Skip to main content

Study on the Semiconducting Grain and Insulating Barrier Layer in Aluminum/Niobium Co-doped CCTO

  • Conference paper
  • First Online:
Physics and Techniques of Ceramic and Polymeric Materials (CMC 2018)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 216))

Included in the following conference series:

Abstract

In this paper, aluminum/niobium co-doped calcium copper titanate ceramics were synthesized by a dry route based on the chemical formula of CaCu3Ti4−xAl0.5xNb0.5xO12 with x = 0.0, 0.2, 0.5, and 5.0%. The dielectric constants of the ceramics were over 104. X-ray diffraction and scanning electron microscopy results show the high dielectric constant comes from the capacitance effect of inner barrier layers (IBLC). In order to explore the origin of the semiconducting grains in it, X-ray photoelectron spectroscopy (XPS) was used. The experimental results show the existence of Ti3+ ions in sample, which caused the lattice polaronic distortion and the formation of Ti3+–O–Ti4+ bonds. Under the applied electric field, the polaron can be transported from a Ti3+–O–Ti4+ bonds to another, which leads to the generation of dc conduction. The existence of Ti3+ ion results in the semiconducting of grains in aluminum/niobium co-doped calcium copper titanate ceramics. The formation process of Ti3+ ion was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.K. Pandey, W.A. Stapleton, J. Tate, A.K. Bandyopadhyay, I. Sutanto, S. Sprissler, S. Lin, Applications of CCTO supercapacitor in energy storage and electronics. AIP Adv. 3 (2013)

    Article  Google Scholar 

  2. L. Ren, X. Zhao, L. Yang, K. Wu, Effect of CeO2 and ZrO2 doping on the dielectric characteristics of CCTO ceramics. In: 2017 IEEE Electrical Insulation Conference, EIC 2017, pp. 11–14 (2017)

    Google Scholar 

  3. R.T.A.R. Prasath, N.K. Roy, S.N. Mahato, P. Thomas, Mineral oil based high permittivity CaCu3Ti4O12 (CCTO) nanofluids for power transformer application. IEEE Trans. Dielectr. Electr. Insul. 24, 2344–2353 (2017)

    Article  CAS  Google Scholar 

  4. Y. Rao, J. Yue, C.P. Wong, Material characterization of high dielectric constant polymer–ceramic composite for embedded capacitor to RF application. Mater. Sci. 92, 2228–2231 (2004)

    CAS  Google Scholar 

  5. S. Marković, M. Lukić, Č. Jovalekić, S.D. Škapin, D. Suvorov, D. Uskoković, Sintering effects on microstructure and dielectric properties of CCTO ceramics (2012)

    Google Scholar 

  6. G. Riquet, S. Marinel, Y. Breard, C. Harnois, A. Pautrat, Direct and hybrid microwave solid state synthesis of CaCu3Ti4O12 ceramic: microstructures and dielectric properties. Ceram. Int. 0–1 (2018)

    Google Scholar 

  7. A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties, Applications, 2nd edn. (2003)

    Google Scholar 

  8. L. Singh, U.S. Rai, K.D. Mandal, N.B. Singh, Progress in the growth of CaCu3Ti4O12 and related functional dielectric perovskites. Prog. Cryst. Growth Charact. Mater. 60, 15–62 (2014)

    Article  CAS  Google Scholar 

  9. A. Nautiyal, C. Autret, C. Honstettre, S. Didry, M.El Amrani, S. Roger, A. Ruyter, Dielectric properties of CCTO/MgTiO3 composites: a new approach for capacitor application. Int. J. Adv. Nanomater. 1, 27–40 (2015)

    Google Scholar 

  10. A. Wen, D.Q. Yuan, X.H. Zhu, J.G. Zhu, D.Q. Xiao, J.L. Zhu, Electrical and dielectric properties of aluminum/niobium co-doped CaCu3Ti4O12 ceramics. Ferroelectrics 492, 1–9 (2016)

    Article  CAS  Google Scholar 

  11. R. Schmidt, M.C. Stennett, N.C. Hyatt, J. Pokorny, J. Prado-Gonjal, M. Li, D.C. Sinclair, Effects of sintering temperature on the internal barrier layer capacitor (IBLC) structure in CaCu3Ti4O12 (CCTO) ceramics. J. Eur. Ceram. Soc. 32, 3313–3323 (2012)

    Article  CAS  Google Scholar 

  12. A. Nautiyal, C. Autret, C. Honstettre, S. De Almeida-Didry, M. El Amrani, S. Roger, B. Negulescu, A. Ruyter, Local analysis of the grain and grain boundary contributions to the bulk dielectric properties of Ca(Cu3−yMgy)Ti4O12 ceramics: importance of the potential barrier at the grain boundary. J. Eur. Ceram. Soc. 36, 1391–1398 (2016)

    Article  CAS  Google Scholar 

  13. X.J. Luo, Y.S. Liu, C.P. Yang, S.S. Chen, S.L. Tang, K. Bärner, Oxygen vacancy related defect dipoles in CaCu3Ti4O12: detected by electron paramagnetic resonance spectroscopy. J. Eur. Ceram. Soc. 35, 2073–2081 (2015)

    Article  CAS  Google Scholar 

  14. R. Schmidt, D. Sinclair, Capacitors. Theory of operation, behavior and safety regulations, in CaCu3Ti4O12 (CCTO) Ceramics for Capacitor Applications (Nova Science Publishers, Inc., 2013)

    Google Scholar 

  15. J. Li, A.W. Sleight, M.A. Subramanian, Evidence for internal resistive barriers in a crystal of the giant dielectric constant material: CaCu3Ti4O12. Solid State Commun. 135, 260–262 (2005)

    Article  CAS  Google Scholar 

  16. L. Zhang, Z.-J. Tang, Polaron relaxation and variable-range-hopping conductivity in the giant-dielectric-constant material CaCu3Ti4O12. Phys. Rev. B 70 (2004)

    Google Scholar 

  17. S.-W. Choi, S.-H. Hong, Y.-M. Kim, Electric and dielectric properties of Nb-Doped CaCu3Ti4O12 ceramics. J. Am. Ceram. Soc. 90, 4009–4011 (2007)

    CAS  Google Scholar 

  18. S. Krohns, P. Lunkenheimer, S. Meissner, A. Reller, B. Gleich, A. Rathgeber, T. Gaugler, H.U. Buhl, D.C. Sinclair, A. Loidl, The route to resource-efficient novel materials. Nat. Mater. 10, 899–901 (2011)

    Article  CAS  Google Scholar 

  19. B. Shri Prakash, K.B.R. Varma, Microstructural and dielectric properties of donor doped (La3+) CaCu3Ti4O12 ceramics. J. Mater. Sci.: Mater. Electron. 17, 899–907 (2006)

    CAS  Google Scholar 

  20. P. Thomas, K. Dwarakanath, K.B.R. Varma, Effect of calcium stoichiometry on the dielectric response of CaCu3Ti4O12 ceramics. J. Eur. Ceram. Soc. 32, 1681–1690 (2012)

    Article  CAS  Google Scholar 

  21. R.A. Mackie, S. Singh, J. Laverock, S.B. Dugdale, D.J. Keeble, Vacancy defect positron lifetimes in strontium titanate. Phys. Rev. B—Condens. Matter Mater. Phys. 79, 1–31 (2009)

    Google Scholar 

  22. H. Xiao, C. Yang, C. Huang, L. Xu, D. Shi, V. Marchenkov, I. Medvedeva, K. Baärner, Influence of oxygen vacancy on the electronic structure of CaCu3Ti4O12 and its deep-level vacancy trap states by first-principle calculation. J. Appl. Phys. 111, 063713 (2012)

    Article  Google Scholar 

  23. S. Chikada, T. Kubota, A. Honda, S. Higai, Y. Motoyoshi, N. Wada, K. Shiratsuyu, Interactions between Mn dopant and oxygen vacancy for insulation performance of BaTiO3. J. Appl. Phys. 120, 1–6 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daqing Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wen, A., Zhang, Y., Zhu, J., Yuan, D. (2019). Study on the Semiconducting Grain and Insulating Barrier Layer in Aluminum/Niobium Co-doped CCTO. In: Han, Y. (eds) Physics and Techniques of Ceramic and Polymeric Materials. CMC 2018. Springer Proceedings in Physics, vol 216. Springer, Singapore. https://doi.org/10.1007/978-981-13-5947-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-5947-7_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-5946-0

  • Online ISBN: 978-981-13-5947-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics