Skip to main content

Novel Therapeutics and Diagnostics Strategies Based on Engineered Nanobiomaterials

  • Chapter
  • First Online:
  • 453 Accesses

Abstract

The emergence of nanotechnology has opened up new avenues of research focusing on diagnostic and therapeutic advancement. In light of that, many of the previous problems associated with treatment failure and progress of diseases are being addressed through nanotechnology. For instance, the application of a spectrum of nanomaterials has shown promising possibilities in slow and controlled drug release, targeted delivery, biocompatibility and synergistic delivery of multiple drugs. Engineered nanomaterials in this direction have further attracted researchers to exploit/tune the features required for a given application. This book chapter, therefore, is aimed at outlining the merits of applying nanotechnology in the development of nanocarriers for drug delivery, nanofilms for wound healing, nanocomposite systems for synergistic therapeutics and diagnostics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbott, N. J. (2013). Blood–brain barrier structure and function and the challenges for CNS drug delivery. Journal of Inherited Metabolic Disease, 36(3), 437–449.

    Article  CAS  PubMed  Google Scholar 

  • Abou-Aiad, T., Abd-El-Nour, K., Hakim, I., & Elsabee, M. (2006). Dielectric and interaction behavior of chitosan/polyvinyl alcohol and chitosan/polyvinyl pyrrolidone blends with some antimicrobial activities. Polymer, 47(1), 379–389.

    Article  CAS  Google Scholar 

  • Aggarwal, B. B., Kumar, A., & Bharti, A. C. (2003). Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Research, 23(1/A), 363–398.

    CAS  PubMed  Google Scholar 

  • Ali, M. R., Wu, Y., Ghosh, D., Do, B. H., Chen, K., Dawson, M. R., Fang, N., Sulchek, T. A., & El-Sayed, M. A. (2017a). Nuclear membrane-targeted gold nanoparticles inhibit cancer cell migration and invasion. ACS Nano, 11(4), 3716–3726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali, M. R., Wu, Y., Tang, Y., Xiao, H., Chen, K., Han, T., Fang, N., Wu, R., & El-Sayed, M. A. (2017b). Targeting cancer cell integrins using gold nanorods in photothermal therapy inhibits migration through affecting cytoskeletal proteins. Proceedings of the National Academy of Sciences, 114(28), E5655–E5663.

    Article  CAS  Google Scholar 

  • An, L., Yan, C., Mu, X., Tao, C., Tian, Q., Lin, J., & Yang, S. (2018). Paclitaxel-induced ultrasmall Gallic acid-Fe@BSA self-assembly with enhanced MRI performance and tumor accumulation for cancer theranostics. ACS Applied Materials & Interfaces, 10(34), 28483–28493.

    Article  CAS  Google Scholar 

  • Arosio, D., & Casagrande, C. (2016). Advancement in integrin facilitated drug delivery. Advanced Drug Delivery Reviews, 97, 111–143.

    Article  CAS  PubMed  Google Scholar 

  • Artemov, D., Mori, N., Okollie, B., & Bhujwalla, Z. M. (2003). MR molecular imaging of the Her-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 49(3), 403–408.

    Article  CAS  Google Scholar 

  • Aslani, A., Ghahremani, M., Zhang, M., Bennett, L. H., & Torre, E. D. (2018). Customizing magnetic and structural properties of nanomaterials. IEEE Transactions on Magnetics, 1–5.

    Google Scholar 

  • Badoga, S., Pattanayek, S. K., Kumar, A., & Pandey, L. M. (2011). Effect of polymer–surfactant structure on its solution viscosity. Asia-Pacific Journal of Chemical Engineering, 6(1), 78–84.

    Article  CAS  Google Scholar 

  • Bai, X., Wang, J., Mu, X., Yang, J., Liu, H., Xu, F., Jing, Y., Liu, L., Xue, X., & Dai, H. (2017). Ultrasmall WS2 quantum dots with visible fluorescence for protection of cells and animal models from radiation-induced damages. ACS Biomaterials Science & Engineering, 3(3), 460–470.

    Article  CAS  Google Scholar 

  • Bajpai, S., Chand, N., Ahuja, S., & Roy, M. (2015). Curcumin/cellulose micro crystals/chitosan films: Water absorption behavior and in vitro cytotoxicity. International Journal of Biological Macromolecules, 75, 239–247.

    Article  CAS  PubMed  Google Scholar 

  • Bansal, R., Nagorniewicz, B., Storm, G., & Prakash, J. (2017). Relaxin-coated superparamagnetic iron-oxide nanoparticles as a novel theranostic approach for the diagnosis and treatment of liver fibrosis. Journal of Hepatology, 66(1), S43.

    Article  Google Scholar 

  • Baranes, K., Shevach, M., Shefi, O., & Dvir, T. (2015). Gold nanoparticle-decorated scaffolds promote neuronal differentiation and maturation. Nano Letters, 16(5), 2916–2920.

    Article  PubMed  CAS  Google Scholar 

  • Baranwal, A., Kumar, A., Priyadharshini, A., Oggu, G. S., Bhatnagar, I., Srivastava, A., & Chandra, P. (2018). Chitosan: An undisputed bio-fabrication material for tissue engineering and bio-sensing applications. International Journal of Biological Macromolecules, 110, 110–123.

    Article  CAS  PubMed  Google Scholar 

  • Beach, J., Banerjee, T., Kallu, J., Higginbotham, R., & Gross, R. (2017). Combination therapy of prostate cancer utilizing functionalized iron oxide nanoparticles carrying TNF-a and lactonic sophorolipids.

    Google Scholar 

  • Bhagat, S., Srikanth Vallabani, N. V., Shutthanandan, V., Bowden, M., Karakoti, A. S., & Singh, S. (2018). Gold core/ceria shell-based redox active nanozyme mimicking the biological multienzyme complex phenomenon. Journal of Colloid and Interface Science, 513, 831–842.

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar, I., Mahato, K., Ealla, K. K. R., Asthana, A., & Chandra, P. (2018). Chitosan stabilized gold nanoparticle mediated self-assembled glip nanobiosensor for diagnosis of invasive aspergillosis. International Journal of Biological Macromolecules, 110, 449–456.

    Article  CAS  PubMed  Google Scholar 

  • Bizzarri, A. R., Moscetti, I., & Cannistraro, S. (2018). Surface enhanced Raman spectroscopy based immunosensor for ultrasensitive and selective detection of wild type p53 and mutant p53R175H. Analytica Chimica Acta, 1029, 86–96.

    Article  CAS  PubMed  Google Scholar 

  • Bobo, D., Robinson, K. J., Islam, J., Thurecht, K. J., & Corrie, S. R. (2016). Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharmaceutical Research, 33(10), 2373–2387.

    Article  CAS  PubMed  Google Scholar 

  • Bressler, E. M., Kim, J., Shmueli, R. B., Mirando, A. C., Bazzazi, H., Lee, E., Popel, A. S., Pandey, N. B., & Green, J. J. (2018). Biomimetic peptide display from a polymeric nanoparticle surface for targeting and antitumor activity to human triple-negative breast cancer cells. Journal of Biomedical Materials Research Part A, 106, 1753–1764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buschmann, J., Balli, E., Hess, S. C., Stark, W. J., Cinelli, P., Märsmann, S., Welti, M., Weder, W., & Jungraithmayr, W. (2017). Effects of seeding adipose-derived stem cells on electrospun nanocomposite used as chest wall graft in a murine model. Injury, 48(10), 2080–2088.

    Article  PubMed  Google Scholar 

  • Chandra, P. (2016). Nanobiosensors for personalized and onsite biomedical diagnosis. The Institution of Engineering and Technology.

    Google Scholar 

  • Chandra, P., Maurya, P. K., Kumar, P., Tripathi, P., & Srivastava, A. (2009). Diagnosis of rheumatic infections caused by group A Streptococcus pyogenes: future investigation by nanotechnology. Digest Journal of Nanomaterials & Biostructures (DJNB), 4(4), 645–650.

    Google Scholar 

  • Chandra, P., Das, D., & Abdelwahab, A. A. (2010). Gold nanoparticles in molecular diagnostics and therapeutics. Digest Journal of Nanomaterials & Biostructures (DJNB), 5(2), 363–367.

    Google Scholar 

  • Chandra, P., Noh, H.-B., Won, M.-S., & Shim, Y.-B. (2011). Detection of daunomycin using phosphatidylserine and aptamer co-immobilized on Au nanoparticles deposited conducting polymer. Biosensors and Bioelectronics, 26(11), 4442–4449.

    Article  CAS  PubMed  Google Scholar 

  • Chandra, P., Son, N. X., Noh, H.-B., Goyal, R. N., & Shim, Y.-B. (2013). Investigation on the downregulation of dopamine by acetaminophen administration based on their simultaneous determination in urine. Biosensors and Bioelectronics, 39(1), 139–144.

    Article  CAS  PubMed  Google Scholar 

  • Chen, X.-J., Zhang, X.-Q., Liu, Q., Zhang, J., & Zhou, G. (2018a). Nanotechnology: A promising method for oral cancer detection and diagnosis. Journal of Nanobiotechnology, 16(1), 52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, Y., Yan, X., Zhao, J., Feng, H., Li, P., Tong, Z., Yang, Z., Li, S., Yang, J., & Jin, S. (2018b). Preparation of the chitosan/poly (glutamic acid)/alginate polyelectrolyte complexing hydrogel and study on its drug releasing property. Carbohydrate Polymers, 191, 8–16.

    Article  CAS  PubMed  Google Scholar 

  • Cotin, G., Piant, S., Mertz, D., Felder-Flesch, D., & Begin-Colin, S. (2018). Iron oxide nanoparticles for biomedical applications. In Iron oxide nanoparticles for biomedical applications: Synthesis, functionalization, and application (pp. 43–88). Cambridge, MA: Elsevier.

    Chapter  Google Scholar 

  • da Silva, J., Pereira, F. V., & Druzian, J. I. (2012). Cassava starch-based films plasticized with sucrose and inverted sugar and reinforced with cellulose nanocrystals. Journal of Food Science, 77(6), N14–N19.

    Article  PubMed  CAS  Google Scholar 

  • Dabbousi, B. O., Rodriguez-Viejo, J., Mikulec, F. V., Heine, J. R., Mattoussi, H., Ober, R., Jensen, K. F., & Bawendi, M. G. (1997). (CdSe) ZnS core− shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. The Journal of Physical Chemistry B, 101(46), 9463–9475.

    Article  CAS  Google Scholar 

  • Dai, C., Ciccotosto, G. D., Cappai, R., Tang, S., Li, D., Xie, S., Xiao, X., & Velkov, T. (2018). Curcumin attenuates colistin-induced neurotoxicity in N2a cells via anti-inflammatory activity, suppression of oxidative stress, and apoptosis. Molecular Neurobiology, 55(1), 421–434.

    Article  CAS  PubMed  Google Scholar 

  • Das, T., Kolli, V., Karmakar, S., & Sarkar, N. (2017). Functionalisation of polyvinylpyrrolidone on gold nanoparticles enhances its anti-amyloidogenic propensity towards hen egg white lysozyme. Biomedicine, 5(2), 19.

    Google Scholar 

  • Deck, L. M., Hunsaker, L. A., Vander Jagt, T. A., Whalen, L. J., Royer, R. E., & Vander Jagt, D. L. (2018). Activation of anti-oxidant Nrf2 signaling by enone analogues of curcumin. European Journal of Medicinal Chemistry, 143, 854–865.

    Article  CAS  PubMed  Google Scholar 

  • Deka, S., Saxena, V., Hasan, A., Chandra, P., & Pandey, L. M. (2018). Synthesis, characterization and in vitro analysis of α-Fe2O3-GdFeO3 biphasic materials as therapeutic agent for magnetic hyperthermia applications. Materials Science and Engineering: C, 92, 932–941.

    Article  CAS  Google Scholar 

  • Deng, X., Luan, Q., Chen, W., Wang, Y., Wu, M., Zhang, H., & Jiao, Z. (2009). Nanosized zinc oxide particles induce neural stem cell apoptosis. Nanotechnology, 20(11), 115101.

    Article  PubMed  CAS  Google Scholar 

  • Dimitriou, N. M., Tsekenis, G., Balanikas, E. C., Pavlopoulou, A., Mitsiogianni, M., Mantso, T., Pashos, G., Boudouvis, A. G., Lykakis, I. N., & Tsigaridas, G. (2017). Gold nanoparticles, radiations and the immune system: Current insights into the physical mechanisms and the biological interactions of this new alliance towards cancer therapy. Pharmacology & Therapeutics, 178, 1–17.

    Article  CAS  Google Scholar 

  • Dong, F., Feng, E., Zheng, T., & Tian, Y. (2018). In situ synthesized silver nanoclusters for tracking the role of telomerase activity in the differentiation of mesenchymal stem cells to neural stem cells. ACS Applied Materials & Interfaces, 10(2), 2051–2057.

    Article  CAS  Google Scholar 

  • Elkhenany, H., Bourdo, S., Hecht, S., Donnell, R., Gerard, D., Abdelwahed, R., Lafont, A., Alghazali, K., Watanabe, F., Biris, A. S., Anderson, D., & Dhar, M. (2017). Graphene nanoparticles as osteoinductive and osteoconductive platform for stem cell and bone regeneration. Nanomedicine: Nanotechnology, Biology and Medicine, 13(7), 2117–2126.

    Article  CAS  Google Scholar 

  • Ezazi, N. Z., Shahbazi, M.-A., Shatalin, Y. V., Nadal, E., Mäkilä, E., Salonen, J., Kemell, M., Correia, A., Hirvonen, J., & Santos, H. A. (2018). Conductive vancomycin-loaded mesoporous silica polypyrrole-based scaffolds for bone regeneration. International Journal of Pharmaceutics, 536(1), 241–250.

    Article  CAS  Google Scholar 

  • Fan, Z., Zhou, S., Garcia, C., Fan, L., & Zhou, J. (2017). pH-responsive fluorescent graphene quantum dots for fluorescence-guided cancer surgery and diagnosis. Nanoscale, 9(15), 4928–4933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feynman, R. P. (1959). There’s plenty of room at the bottom. Miniaturization, 282–296.

    Google Scholar 

  • Fiala, M., Kooij, G., Wagner, K., Hammock, B., & Pellegrini, M. (2017). Modulation of innate immunity of patients with Alzheimer’s disease by omega-3 fatty acids. The FASEB Journal, 31(8), 3229–3239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M., Morelli, G., & Galdiero, M. (2015). Silver nanoparticles as potential antibacterial agents. Molecules, 20(5), 8856–8874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gan, Q., Wang, T., Cochrane, C., & McCarron, P. (2005). Modulation of surface charge, particle size and morphological properties of chitosan–TPP nanoparticles intended for gene delivery. Colloids and Surfaces B: Biointerfaces, 44(2–3), 65–73.

    Article  CAS  PubMed  Google Scholar 

  • Gao, G., Zhang, M., Gong, D., Chen, R., Hu, X., & Sun, T. (2017). The size-effect of gold nanoparticles and nanoclusters in the inhibition of amyloid-β fibrillation. Nanoscale, 9(12), 4107–4113.

    Article  CAS  PubMed  Google Scholar 

  • Gomes, M. A., Brandão-Silva, A. C., Avila, J. F. M., Alencar, M. A. R. C., Rodrigues, J. J., & Macedo, Z. S. (2018). Particle size effect on structural and optical properties of Y2O3:Nd3+ nanoparticles prepared by coconut water-assisted sol-gel route. Journal of Luminescence, 200, 43–49.

    Article  CAS  Google Scholar 

  • Han, J. W., Gurunathan, S., Choi, Y.-J., & Kim, J.-H. (2017). Dual functions of silver nanoparticles in F9 teratocarcinoma stem cells, a suitable model for evaluating cytotoxicity-and differentiation-mediated cancer therapy. International Journal of Nanomedicine, 12, 7529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan, A., & Pandey, L. (2017). Self-assembled monolayers in biomaterials. In Nanobiomaterials (pp. 137–178). Elsevier.

    Google Scholar 

  • Hasan, A., Waibhaw, G., Tiwari, S., Dharmalingam, K., Shukla, I., & Pandey, L. M. (2017). Fabrication and characterization of chitosan, polyvinylpyrrolidone, and cellulose nanowhiskers nanocomposite films for wound healing drug delivery application. Journal of Biomedical Materials Research Part A, 105(9), 2391–2404.

    Article  CAS  PubMed  Google Scholar 

  • Hasan, A., Saxena, V., & Pandey, L. M. (2018a). Surface functionalization of Ti6Al4V via self-assembled monolayers for improved protein adsorption and fibroblast adhesion. Langmuir, 34(11), 3494–3506.

    Article  CAS  PubMed  Google Scholar 

  • Hasan, A., Waibhaw, G., Saxena, V., & Pandey, L. M. (2018b). Nano-biocomposite scaffolds of chitosan, carboxymethyl cellulose and silver nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications. International Journal of Biological Macromolecules, 111, 923–934.

    Article  CAS  PubMed  Google Scholar 

  • Hasanzadeh, M., Tagi, S., Solhi, E., Shadjou, N., Jouyban, A., & Mokhtarzadeh, A. (2018). Immunosensing of breast cancer prognostic marker in adenocarcinoma cell lysates and unprocessed human plasma samples using gold nanostructure coated on organic substrate. International Journal of Biological Macromolecules, 118(Pt A), 1082.

    Article  CAS  PubMed  Google Scholar 

  • Hu, J., Youssefian, S., Obayemi, J., Malatesta, K., Rahbar, N., & Soboyejo, W. (2018a). Investigation of adhesive interactions in the specific targeting of Triptorelin-conjugated PEG-coated magnetite nanoparticles to breast cancer cells. Acta Biomaterialia, 71, 363–378.

    Article  CAS  PubMed  Google Scholar 

  • Hu, K., Chen, X., Chen, W., Zhang, L., Li, J., Ye, J., Zhang, Y., Zhang, L., Li, C.-H., & Yin, L. (2018b). Neuroprotective effect of gold nanoparticles composites in Parkinson’s disease model. Nanomedicine: Nanotechnology, Biology and Medicine, 14(4), 1123–1136.

    Article  CAS  Google Scholar 

  • Jain, P. K., Lee, K. S., El-Sayed, I. H., & El-Sayed, M. A. (2006). Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. The Journal of Physical Chemistry B, 110(14), 7238–7248.

    Article  CAS  PubMed  Google Scholar 

  • Jasieniak, J., Smith, L., Van Embden, J., Mulvaney, P., & Califano, M. (2009). Re-examination of the size-dependent absorption properties of CdSe quantum dots. The Journal of Physical Chemistry C, 113(45), 19468–19474.

    Article  CAS  Google Scholar 

  • Kadappan, A. S., Guo, C., Gumus, C. E., Bessey, A., Wood, R. J., McClements, D. J., & Liu, Z. (2018). The efficacy of nanoemulsion-based delivery to improve vitamin D absorption: Comparison of in vitro and in vivo studies. Molecular Nutrition & Food Research, 62(4), 1700836.

    Article  CAS  Google Scholar 

  • Kang, H., Zhang, K., Pan, Q., Lin, S., Wong, D. S. H., Li, J., Lee, W. Y.-W., Yang, B., Han, F., Li, G., Li, B., & Bian, L. (2018). Remote control of intracellular calcium using upconversion nanotransducers regulates stem cell differentiation in vivo. Advanced Functional Materials, 28(41), 1802642.

    Article  CAS  Google Scholar 

  • Kango, S., Kalia, S., Celli, A., Njuguna, J., Habibi, Y., & Kumar, R. (2013). Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Progress in Polymer Science, 38(8), 1232–1261.

    Article  CAS  Google Scholar 

  • Kargozar, S., Mozafari, M., Hashemian, S. J., Brouki Milan, P., Hamzehlou, S., Soleimani, M., Joghataei, M. T., Gholipourmalekabadi, M., Korourian, A., & Mousavizadeh, K. (2018). Osteogenic potential of stem cells-seeded bioactive nanocomposite scaffolds: A comparative study between human mesenchymal stem cells derived from bone, umbilical cord Wharton’s jelly, and adipose tissue. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 106(1), 61–72.

    Article  CAS  PubMed  Google Scholar 

  • Karim, M. N., Anderson, S. R., Singh, S., Ramanathan, R., & Bansal, V. (2018a). Nanostructured silver fabric as a free-standing NanoZyme for colorimetric detection of glucose in urine. Biosensors and Bioelectronics, 110, 8–15.

    Article  CAS  PubMed  Google Scholar 

  • Karim, M. N., Singh, M., Weerathunge, P., Bian, P., Zheng, R., Dekiwadia, C., Ahmed, T., Walia, S., Della Gaspera, E., Singh, S., Ramanathan, R., & Bansal, V. (2018b). Visible-light-triggered reactive-oxygen-species-mediated antibacterial activity of peroxidase-mimic CuO nanorods. ACS Applied Nano Materials, 1(4), 1694–1704.

    Article  CAS  Google Scholar 

  • Karmakar, S. (2017). Studies on effect of proline capped gold nanoparticles on Hen Egg White Lysozyme (HEWL) and Cytochrome C (Cyt C) amyloidogenesis.

    Google Scholar 

  • Kawashima, Y., Yamamoto, H., Takeuchi, H., & Kuno, Y. (2000). Mucoadhesive DL-lactide/glycolide copolymer nanospheres coated with chitosan to improve oral delivery of elcatonin. Pharmaceutical Development and Technology, 5(1), 77–85.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S. U., & De Vellis, J. (2009). Stem cell-based cell therapy in neurological diseases: A review. Journal of Neuroscience Research, 87(10), 2183–2200.

    Article  CAS  PubMed  Google Scholar 

  • Koh, W. C. A., Chandra, P., Kim, D.-M., & Shim, Y.-B. (2011). Electropolymerized self-assembled layer on gold nanoparticles: Detection of inducible nitric oxide synthase in neuronal cell culture. Analytical Chemistry, 83(16), 6177–6183.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, C. S. (2018). Nanotechnology characterization tools for biosensing and medical diagnosis. Berlin: Springer.

    Book  Google Scholar 

  • Kumar, M., Misra, A., Babbar, A., Mishra, A., Mishra, P., & Pathak, K. (2008). Intranasal nanoemulsion based brain targeting drug delivery system of risperidone. International Journal of Pharmaceutics, 358(1–2), 285–291.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, B., Smita, K., Cumbal, L., & Debut, A. (2017). Green synthesis of silver nanoparticles using Andean blackberry fruit extract. Saudi Journal of Biological Sciences, 24(1), 45–50.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, R., Kaur, K., Pandey, S. K., Kumar, R., Uppal, S., & Mehta, S. (2018). Fabrication of benzylisothiocynate encapsulated nanoemulsion through ultrasonication: Augmentation of anticancer and antimicrobial attributes. Journal of Molecular Liquids, 263, 324–333.

    Article  CAS  Google Scholar 

  • Kwon, G. S. (2003). Polymeric micelles for delivery of poorly water-soluble compounds. Critical Reviews™ in Therapeutic Drug Carrier Systems, 20(5), 357–403.

    Article  CAS  Google Scholar 

  • Laurent, S., Dutz, S., Häfeli, U. O., & Mahmoudi, M. (2011). Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Advances in Colloid and Interface Science, 166(1–2), 8–23.

    Article  CAS  PubMed  Google Scholar 

  • Lee, H., Kim, C., Lee, D., Park, J. H., Searson, P. C., & Lee, K. H. (2017a). Optical coding of fusion genes using multicolor quantum dots for prostate cancer diagnosis. International Journal of Nanomedicine, 12, 4397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, S. S., Choi, G. E., Lee, H. J., Kim, Y., Choy, J.-H., & Jeong, B. (2017b). Layered double hydroxide and polypeptide thermogel nanocomposite system for chondrogenic differentiation of stem cells. ACS Applied Materials & Interfaces, 9(49), 42668–42675.

    Article  CAS  Google Scholar 

  • Lekshmi, N. P., Sumi, S. B., Viveka, S., Jeeva, S., & Brindha, J. R. (2017). Antibacterial activity of nanoparticles from Allium sp. Journal of Microbiology and Biotechnology Research, 2(1), 115–119.

    Google Scholar 

  • Li, S., Zhou, S., Li, Y., Li, X., Zhu, J., Fan, L., & Yang, S. (2017). Exceptionally high payload of the IR780 iodide on folic acid-functionalized graphene quantum dots for targeted Photothermal therapy. ACS Applied Materials & Interfaces, 9(27), 22332–22341.

    Article  CAS  Google Scholar 

  • Lim, E.-K., Chung, B. H., & Chung, S. J. (2018). Recent advances in pH-sensitive polymeric nanoparticles for smart drug delivery in cancer therapy. Current Drug Targets, 19(4), 300–317.

    Article  CAS  PubMed  Google Scholar 

  • Lin, L.-S., Cong, Z.-X., Cao, J.-B., Ke, K.-M., Peng, Q.-L., Gao, J., Yang, H.-H., Liu, G., & Chen, X. (2014). Multifunctional Fe3O4@ polydopamine core–shell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy. ACS Nano, 8(4), 3876–3883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, D., Yi, C., Zhang, D., Zhang, J., & Yang, M. (2010). Inhibition of proliferation and differentiation of mesenchymal stem cells by carboxylated carbon nanotubes. ACS Nano, 4(4), 2185–2195.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Q., Ma, C., Liu, X.-P., Wei, Y.-P., Mao, C.-J., & Zhu, J.-J. (2017). A novel electrochemiluminescence biosensor for the detection of microRNAs based on a DNA functionalized nitrogen doped carbon quantum dots as signal enhancers. Biosensors and Bioelectronics, 92, 273–279.

    Article  CAS  PubMed  Google Scholar 

  • Lv, R., Yang, P., Chen, G., Gai, S., Xu, J., & Prasad, P. N. (2017a). Dopamine-mediated photothermal theranostics combined with up-conversion platform under near infrared light. Scientific Reports, 7(1), 13562.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lv, Y., Cao, Y., Li, P., Liu, J., Chen, H., Hu, W., & Zhang, L. (2017b). Ultrasound-triggered destruction of folate-functionalized mesoporous silica nanoparticle-loaded microbubble for targeted tumor therapy. Advanced Healthcare Materials, 6(18), 1700354.

    Article  CAS  Google Scholar 

  • Ma, Q., Yang, J., Huang, X., Guo, W., Li, S., Zhou, H., Li, J., Cao, F., & Chen, Y. (2018). Poly(lactide-co-glycolide)-monomethoxy-poly-(polyethylene glycol) nanoparticles loaded with melatonin protect adipose-derived stem cells transplanted in infarcted heart tissue. Stem Cells, 36(4), 540–550.

    Article  CAS  PubMed  Google Scholar 

  • Mahato, K., Prasad, A., Maurya, P., & Chandra, P. (2016). Nanobiosensors: Next generation point-of-care biomedical devices for personalized diagnosis. Journal of Anaytical and Bioanalytical Techniques, 7, e125.

    Google Scholar 

  • Marsich, E., Bellomo, F., Turco, G., Travan, A., Donati, I., & Paoletti, S. (2013). Nano-composite scaffolds for bone tissue engineering containing silver nanoparticles: Preparation, characterization and biological properties. Journal of Materials Science: Materials in Medicine, 24(7), 1799–1807.

    CAS  PubMed  Google Scholar 

  • Michal, E. T., Lerner, D. J., & Pollman, M. J. (2015). Local delivery of water-soluble or water-insoluble therapeutic agents to the surface of body lumens. Google Patents.

    Google Scholar 

  • Mili, B., Das, K., Kumar, A., Saxena, A. C., Singh, P., Ghosh, S., & Bag, S. (2017). Preparation of NGF encapsulated chitosan nanoparticles and its evaluation on neuronal differentiation potentiality of canine mesenchymal stem cells. Journal of Materials Science: Materials in Medicine, 29(1), 4.

    PubMed  Google Scholar 

  • Molfino, A., Amabile, M. I., Monti, M., Arcieri, S., Rossi Fanelli, F., & Muscaritoli, M. (2016). The role of docosahexaenoic acid (DHA) in the control of obesity and metabolic derangements in breast cancer. International Journal of Molecular Sciences, 17(4), 505.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moreels, I., Lambert, K., Smeets, D., De Muynck, D., Nollet, T., Martins, J. C., Vanhaecke, F., Vantomme, A., Delerue, C., & Allan, G. (2009). Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano, 3(10), 3023–3030.

    Article  CAS  PubMed  Google Scholar 

  • Mu, X., Zhang, F., Kong, C., Zhang, H., Zhang, W., Ge, R., Liu, Y., & Jiang, J. (2017). EGFR-targeted delivery of DOX-loaded Fe3O4@ polydopamine multifunctional nanocomposites for MRI and antitumor chemo-photothermal therapy. International Journal of Nanomedicine, 12, 2899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nazar, H. (2018). The use of nanotechnology in disease diagnosis and molecular imaging. Lung Cancer, 15, 05.

    Google Scholar 

  • Nazıroğlu, M., Muhamad, S., & Pecze, L. (2017). Nanoparticles as potential clinical therapeutic agents in Alzheimer’s disease: Focus on selenium nanoparticles. Expert Review of Clinical Pharmacology, 10(7), 773–782.

    Article  PubMed  CAS  Google Scholar 

  • Neun, B. W., & Dobrovolskaia, M. A. (2011). Method for in vitro analysis of nanoparticle thrombogenic properties. In Characterization of nanoparticles intended for drug delivery (pp. 225–235). New York: Springer.

    Chapter  Google Scholar 

  • Niwa, T., Takeuchi, H., Hino, T., Kunou, N., & Kawashima, Y. (1994). In vitro drug release behavior of D, L-lactide/glycolide copolymer (PLGA) nanospheres with nafarelin acetate prepared by a novel spontaneous emulsification solvent diffusion method. Journal of Pharmaceutical Sciences, 83(5), 727–732.

    Article  CAS  PubMed  Google Scholar 

  • Ozturk, B., Argin, S., Ozilgen, M., & McClements, D. J. (2015). Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural biopolymers: Whey protein isolate and gum arabic. Food Chemistry, 188, 256–263.

    Article  CAS  PubMed  Google Scholar 

  • Pacelli, S., Maloney, R., Chakravarti, A. R., Whitlow, J., Basu, S., Modaresi, S., Gehrke, S., & Paul, A. (2017). Controlling adult stem cell behavior using nanodiamond-reinforced hydrogel: Implication in bone regeneration therapy. Scientific Reports, 7(1), 6577.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pandey, L. M. (2012). Effect of solid surface with self assembled monolayers on adsorption of proteins.

    Google Scholar 

  • Pandey, L. M., & Pattanayek, S. K. (2011). Hybrid surface from self-assembled layer and its effect on protein adsorption. Applied Surface Science, 257(10), 4731–4737.

    Article  CAS  Google Scholar 

  • Pandey, L. M., & Pattanayek, S. K. (2013a). Properties of competitively adsorbed BSA and fibrinogen from their mixture on mixed and hybrid surfaces. Applied Surface Science, 264, 832–837.

    Article  CAS  Google Scholar 

  • Pandey, L. M., & Pattanayek, S. K. (2013b). Relation between the wetting effect and the adsorbed amount of water-soluble polymers or proteins at various interfaces. Journal of Chemical & Engineering Data, 58(12), 3440–3446.

    Article  CAS  Google Scholar 

  • Pandey, L. M., Le Denmat, S., Delabouglise, D., Bruckert, F., Pattanayek, S. K., & Weidenhaupt, M. (2012). Surface chemistry at the nanometer scale influences insulin aggregation. Colloids and Surfaces B: Biointerfaces, 100, 69–76.

    Article  CAS  PubMed  Google Scholar 

  • Pandey, L. M., Pattanayek, S. K., & Delabouglise, D. (2013). Properties of adsorbed bovine serum albumin and fibrinogen on self-assembled monolayers. The Journal of Physical Chemistry C, 117(12), 6151–6160.

    Article  CAS  Google Scholar 

  • Panyam, J., & Labhasetwar, V. (2003). Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced Drug Delivery Reviews, 55(3), 329–347.

    Article  CAS  PubMed  Google Scholar 

  • Parveen, S., Wani, A. H., Shah, M. A., Devi, H. S., Bhat, M. Y., & Koka, J. A. (2018). Preparation, characterization and antifungal activity of iron oxide nanoparticles. Microbial Pathogenesis, 115, 287–292.

    Article  CAS  PubMed  Google Scholar 

  • Peng, X.-H., Qian, X., Mao, H., & Wang, A. Y. (2008). Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. International Journal of Nanomedicine, 3(3), 311.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pohanka, M. (2017). Quantum dots in the therapy: Current trends and perspectives. Mini Reviews in Medicinal Chemistry, 17(8), 650–656.

    Article  CAS  PubMed  Google Scholar 

  • Popara, J., Accomasso, L., Vitale, E., Gallina, C., Roggio, D., Iannuzzi, A., Raimondo, S., Rastaldo, R., Alberto, G., Catalano, F., Martra, G., Turinetto, V., Pagliaro, P., & Giachino, C. (2018). Silica nanoparticles actively engage with mesenchymal stem cells in improving acute functional cardiac integration. Nanomedicine, 13(10), 1121–1138.

    Article  CAS  PubMed  Google Scholar 

  • Potter, T. M., Rodriguez, J. C., Neun, B. W., Ilinskaya, A. N., Cedrone, E., & Dobrovolskaia, M. A. (2018). In vitro assessment of nanoparticle effects on blood coagulation. In Characterization of nanoparticles intended for drug delivery (pp. 103–124). New York: Springer.

    Chapter  Google Scholar 

  • Prasad, A., Mahato, K., Chandra, P., Srivastava, A., Joshi, S. N., & Maurya, P. K. (2016a). Bioinspired composite materials: Applications in diagnostics and therapeutics. Journal of Molecular and Engineering Materials, 4(01), 1640004.

    Article  CAS  Google Scholar 

  • Prasad, A., Mahato, K., Maurya, P., & Chandra, P. (2016b). Biomaterials for biosensing applications. Journal of Analytical and Bioanalytical Techniques, 7, e124.

    Google Scholar 

  • Qiao, Y., Gumin, J., MacLellan, C. J., Gao, F., Bouchard, R., Lang, F. F., Stafford, R. J., & Melancon, M. P. (2018). Magnetic resonance and photoacoustic imaging of brain tumor mediated by mesenchymal stem cell labeled with multifunctional nanoparticle introduced via carotid artery injection. Nanotechnology, 29(16), 165101.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Qin, X., Chen, H., Yang, H., Wu, H., Zhao, X., Wang, H., Chour, T., Neofytou, E., Ding, D., Daldrup-Link, H., Heilshorn, S. C., Li, K., & Wu, J. C. (2018). Photoacoustic imaging of embryonic stem cell-derived cardiomyocytes in living hearts with ultrasensitive semiconducting polymer nanoparticles. Advanced Functional Materials, 28(1), 1704939.

    Article  PubMed  CAS  Google Scholar 

  • Radhakrishnan, V. S., Dwivedi, S. P., Siddiqui, M. H., & Prasad, T. (2018). In vitro studies on oxidative stress-independent, Ag nanoparticles-induced cell toxicity of Candida albicans, an opportunistic pathogen. International Journal of Nanomedicine, 13, 91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rafiei, P., & Haddadi, A. (2017). Pharmacokinetic consequences of PLGA nanoparticles in docetaxel drug delivery. Pharmaceutical Nanotechnology, 5(1), 3–23.

    Article  CAS  PubMed  Google Scholar 

  • Rather, H. A., Thakore, R., Singh, R., Jhala, D., Singh, S., & Vasita, R. (2018). Antioxidative study of cerium oxide nanoparticle functionalised PCL-Gelatin electrospun fibers for wound healing application. Bioactive Materials, 3(2), 201–211.

    Article  PubMed  Google Scholar 

  • Reis, C. P., Neufeld, R. J., & Veiga, F. (2017). Preparation of drug-loaded polymeric nanoparticles. In Nanomedicine in cancer (pp. 197–240). Singapore: Pan Stanford.

    Google Scholar 

  • Roy, K., Mao, H.-Q., Huang, S.-K., & Leong, K. W. (1999). Oral gene delivery with chitosan–DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nature Medicine, 5(4), 387.

    Article  CAS  PubMed  Google Scholar 

  • Sahoo, S., Singh, D., Singh, P., & Minz, A. P. (2018). Advanced nanotherapeutic systems for drug delivery and imaging in cancer. In Multifunctional nanocarriers for contemporary healthcare applications (pp. 1–21). Hershey: IGI Global.

    Google Scholar 

  • Sanitá, P. V., Pavarina, A. C., Dovigo, L. N., Ribeiro, A. P. D., Andrade, M. C., & de Oliveira Mima, E. G. (2018). Curcumin-mediated anti-microbial photodynamic therapy against Candida dubliniensis biofilms. Lasers in Medical Science, 33(4), 709–717.

    Article  PubMed  Google Scholar 

  • Saratale, R. G., Benelli, G., Kumar, G., Kim, D. S., & Saratale, G. D. (2018). Bio-fabrication of silver nanoparticles using the leaf extract of an ancient herbal medicine, dandelion (Taraxacum officinale), evaluation of their antioxidant, anticancer potential, and antimicrobial activity against phytopathogens. Environmental Science and Pollution Research, 25(11), 10392–10406.

    Article  CAS  PubMed  Google Scholar 

  • Saravanan, S., Leena, R., & Selvamurugan, N. (2016). Chitosan based biocomposite scaffolds for bone tissue engineering. International Journal of Biological Macromolecules, 93, 1354–1365.

    Article  CAS  PubMed  Google Scholar 

  • Sari, T., Mann, B., Kumar, R., Singh, R., Sharma, R., Bhardwaj, M., & Athira, S. (2015). Preparation and characterization of nanoemulsion encapsulating curcumin. Food Hydrocolloids, 43, 540–546.

    Article  CAS  Google Scholar 

  • Sarkar, C., Kumari, P., Anuvrat, K., Sahu, S. K., Chakraborty, J., & Garai, S. (2018). Synthesis and characterization of mechanically strong carboxymethyl cellulose–gelatin–hydroxyapatite nanocomposite for load-bearing orthopedic application. Journal of Materials Science, 53(1), 230–246.

    Article  CAS  Google Scholar 

  • Savaliya, R., Shah, D., Singh, R., Kumar, A., Shanker, R., Dhawan, A., & Singh, S. (2015). Nanotechnology in disease diagnostic techniques. Current Drug Metabolism, 16(8), 645–661.

    Article  CAS  PubMed  Google Scholar 

  • Saxena, V., Chandra, P., & Pandey, L. M. (2018a). Design and characterization of novel Al-doped ZnO nanoassembly as an effective nanoantibiotic. Applied Nanoscience, 8(8), 1925–1941.

    Article  CAS  Google Scholar 

  • Saxena, V., Hasan, A., Sharma, S., & Pandey, L. M. (2018b). Edible oil nanoemulsion: An organic nanoantibiotic as a potential biomolecule delivery vehicle. International Journal of Polymeric Materials and Polymeric Biomaterials, 67(7), 410–419.

    Article  CAS  Google Scholar 

  • Shah, S., Yin, P. T., Uehara, T. M., Chueng, S. T. D., Yang, L., & Lee, K. B. (2014). Guiding stem cell differentiation into oligodendrocytes using graphene-nanofiber hybrid scaffolds. Advanced Materials, 26(22), 3673–3680.

    Article  CAS  PubMed  Google Scholar 

  • Shahidi, F., & Ambigaipalan, P. (2018). Omega-3 polyunsaturated fatty acids and their health benefits. Annual Review of Food Science and Technology, 9(1).

    Google Scholar 

  • Sharma, C., Dinda, A. K., Potdar, P. D., Chou, C.-F., & Mishra, N. C. (2016). Fabrication and characterization of novel nano-biocomposite scaffold of chitosan–gelatin–alginate–hydroxyapatite for bone tissue engineering. Materials Science and Engineering: C, 64, 416–427.

    Article  CAS  Google Scholar 

  • Shim, Y. B. (2013). Gold nanoparticles and nanocomposites in clinical diagnostics using electrochemical methods. Journal of Nanoparticles, 2013, 1–12.

    Google Scholar 

  • Shin, M., Yoshimoto, H., & Vacanti, J. P. (2004). In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold. Tissue Engineering, 10(1–2), 33–41.

    Article  CAS  PubMed  Google Scholar 

  • Singh, S. (2013). Nanomaterials as non-viral siRNA delivery agents for cancer therapy. BioImpacts: BI, 3(2), 53.

    PubMed  PubMed Central  Google Scholar 

  • Singh, S. (2016). Cerium oxide based nanozymes: Redox phenomenon at biointerfaces. Biointerphases, 11(4), 04B202.

    Article  PubMed  CAS  Google Scholar 

  • Singh, A., Datta, P., & Pandey, L. M. (2017). Deciphering the mechanistic insight into the stoichiometric ratio dependent behavior of Cu (II) on BSA fibrillation. International Journal of Biological Macromolecules, 97, 662–670.

    Article  CAS  PubMed  Google Scholar 

  • Singh, A., Hasan, A., Tiwari, S., & Pandey, L. (2018a). Therapeutic advancement in Alzheimer disease: New hopes on the horizon? CNS & Neurological Disorders Drug Targets, 17, 571–589.

    Article  CAS  Google Scholar 

  • Singh, S., Asal, R., & Bhagat, S. (2018b). Multifunctional antioxidant nanoliposome-mediated delivery of PTEN plasmids restore the expression of tumor suppressor protein and induce apoptosis in prostate cancer cells. Journal of Biomedical Materials Research Part A, 106, 3152–3164.

    Article  CAS  PubMed  Google Scholar 

  • Suktham, K., Koobkokkruad, T., Wutikhun, T., & Surassmo, S. (2018). Efficiency of resveratrol-loaded sericin nanoparticles: Promising bionanocarriers for drug delivery. International Journal of Pharmaceutics, 537(1–2), 48–56.

    Article  CAS  PubMed  Google Scholar 

  • Tiwari, S., Hasan, A., & Pandey, L. M. (2017). A novel bio-sorbent comprising encapsulated agrobacterium fabrum (SLAJ731) and iron oxide nanoparticles for removal of crude oil co-contaminant, lead Pb (II). Journal of Environmental Chemical Engineering, 5(1), 442–452.

    Article  CAS  Google Scholar 

  • Vallabani, N. V. S., Karakoti, A. S., & Singh, S. (2017). ATP-mediated intrinsic peroxidase-like activity of Fe3O4-based nanozyme: One step detection of blood glucose at physiological pH. Colloids and Surfaces B: Biointerfaces, 153, 52–60.

    Article  CAS  PubMed  Google Scholar 

  • Virani, N. A., Davis, C., McKernan, P., Hauser, P., Hurst, R. E., Slaton, J., Silvy, R. P., Resasco, D. E., & Harrison, R. G. (2017). Phosphatidylserine targeted single-walled carbon nanotubes for photothermal ablation of bladder cancer. Nanotechnology, 29(3), 035101.

    Article  CAS  Google Scholar 

  • Wei, L., Lu, J., Xu, H., Patel, A., Chen, Z.-S., & Chen, G. (2015). Silver nanoparticles: Synthesis, properties, and therapeutic applications. Drug Discovery Today, 20(5), 595–601.

    Article  CAS  PubMed  Google Scholar 

  • Wei, M., Li, S., & Le, W. (2017). Nanomaterials modulate stem cell differentiation: Biological interaction and underlying mechanisms. Journal of Nanobiotechnology, 15(1), 75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu, S. Q., Yang, C. X., & Yan, X. P. (2017). A dual-functional persistently luminescent nanocomposite enables engineering of mesenchymal stem cells for homing and gene therapy of glioblastoma. Advanced Functional Materials, 27(11), 1604992.

    Article  CAS  Google Scholar 

  • Xu, Q., Zhang, T., Wang, Q., Jiang, X., Li, A., Li, Y., Huang, T., Li, F., Hu, Y., Ling, D., & Gao, J. (2018). Uniformly sized iron oxide nanoparticles for efficient gene delivery to mesenchymal stem cells. International Journal of Pharmaceutics, 552(1), 443–452.

    Article  CAS  PubMed  Google Scholar 

  • Yamagishi, K., Ikeda, A., Chei, C.-L., Noda, H., Umesawa, M., Cui, R., Muraki, I., Ohira, T., Imano, H., & Sankai, T. (2017). Serum α-linolenic and other ω-3 fatty acids, and risk of disabling dementia: Community-based nested case–control study. Clinical Nutrition, 36(3), 793–797.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, H., Kuno, Y., Sugimoto, S., Takeuchi, H., & Kawashima, Y. (2005). Surface-modified PLGA nanosphere with chitosan improved pulmonary delivery of calcitonin by mucoadhesion and opening of the intercellular tight junctions. Journal of Controlled Release, 102(2), 373–381.

    Article  CAS  PubMed  Google Scholar 

  • Yang, L., Sun, J., Xie, W., Liu, Y., & Liu, J. (2017). Dual-functional selenium nanoparticles bind to and inhibit amyloid β fiber formation in Alzheimer’s disease. Journal of Materials Chemistry B, 5(30), 5954–5967.

    Article  CAS  PubMed  Google Scholar 

  • Yang, N., Ding, Y., Zhang, Y., Wang, B., Zhao, X., Cheng, K., Huang, Y., Taleb, M., Zhao, J., Dong, W.-F., Zhang, L., & Nie, G. (2018). Surface functionalization of polymeric nanoparticles with umbilical cord-derived mesenchymal stem cell membrane for tumor-targeted therapy. ACS Applied Materials & Interfaces, 10(27), 22963–22973.

    Article  CAS  Google Scholar 

  • Yao, X., Niu, X., Ma, K., Huang, P., Grothe, J., Kaskel, S., & Zhu, Y. (2017). Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy. Small, 13(2), 1602225.

    Article  CAS  Google Scholar 

  • Yasir, M., Singh, J., Tripathi, M. K., Singh, P., & Shrivastava, R. (2018). Green synthesis of silver nanoparticles using leaf extract of common arrowhead houseplant and its anticandidal activity. Pharmacognosy Magazine, 13(Suppl 4), S840.

    PubMed  PubMed Central  Google Scholar 

  • Yen, Y. H., Pu, C. M., Liu, C. W., Chen, Y. C., Chen, Y. C., Liang, C. J., Hsieh, J. H., Huang, H. F., & Chen, Y. L. (2018). Curcumin accelerates cutaneous wound healing via multiple biological actions: The involvement of TNF-α, MMP-9, α-SMA, and collagen. International Wound Journal, 15, 605–617.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yong, Y., Cheng, X., Bao, T., Zu, M., Yan, L., Yin, W., Ge, C., Wang, D., Gu, Z., & Zhao, Y. (2015). Tungsten sulfide quantum dots as multifunctional nanotheranostics for in vivo dual-modal image-guided photothermal/radiotherapy synergistic therapy. ACS Nano, 9(12), 12451–12463.

    Article  CAS  PubMed  Google Scholar 

  • Yoo, J., Lee, E., Kim, H. Y., Youn, D.-h., Jung, J., Kim, H., Chang, Y., Lee, W., Shin, J., & Baek, S. (2017). Electromagnetized gold nanoparticles mediate direct lineage reprogramming into induced dopamine neurons in vivo for Parkinson’s disease therapy. Nature Nanotechnology, 12(10), 1006.

    Article  CAS  PubMed  Google Scholar 

  • Yu, M. K., Jeong, Y. Y., Park, J., Park, S., Kim, J. W., Min, J. J., Kim, K., & Jon, S. (2008). Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angewandte Chemie, 120(29), 5442–5445.

    Article  Google Scholar 

  • Zamani, M., Rostami, M., Aghajanzadeh, M., Manjili, H. K., Rostamizadeh, K., & Danafar, H. (2018). Mesoporous titanium dioxide@ zinc oxide–graphene oxide nanocarriers for colon-specific drug delivery. Journal of Materials Science, 53(3), 1634–1645.

    Article  CAS  Google Scholar 

  • Zhang, X.-F., Liu, Z.-G., Shen, W., & Gurunathan, S. (2016). Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. International Journal of Molecular Sciences, 17(9), 1534.

    Article  PubMed Central  CAS  Google Scholar 

  • Zhang, G., Khan, A., Wu, H., Chen, L., Gu, Y., & Gu, N. (2017). The application of nanomaterials in stem cell therapy for some neurological diseases. Current Drug Targets, 19, 279–298.

    Google Scholar 

  • Zhang, B., Yan, W., Zhu, Y., Yang, W., Le, W., Chen, B., Zhu, R., & Cheng, L. (2018a). Nanomaterials in neural-stem-cell-mediated regenerative medicine: Imaging and treatment of neurological diseases. Advanced Materials, 30(17), 1705694.

    Article  CAS  Google Scholar 

  • Zhang, F., Stephan, S. B., Ene, C. I., Smith, T. T., Holland, E. C., & Stephan, M. T. (2018b). Nanoparticles that reshape the tumor milieu create a therapeutic window for effective T cell therapy in solid malignancies. Cancer Research, 78, 3718–3730. canres. 0306.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, M.-X., & Zeng, E.-Z. (2015). Application of functional quantum dot nanoparticles as fluorescence probes in cell labeling and tumor diagnostic imaging. Nanoscale Research Letters, 10(1), 171.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao, Q., Qian, J., An, Q., Gao, C., Gui, Z., & Jin, H. (2009). Synthesis and characterization of soluble chitosan/sodium carboxymethyl cellulose polyelectrolyte complexes and the pervaporation dehydration of their homogeneous membranes. Journal of Membrane Science, 333(1–2), 68–78.

    Article  CAS  Google Scholar 

  • Zhu, Y., Chandra, P., & Shim, Y.-B. (2012a). Ultrasensitive and selective electrochemical diagnosis of breast cancer based on a hydrazine–Au nanoparticle–aptamer bioconjugate. Analytical Chemistry, 85(2), 1058–1064.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, Y., Chandra, P., Song, K.-M., Ban, C., & Shim, Y.-B. (2012b). Label-free detection of kanamycin based on the aptamer-functionalized conducting polymer/gold nanocomposite. Biosensors and Bioelectronics, 36(1), 29–34.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, X., Feng, W., Chang, J., Tan, Y.-W., Li, J., Chen, M., Sun, Y., & Li, F. (2016). Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nature Communications, 7, 10437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalit M. Pandey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karmakar, S., Saxena, V., Chandra, P., Pandey, L.M. (2019). Novel Therapeutics and Diagnostics Strategies Based on Engineered Nanobiomaterials. In: Singh, S., Maurya, P. (eds) Nanotechnology in Modern Animal Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-13-6004-6_1

Download citation

Publish with us

Policies and ethics