). Preparation and characterization of chitosan-silver/hydroxyapatite composite coatings onTiO2 nanotube for biomedical applications. Applied Surface Science, 332, 62–69.

    Article  CAS  Google Scholar 

  • Yang, X. X., Li, C. M., & Huang, C. Z. (2016). Curcumin modified silver nanoparticles for highly efficient inhibition of respiratory syncytial virus infection. Nanoscale, 8, 3040–3048.

    Article  CAS  PubMed  Google Scholar 

  • Yilgör, İ., & McGrath, J. E. (1988). Polysiloxane containing copolymers: A survey of recent developments. Polysiloxane copolymers/anionic polymerization (pp. 1–86). Berlin: Springer.

    Book  Google Scholar 

  • Yoksan, R., & Chirachanchai, S. (2010). Silver nanoparticle-loaded chitosan–starch based films: Fabrication and evaluation of tensile, barrier and antimicrobial properties. Materials Science and Engineering C, Materials for Biological Applications, 30, 891–897.

    Article  CAS  Google Scholar 

  • Yu, W.-Z., Zhang, Y., Liu, X., Xiang, Y., Li, Z., & Wu, S. (2018). Synergistic antibacterial activity of multi components in lysozyme/chitosan/silver/hydroxyapatite hybrid coating. Materials and Design, 139, 351–362.

    Article  CAS  Google Scholar 

  • Yuan, W., Fu, J., Su, K., & Ji, J. (2010). Self-assembled chitosan/heparin multilayer film as a novel template for in situ synthesis of silver nanoparticles. Colloids and Surfaces. B, Biointerfaces, 76, 549–555.

    Article  CAS  PubMed  Google Scholar 

  • Zahran, M., Ahmed, H. B., & El-Rafie, M. (2014). Surface modification of cotton fabrics for antibacterial application by coating with AgNPs–alginate composite. Carbohydrate Polymers, 108, 145–152.

    Article  CAS  PubMed  Google Scholar 

  • Zaporojtchenko, V., Podschun, R., Schürmann, U., Kulkarni, A., & Faupel, F. (2006). Physico-chemical and antimicrobial properties of co-sputtered Ag–Au/PTFE nanocomposite coatings. Nanotechnology, 17, 4904.

    Article  CAS  Google Scholar 

  • Zezin, A. B., Rogacheva, V. B., Feldman, V. I., Afanasiev, P., & Zezin, A. A. (2010). From triple interpolyelectrolyte-metal complexes to polymer-metal nanocomposites. Advances in Colloid and Interface, 158, 84–93.

    Article  CAS  Google Scholar 

  • Zhang, X., Li, Z., Yuan, X., Cui, Z., Bao, H., Li, X., et al. (2013). Cytotoxicity and antibacterial property of titanium alloy coated with silver nanoparticle-containing polyelectrolyte multilayer. Materials Science and Engineering C, Materials for Biological Applications, 33, 2816–2820.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, B. G., Myers, D. E., Wallace, G. G., Brandt, M., & Choong, P. F. (2014). Bioactive coatings for orthopaedic implants – recent trends in development of implant coatings. International Journal of Molecular Sciences, 15, 11878–11921.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, X., Zhu, M., Wang, W., & Yu, D. (2018). Silver/waterborne polyurethane-acrylate’s antibacterial coating on cotton fabric based on click reaction via ultraviolet radiation. Progress in Organic Coating, 120, 10–18.

    Article  CAS  Google Scholar 

  • Zhao, B., & Brittain, W. J. (2000). Polymer brushes: Surface-immobilized macromolecules. Progress in Polymer Science, 25, 677–710.

    Article  CAS  Google Scholar 

  • Zhao, Q., Liu, Y., & Wang, C. (2005). Development and evaluation of electroless Ag-PTFE composite coatings with anti-microbial and anti-corrosion properties. Applied Surface Science, 252, 1620–1627.

    Article  CAS  Google Scholar 

  • Zhao, C., Deng, B., Chen, G., Lei, B., Hua, H., Peng, H., et al. (2016). Large-area chemical vapor deposition-grown monolayer graphene-wrapped silver nanowires for broad-spectrum and robust antimicrobial coating. Nano Research, 9, 963–973.

    Article  CAS  Google Scholar 

  • Zheng, Y., Cai, C., Zhang, F., Monty, J., Linhardt, R. J., & Simmons, T. J. (2016). Can natural fibers be a silver bullet? Antibacterial cellulose fibers through the covalent bonding of silver nanoparticles to electrospun fibers. Nanotechnology, 27, 055102.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, N.-1., Liu, Y., Li, L., Meng, N., Huang, Y.-X., Zhang, J., et al. (2007). A new nanocomposite biomedical material of polymer/clay–Cts–Ag nanocomposites. Current Applied Physics, 7, e58–e62.

    Article  Google Scholar 

  • Zhou, X., Zhang, T., Guo, D., & Gu, N. (2014a). A facile preparation of poly (ethylene oxide)-modified medical polyurethane to improve hemocompatibility. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 441, 34–42.

    Article  CAS  Google Scholar 

  • Zhou, B., Li, Y., Deng, H., Hu, Y., & Li, B. (2014b). Antibacterial multilayer films fabricated by layer-by-layer immobilizing lysozyme and gold nanoparticles on nanofibers. Colloids and Surfaces. B, Biointerfaces, 116, 432–438.

    Article  CAS  PubMed  Google Scholar 

  • Zou, X., Deng, P., Zhou, C., Hou, Y., Chen, R., Liang, F., et al. (2017). Preparation of a novel antibacterial chitosan-poly (ethylene glycol) cryogel/silver nanoparticles composites. Journal of Biomaterials Science, Polymer Edition, 28, 1324–1337.

    Article  CAS  Google Scholar 

  • Zuo, Y., Yang, F., Wolke, J. G., Li, Y., & Jansen, J. A. (2010). Incorporation of biodegradable electrospun fibers into calcium phosphate cement for bone regeneration. Acta Biomaterialia, 6, 1238–1247.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shekhar Agnihotri or Ravi Shukla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhiman, N.K., Agnihotri, S., Shukla, R. (2019). Silver-Based Polymeric Nanocomposites as Antimicrobial Coatings for Biomedical Applications. In: Singh, S., Maurya, P. (eds) Nanotechnology in Modern Animal Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-13-6004-6_4

Download citation

Publish with us

Policies and ethics