Skip to main content

Two Anti-quantum Attack Protocols for Secure Multiparty Computation

  • Conference paper
  • First Online:
Book cover Trusted Computing and Information Security (CTCIS 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 960))

Included in the following conference series:

  • 569 Accesses

Abstract

Millionaire problem and private set intersection problem are not only the basic issues in the secure multiparty computation, but also the building block for privacy-preserving cooperative computation. However, so far the existing solutions to the two problems cannot resist the quantum attack, and in the meanwhile are inefficient enough. Aiming at these drawbacks, in this paper we first construct two new 0–1 encoding. Subsequently, using the designed 0–1 encoding, we transform Millionaire problem into the summation problem, and further transform the set intersection problem into the product problem. Lastly, taking advantage of NTRU homomorphic encryption, we propose Protocol 1 for Millionaire problem and Protocol 2 for the secure set intersection problem, respectively. The final analyses indicate that the two protocols designed in this paper are not only secure against the quantum attack but also more efficient compared with the previous schemes, In addition, Protocol 1 has more fine-grained comparing result for any two elements in total order set than the previous; Protocol 2 has a two-fold functionality in that it is not only secure against quantum attacks but also applicable for cloud computing environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yao, A.C.: Protocols for secure computations. In: Proceedings of 23rd IEEE Symposium on Foundations of Computer Science, Piscataway, pp. 160–164. IEEE (1982)

    Google Scholar 

  2. Feng, D.G., Zhang, M., Zhang, Y., et al.: Study on cloud computing security. J. Softw. 22(1), 71–83 (2011). (in Chinese)

    Article  Google Scholar 

  3. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proceedings of the Nineteenth Annual ACM Conference on Theory of Computing, Piscataway, pp. 218–229. IEEE Press (1987)

    Google Scholar 

  4. Goldreich, O.: Foundations of Cryptography: Basic Applications, pp. 599–729. Cambridge University Press, London (2004)

    MATH  Google Scholar 

  5. Li, Y.P., Chen, M.H., Li, Q.W., et al.: Enabling multilevel trust in privacy preserving data mining. IEEE Trans. Knowl. Data Eng. Inst. Electr. Electron. Eng. 24(9), 1598–1612 (2012)

    Google Scholar 

  6. Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: Proceedings of ACM International Conference oil Management of Data and Symposium on Principles of Database Systems, pp. 439–450. ACM Press, New York (2000)

    Google Scholar 

  7. Lindell, Y., Pinkas, B.: Secure multiparty computation for privacy-preserving data mining. J. Priv. Confid. 25(2), 761–766 (2009)

    Google Scholar 

  8. Clifton, C., Marks, D.: Security and privacy implications of data mining. In: Proceedings of the ACM SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery, pp. 15–19. ACM Press, New York (1996)

    Google Scholar 

  9. Loftus, J., Smart, N.P.: Secure outsourced computation. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 1–20. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21969-6_1

    Chapter  Google Scholar 

  10. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_29

    Chapter  Google Scholar 

  11. Du, W.L., Atallah, M.J.: Privacy-preserving cooperative scientific computations. In: Proceedings of 14th IEEE Computer Security Foundations Workshop Lecture, Piscataway, pp. 273–282. IEEE Press (2001)

    Google Scholar 

  12. Chen, Z.H., Li, S.D., Huang, Q., et al.: Privacy-preserving determination of spatial location relation in cloud computing. Chin. J. Comput. 40(2), 351–363 (2017). (in Chinese)

    MathSciNet  Google Scholar 

  13. Hohenberger, S., Lysyanskaya, A.: How to securely outsource cryptographic computations. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 264–282. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7_15

    Chapter  Google Scholar 

  14. Yao, A.C.: How to generate and exchange secrets. In: Proceedings of 27th Annual Symposium on Foundations of Computer Science (FOCS 1986), pp. 162–167. Institute of Electrical and Electronics Engineers (1986)

    Google Scholar 

  15. Schoenmakers, B., Tuyls, P.: Practical two-party computation based on the conditional gate. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 119–136. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2_10

    Chapter  Google Scholar 

  16. Ioannidis, I., Grama, A.: An efficient protocol for Yao’s millionaires’ problem. In: Proceedings of the 36th Hawaii International Conference on System Sciences, Hawaii, USA, pp. 6–9 (2003)

    Google Scholar 

  17. Lin, H.-Y., Tzeng, W.-G.: An efficient solution to the millionaires’ problem based on homomorphic encryption. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 456–466. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137_31

    Chapter  Google Scholar 

  18. Li, S.D., Wang, D.S.: Efficient secure multiparty computation based on homomorphic encryption. Chin. J. Electron. 41(4), 798–803 (2013). (in Chinese)

    MathSciNet  Google Scholar 

  19. Zuo, X.J., Li, S.D., Yang, X.L.: An efficient homomorphic encryption based solution to millionaires’ problem. J. Chin. Comput. Syst., 455–459 (2017). (in Chinese)

    Google Scholar 

  20. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT extension. In: USENIX Security 2014, pp. 797–812. USENIX (2014)

    Google Scholar 

  21. Hazay, C.: Oblivious polynomial evaluation and secure set-intersection from algebraic PRFs. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 90–120. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_4

    Chapter  Google Scholar 

  22. Zhu, G.B., Tan, Y.W., Zhao, Y., et al.: An efficient and secure geometric intersection computation protocol. J. Univ. Electron. Sci. Technol. China 43(5), 781–786 (2014). (in Chinese)

    Google Scholar 

  23. Li, S.D., Dou, J.W., Jia, X.L.: Secure two-party computation for set intersection problem. J. Xian Jiaotong Univ. 40(10), 1091–1093 (2006). (in Chinese)

    MathSciNet  MATH  Google Scholar 

  24. Abadi, A., Terzis, S., Dong, C.: O-PSI: delegated private set intersection on outsourced datasets. In: Federrath, H., Gollmann, D. (eds.) SEC 2015. IFIP AICT, vol. 455, pp. 3–17. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18467-8_1

    Chapter  Google Scholar 

  25. Li, S.D., Zhou, S.F., Guo, Y.M., et al.: Secure set computing in cloud environment. J. Softw. 27(6), 1549–1565 (2016). (in Chinese)

    MathSciNet  MATH  Google Scholar 

  26. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054868

    Chapter  Google Scholar 

  27. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_3

    Chapter  Google Scholar 

  28. Peikert, C.: Lattice cryptography for the internet. In: 6th International Conference on Post-Quantum Cryptograp (PQCrypto 2014), Waterloo, ON, Canada, pp. 197–219 (2014)

    MATH  Google Scholar 

  29. Duan, R., Gu, C.X., Zhu, Y.F., et al.: Efficient identity-based fully homomorphic encryption over NTRU. J. Commun. 38(1), 66–75 (2017). (in Chinese)

    Google Scholar 

  30. Xia, F., Yang, B., Zhang, M.W., et al.: Secure two-party computation for set intersection and set equality problems based on LWE. J. Electron. Inf. Technol. 34(2), 462–467 (2012). (in Chinese)

    Google Scholar 

  31. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC 2008, Victoria, BC, Canada, pp. 197–206. ACM (2008)

    Google Scholar 

  32. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, pp. 1219–1234. ACM (2012)

    Google Scholar 

  33. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomorphisms. Found. Secur. Comput. 4(11), 169–180 (1978)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. U1261114), the National Natural Science Foundation of China (Grant No. 61872289), Guangxi Key Laboratory of Cryptography and Information Security (Grant No. GCIS201714), and Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2017JM6069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanli Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, L., Li, Z., Chen, Z., Liu, Y. (2019). Two Anti-quantum Attack Protocols for Secure Multiparty Computation. In: Zhang, H., Zhao, B., Yan, F. (eds) Trusted Computing and Information Security. CTCIS 2018. Communications in Computer and Information Science, vol 960. Springer, Singapore. https://doi.org/10.1007/978-981-13-5913-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-5913-2_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-5912-5

  • Online ISBN: 978-981-13-5913-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics