Skip to main content

Neural-Based P-Q Decoupled Control for Doubly Fed Induction Generator in Wind Generation System

  • Chapter
  • First Online:
  • 783 Accesses

Part of the book series: Power Systems ((POWSYS))

Abstract

This chapter describes an Artificial Neural Network (ANN) approach for active and reactive decoupled control based Direct Power Control (DPC) in Doubly Fed Induction Generator (DFIG) for Wind Generation System (WGS) by using the suitable voltage vectors on the rotor side. To avoid the computational complexity of DPC, we develop a neuronal approach using an individual training technique with fixed weight and supervised networks. For this, the neural system is split into 5 sub-networks namely: reactive and real power measurement sub-networks with dynamic neurons and fixed-weight; reactive calculation and reference real sub-networks with square neurons and fixed-weight; reference stator current computation sub-network with logarithm of sigmoid, tangent sigmoid neurons and supervised weight; reference rotor current computation sub-network with recurrent neurons and fixed-weight; and reference rotor voltage calculation sub-networks with dynamic neurons and fixed-weight. Under transient conditions, and for step changes of the real and the reactive power references, the DFIG is capable of tracking the references with a response time of less than 1 s. This is fast enough for changes made by the power system operator, and for tracking wind speed variations. Thus, the sensorless measurement of the position is effective in controlling P and Q.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Schmehl R (2017) Airborne wind energy: advances in technology development and research. Springer

    Google Scholar 

  2. Ruiz-Cruz R, Sanchez EN, Loukianov A, Ruz-Hernandez JA (2018) Real-time neural inverse optimal control for a wind generator. IEEE Trans Sustain Energy 1(1), Article in Press (2018). https://doi.org/10.1109/tste.2018.2862628

  3. Vieto I, Sun J (2018) Sequence impedance modeling and analysis of Type-III wind turbines. IEEE Trans Energy Convers 33(2):537–545. https://doi.org/10.1109/tec.2017.2763585

    Article  Google Scholar 

  4. Suppioni VP, Grilo AP, Teixeira JC (2018) Improving network voltage unbalance levels by controlling DFIG wind turbine using a dynamic voltage restorer. Int J Electr Power Energy Syst 96:537–545. https://doi.org/10.1016/j.ijepes.2017.10.002

    Article  Google Scholar 

  5. Lodhe PC, Munje RK, Date TN (2015) Sliding mode control for direct power regulation of doubly fed induction generator. In: Paper presented at the 11th IEEE India conference: emerging trends and innovation in technology, INDICON. https://doi.org/10.1109/indicon.2014.7030494

  6. Elkington K, Ghandhari M (2013) Non-linear power oscillation damping controllers for doubly fed induction generators in wind farms. IET Renew Power Gener 7(2):172–179. https://doi.org/10.1049/iet-rpg.2011.0145

    Article  Google Scholar 

  7. Sguarezi Filho AJ, Filho ER (2012) Model-based predictive control applied to the doubly-fed induction generator direct power control. IEEE Trans Sustain Energy 3(3):398–406. https://doi.org/10.1109/tste.2012.2186834

    Article  Google Scholar 

  8. Guo Y, Gao H, Wu Q, stergaard J, Yu D, Shahidehpour M (2019) Distributed coordinated active and reactive power control of wind farms based on model predictive control. Int J Electr Power Energy Syst 104:78–88. https://doi.org/10.1016/j.ijepes.2018.06.043

    Article  Google Scholar 

  9. Das S, Subudhi B (2018) \(H^{\infty }\) robust active and reactive power control scheme for a PMSG-based wind energy conversion system. IEEE Trans Energy Convers 33(3):980–990. https://doi.org/10.1109/TEC.2018.28030673

    Article  Google Scholar 

  10. Darvish Falehi A (2014) Optimal design and analysis of NIOFPID-based direct power control to strengthen DFIG power control. J Dyn Syst Measurement Control 140(9):091001. https://doi.org/10.1115/1.4039485

    Article  Google Scholar 

  11. Alba E, Mart R (2006) Metaheuristic procedures for training neural networks. Springer

    Google Scholar 

  12. Castillo O, Melin P, Kacprzyk J (2018) Fuzzy logic augmentation of neural and optimization algorithms: theoretical aspects and real applications. In: Studies in computational intelligence, vol 749. Springer

    Google Scholar 

  13. Ghoudelbourk S, Dib D, Omeiri A (2015) Decoupled control of active and reactive power of a wind turbine based on DFIG and matrix converter. Energy Syst 7(3):483–497. https://doi.org/10.1007/s12667-015-0177-1

    Article  Google Scholar 

  14. Jerbi L, Krichen L, Ouali A (2009) A fuzzy logic supervisor for active and reactive power control of a variable speed wind energy conversion system associated to a flywheel storage system. Elect Power Syst Res 79(6):919–925. https://doi.org/10.1016/j.epsr.2008.12.006

    Article  Google Scholar 

  15. Rajendran S, Parvathi Sankar DS, Govindarajan U (2014) Active and reactive power regulation in grid connected wind energy systems with permanent magnet synchronous generator and matrix converter. IET Power Electron 7(3):591–603. https://doi.org/10.1049/iet-pel.2013.0058

    Article  Google Scholar 

  16. Hore D, Sarma R (2018) Neural network-based improved active and reactive power control of wind-driven double fed induction generator under varying operating conditions. Wind Eng: 0309524X1878040. https://doi.org/10.1177/0309524x18780402

    Article  Google Scholar 

  17. Gupta N (2018) Tochastic optimal reactive power planning and active power dispatch with large penetration of wind generation. J Renew Sustaina Energy 10(2):025902. https://doi.org/10.1063/1.5010301

    Article  Google Scholar 

  18. Ackermann T (2012) Wind power in power systems. Wiley. https://doi.org/10.1002/9781119941842

    Google Scholar 

  19. Monroy A, Alvarez-Icaza L (2006) Real-time identification of wind turbine rotor power coefficient. In: 45th IEEE conference on decision and control, pp 3690–3695. https://doi.org/10.1109/cdc.2006.376895

  20. Shamshirband S, Petkovic D, Saboohi H, Anuar NB, Inayat I, Akib S, Cojbaic Z, Nikolic V, Mat Kiah ML, Gani A (2014) Wind turbine power coefficient estimation by soft computing methodologies: comparative study. Energy Convers Manag 81:520–526. https://doi.org/10.1016/j.enconman.2014.02.055

    Article  Google Scholar 

  21. Abad G, López J, Rodríguez MA, Marroyo L, Iwanski G (2011) Doubly fed induction machine. Wiley. https://doi.org/10.1002/9781118104965

    Book  Google Scholar 

  22. Peresada S, Tilli A, Tonielli A (2004) Power control of a doubly fed induction machine via output feedback. Control Eng Pract 12(1):41–57. https://doi.org/10.1016/S0967-0661(02)00285-X

    Article  Google Scholar 

  23. Douiri MR, Belghazi O, Cherkaoui M (2015) Recurrent self-tuning neuro-fuzzy for speed induction motor drive. J Circuits Syst Comput 24(09):1550131. https://doi.org/10.1142/s0218126615501315

    Article  Google Scholar 

  24. Douiri MR, Belghazi O, Cherkaoui M (2015) Neuro-fuzzy-based auto-tuning proportional integral controller for induction motor drive. Int J Comput Intell Appl 14(03):1550016. https://doi.org/10.1142/s1469026815500169

    Article  Google Scholar 

  25. Xiong L, Wang J, Mi X, Khan MW (2018) Fractional order sliding mode based direct power control of grid-connected DFIG. IEEE Trans Power Syst 33(3):3087–3096. https://doi.org/10.1109/tpwrs.2017.2761815

    Article  Google Scholar 

  26. Soares O, Gonalves H, Martins A, Carvalho A (2010) Nonlinear control of the doubly-fed induction generator in wind power systems. Renew Energy 35(8):1662–1670. https://doi.org/10.1016/j.renene.2009.12.008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moulay Rachid Douiri .

Editor information

Editors and Affiliations

Appendix

Appendix

Doubly Fed Induction Generator Parameters:

Rated power \(= 1\) MVA

Stator/rotor turns ratio \(=\) 1:1

Stator resistance \((R_{s}) = 0.00662\) p.u.

Rotor resistance \((R_{r})= 0.01\) p.u.

Stator inductance \((L_{s})=3.185\) p.u.

Rotor inductance \((L_{r})=3.21\) p.u.

Mutual inductance \((L_{m})=3.1\) p.u.

Base impedance \((Z_{base})=10.98\,\Omega \)

Pole pairs \((p)=3\)

Frequency \((f)=50\) Hz

Filter and Grid Parameters:

Inductor \(L=0.005\) H

Resistor \(R=0.25\,\Omega \)

Capacitor \(C=4400\,{\upmu }F\)

Turbine Parameters:

Radius of the turbine \(R_{t}=13.5\) m

Gain multiplier \(G=65\)

Inertia total moment \(J=10\,\text {Kg}\,\text {m}^{2}\)

Air density \(\rho =1.22\,\text {Kg/m}^{2}\)

Coefficient of viscous friction \(f=0.0001\)

Optimal tip speed ration \(\lambda _{opt}=8.5\)

Maximal power coefficient \(C_{pmax}=0.5\)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Douiri, M.R. (2019). Neural-Based P-Q Decoupled Control for Doubly Fed Induction Generator in Wind Generation System. In: Precup, RE., Kamal, T., Zulqadar Hassan, S. (eds) Advanced Control and Optimization Paradigms for Wind Energy Systems. Power Systems. Springer, Singapore. https://doi.org/10.1007/978-981-13-5995-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-5995-8_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-5994-1

  • Online ISBN: 978-981-13-5995-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics