Skip to main content

Threshold Voltage Investigation of Recessed Dual-Gate MISHEMT: Simulation Study

  • Conference paper
  • First Online:
  • 1336 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 892))

Abstract

Simulation based investigation of Recessed Dual-Gate MISHEMT on sapphire substrate has been presented in this work using ATLAS simulation software. Various DC performance parameters such as: threshold voltage shift, drain current and transconductance has been compared for different gate combinations. Threshold voltage variation is observed to be nearly same if gate1 is recessed only or both gates are recessed. Positive shift in threshold voltage has been observed as the depth of gate recess is increased from 0 nm to 8 nm. Enhancement in negative junction depth from 10 nm to 18 nm results in the shift in threshold voltage towards positive i.e. −3.5 V to −2.45 V. This improvement in threshold voltage is due to the reduction in barrier thickness with increase in negative junction depth. DC performance has also been evaluated for the device with high-k gate dielectric such as HfO2 and TiO2 for non-recessed and recessed device. The parameters like gate oxide and work function variation results in the shift of threshold voltage from −3.5 V to 0 V in recessed Dual-Gate MISHEMT.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Egawa, T., Zhao, G.Y., Ishikawa, H., Umeno, H., Jimbo, T.: Characterizations of recessed gate AlGaN/GaN HEMTs on sapphire. IEEE Trans. Electron Devices 48(3), 603–608 (2001)

    Article  Google Scholar 

  2. Ambacher, O., et al.: Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys. 85(6), 3222–3233 (1999)

    Article  Google Scholar 

  3. Palacios, T., Suh, C.S., Chakraborty, A., Keller, S., DenBaars, S.P., Mishra, U.K.: High-performance E-mode AlGaN/GaN HEMTs. IEEE Electron Device Lett. 27(6), 428–430 (2006)

    Article  Google Scholar 

  4. Wu, J., Lu, W., Paul, K.L.: Normally-OFF AlGaN/GaN MOS-HEMT with a two-step gate recess. In: 2015 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), Singapore, pp. 594–596. IEEE (2015)

    Google Scholar 

  5. Hahn, H., et al.: First polarization-engineered compressively strained AlInGaN barrier enhancement-mode MISHFET. Semicond. Sci. Technol. 27(5), 055004 (2012)

    Article  Google Scholar 

  6. Jessen, G.H., et al.: Gate optimization of AlGaN/GaN HEMTs using WSi, Ir, Pd, and Ni Schottky contacts. In: 25th Annual Technical Digest 2003 Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, San Diego, CA, USA, pp. 277–279. IEEE (2003)

    Google Scholar 

  7. Hilt, O., Knauer, A., Brunner, F., Bahat-Treidel, E., Würfl, J.: Normally-off AlGaN/GaN HFET with p-type Ga Gate and AlGaN buffer. In: 22nd International Symposium on Power Semiconductor Devices & IC’s (ISPSD), Hiroshima, Japan, pp. 347–350. IEEE (2010)

    Google Scholar 

  8. Gregušová, D., et al.: Adjustment of threshold voltage in AlN/AlGaN/GaN high-electron mobility transistors by plasma oxidation and Al2O3 atomic layer deposition overgrowth. Appl. Phys. Lett. 104(1), 013506 (2014)

    Article  Google Scholar 

  9. Cai, Y., Zhou, Y., Chen, K.J., Lau, K.M.: High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment. IEEE Electron Device Lett. 26(7), 435–437 (2005)

    Article  Google Scholar 

  10. Hahn, H., et al.: Threshold voltage engineering in GaN-based HFETs: a systematic study with the threshold voltage reaching more than 2 V. IEEE Trans. Electron Devices 62(2), 538–545 (2015)

    Article  Google Scholar 

  11. Hasegawa, H., Akazawa, M.: Interface models and processing technologies for surface passivation and interface control in III–V semiconductor nanoelectronics. Appl. Surf. Sci. 254(24), 8005–8015 (2008)

    Article  Google Scholar 

  12. Chong, W., et al.: Breakdown voltage and current collapse of F-plasma treated AlGaN/GaN HEMTs. J. Semicond. 35(1), 014008 (2014)

    Article  Google Scholar 

  13. Li, W., et al.: Design and simulation of a novel E-mode GaN MIS-HEMT based on a cascode connection for suppression of electric field under gate and improvement of reliability. J. Semicond. 38(7), 074001 (2017)

    Article  Google Scholar 

  14. Yi, C., Wang, R., Huang, W., Tang, W.C.W., Lau, K.M. Chen, K.J.: Reliability of enhancement-mode AlGaN/GaN HEMTs fabricated by fluorine plasma treatment. In: IEEE International Electron Devices Meeting (IEDM 2007), Washington, DC, USA, pp. 389–392. IEEE (2007)

    Google Scholar 

  15. Hahn, H., Lükens, G., Ketteniss, N., Kalisch, H., Vescan, A.: Recessed-gate enhancement-mode AlGaN/GaN heterostructure field-effect transistors on Si with record DC performance. Appl. Phys. Express 4(11), 114102 (2011)

    Article  Google Scholar 

  16. Chan, C.Y., Lee, T.C., Hsu, S.S., Chen, L., Lin, Y.S.: Impacts of gate recess and passivation on AlGaN/GaN high electron mobility transistors. Jpn. J. Appl. Phys. 46(2R), 478–484 (2007)

    Article  Google Scholar 

  17. Kordoš, P., Bernat, J., Marso, M.: Impact of layer structure on performance of unpassivated AlGaN/GaN HEMT. Microelectron. J. 36(3–6), 438–441 (2005)

    Article  Google Scholar 

  18. Gao, T., et al.: Dual-gate AlGaN/GaN MIS-HEMTs using Si3N4 as the gate dielectric. Semicond. Sci. Technol. 30(11), 115010 (2015)

    Article  Google Scholar 

  19. Yang, L., et al.: Improvement of subthreshold characteristic of gate-recessed AlGaN/GaN transistors by using dual-gate structure. IEEE Trans. Electron Devices 64(10), 4057–4064 (2017)

    Article  Google Scholar 

  20. Hwang, I.H., et al.: High-performance E-Mode AlGaN/GaN MIS-HEMT with dual gate insulator employing SiON and HfON. Phys. Status Solidi (A) 215, 1700650 (2018)

    Article  Google Scholar 

  21. Silvaco ATLAS TCAD tool, version 5.24.1.R

    Google Scholar 

  22. Rzin, M., et al.: Impact of gate-drain spacing on low-frequency noise performance of in situ SiN passivated InAlGaN/GaN MIS-HEMTs. IEEE Trans. Electron Devices 64(7), 2820–2825 (2017)

    Article  Google Scholar 

  23. Russo, S., Di Carlo, A.: Scaling issues for AlGaN/GaN HEMTs: performance optimization via devices geometry modelling (2005). arXiv preprint: https://arxiv.org/abs/cond-mat/0510049

Download references

Acknowledgement

One of the authors, Preeti Singh, would like to thank Ministry of Science and Technology, Department of Science and Technology (SR/WOS-A/ET-143/2017), Government of India and University of Delhi for providing necessary financial assistance during the course of this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mridula Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, P., Kumari, V., Saxena, M., Gupta, M. (2019). Threshold Voltage Investigation of Recessed Dual-Gate MISHEMT: Simulation Study. In: Rajaram, S., Balamurugan, N., Gracia Nirmala Rani, D., Singh, V. (eds) VLSI Design and Test. VDAT 2018. Communications in Computer and Information Science, vol 892. Springer, Singapore. https://doi.org/10.1007/978-981-13-5950-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-5950-7_33

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-5949-1

  • Online ISBN: 978-981-13-5950-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics