Skip to main content

Spontaneous Activity in Urethral Smooth Muscle

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1124))

Abstract

The urethra is a muscular tube that extends from the bladder neck and is composed of an inner layer of smooth muscle referred to as the internal urethral sphincter and an outer layer of striated muscle which forms the external urethral sphincter. The smooth muscle layer can be separated into an inner layer of longitudinally orientated smooth muscle and an outer, relatively thinner, layer of circular muscle. Tonic contraction of both the smooth and striated muscle components of the urethra generates a urethral closure pressure which exceeds intravesical pressure in the bladder to maintain urinary continence. It is likely that contraction of urethral smooth muscle is involved in the long-term maintenance of tone, since it can achieve this at relatively low energy cost, whereas the striated muscle contributes more to the rise in urethral tone that accompanies increases in bladder pressure secondary to coughing or other sudden increases in intra-abdominal pressure. The level of urethral smooth muscle tone is regulated by several autonomic neurotransmitters, including noradrenaline, acetylcholine, ATP and nitric oxide. However, it is also clear that urethral smooth muscle is capable of generating significant tone in the absence of neural input. In this chapter we will discuss the mechanisms responsible for contraction of urethral smooth muscle, with specific focus on the role of ion channels and Ca2+ handling proteins to this process. The mechanisms underlying spontaneous activity in urethral interstitial cells (UICs), putative pacemaker cells of the urethra, will also be examined along with the modulation of these mechanisms by key excitatory and inhibitory neurotransmitters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brading AF. The physiology of the mammalian urinary outflow tract. Exp Physiol. 1999;84(1):215–21.

    Article  CAS  PubMed  Google Scholar 

  2. de Groat WC, Yoshimura N. Anatomy and physiology of the lower urinary tract. Handb Clin Neurol. 2015;130:61–108.

    Article  PubMed  Google Scholar 

  3. Rother P, Löffler S, Dorschner W, Reibiger I, Bengs T. Anatomic basis of micturition and urinary continence. Muscle systems in urinary bladder neck during ageing. Surg Radiol Anat. 1996;18(3):173–7.

    Article  CAS  PubMed  Google Scholar 

  4. Greenland JE, Dass N, Brading AF. Intrinsic urethral closure mechanisms in the female pig. Scand J Urol Nephrol Suppl. 1996;179:75–80.

    CAS  PubMed  Google Scholar 

  5. Jankowski RJ, Prantil RL, Chancellor MB, de Groat WC, Huard J, Vorp DA. Biomechanical characterization of the urethral musculature. Am J Physiol Ren Physiol. 2006;290(5):F1127–34.

    Article  CAS  Google Scholar 

  6. Norton P, Brubaker L. Urinary incontinence in women. Lancet. 2006;367:57–67.12.

    Article  PubMed  Google Scholar 

  7. DeLancey JO, Trowbridge ER, Miller JM, Morgan DM, Guire K, Fenner DE, Weadock WJ, Ashton-Miller JA. Stress urinary incontinence: relative importance of urethral support and urethral closure pressure. J Urol. 2008;179:2286–90.13.

    Article  PubMed  PubMed Central  Google Scholar 

  8. DeLancey JO. Why do women have stress urinary incontinence? Neurourol Urodyn. 2010;29(Suppl 1):S13–7.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Prantil RL, Jankowski RJ, Kaiho Y, de Groat WC, Chancellor MB, Yoshimura N, Vorp DA. Ex vivo biomechanical properties of the female urethra in a rat model of birth trauma. Am J Physiol Ren Physiol. 2007;292(4):F1229–37.

    Article  CAS  Google Scholar 

  10. Rud T. Urethral pressure profile in continent women from childhood to old age. Acta Obstet Gynecol Scand. 1980;59(4):331–5.

    Article  CAS  PubMed  Google Scholar 

  11. Trowbridge ER, Wei JT, Fenner DE, Ashton-Miller JA, DeLancey JO. Effects of aging on lower urinary tract and pelvic floor function in nulliparous women. Obstet Gynecol. 2007;109(3):715–20.

    Article  PubMed  Google Scholar 

  12. Clobes A, DeLancey JO, Morgan DM. Urethral circular smooth muscle in young and old women. Am J Obstet Gynecol. 2008;198(5):587.e1–5.

    Article  Google Scholar 

  13. Bridgewater M, MacNeil HF, Brading AF. Regulation of tone in pig urethral smooth muscle. J Urol. 1993;150:223–8.

    Article  CAS  PubMed  Google Scholar 

  14. Thornbury KD, Hollywood MA, McHale NG. Mediation by nitric oxide of neurogenic relaxation of the urinary bladder neck muscle in sheep. J Physiol. 1992;451:133–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Andersson KE, Garcia Pascual A, Persson K, Forman A, Tøttrup A. Electrically-induced, nerve-mediated relaxation of rabbit urethra involves nitric oxide. J Urol. 1992;147(1):253–9.

    Article  CAS  PubMed  Google Scholar 

  16. Andersson KE. Pharmacology of lower urinary tract smooth muscles and penile erectile tissues. Pharmacol Rev. 1993;45:253–307.

    Google Scholar 

  17. Andersson KE, Wein AJ. Pharmacology of the lower urinary tract: basis for current and future treatments of urinary incontinence. Pharmacol Rev. 2004;56(4):581–631.

    Article  CAS  PubMed  Google Scholar 

  18. Ohnishi N, Park YC, Kurita T. Role of ATP and related purine compounds on urethral relaxation in male rabbits. Int J Urol. 1997;4(2):191–7.

    Article  CAS  PubMed  Google Scholar 

  19. Pinna C, Puglisi L, Burnstock G. ATP and vasoactive intestinal polypeptide relaxant responses in hamster isolated proximal urethra. Br J Pharmacol. 1998;124(6):1069–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pinna C, Glass R, Knight GE. Purine- and pyrimidine-induced responses and P2Y receptor characterization in the hamster proximal urethra. Br J Pharmacol. 2005;144(4):510–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hernandez M, Knight GE, Wildman SS, Burnstock G. Role of ATP and related purines in inhibitory neurotransmission to the pig urinary bladder neck. Br J Pharmacol. 2009;157(8):1463–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Noda K, Takebe M, Oka M, Hirouchi M, Ukai Y, Toda N. Functional role of inhibitory and excitatory nerves in the porcine lower urinary tract. Eur J Pharmacol. 2002;456(1–3):81–90.

    Article  CAS  PubMed  Google Scholar 

  23. Van der Werf BA, Creed KE. Mechanical properties and innervation of the smooth muscle layers of the urethra of greyhounds. BJU Int. 2002;90(6):588–95.

    Article  PubMed  Google Scholar 

  24. Creed KE, Oike M, Ito Y. The electrical properties and responses to nerve stimulation of the proximal urethra of the male rabbit. Br J Urol. 1997;79(4):543–53.

    Article  CAS  PubMed  Google Scholar 

  25. Sergeant GP, Hollywood MA, McCloskey KD, Thornbury KD, McHale NG. Specialised pacemaking cells in the rabbit urethra. J Physiol. 2000;526(2):359–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sergeant GP, Thornbury KD, McHale NG, Hollywood MA. Interstitial cells of Cajal in the urethra. J Cell Mol Med. 2006;10(2):280–91.

    Article  CAS  PubMed  Google Scholar 

  27. Hashitani H, Suzuki H. Properties of spontaneous Ca2+ transients recorded from interstitial cells of Cajal-like cells of the rabbit urethra in situ. J Physiol. 2007;583(Pt 2):505–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Drumm BT, Koh SD, Andersson KE, Ward SM. Calcium signalling in Cajal-like interstitial cells of the lower urinary tract. Nat Rev Urol. 2014;11(10):555–64.

    Article  CAS  PubMed  Google Scholar 

  29. Brading AF. Spontaneous activity of lower urinary tract smooth muscles: correlation between ion channels and tissue function. J Physiol. 2006;570(1):13–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Callahan SM, Creed KE. Electrical and mechanical activity of the isolated lower urinary tract of the guinea-pig. Br J Pharmacol. 1981;74(2):353–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Callahan SM, Creed KE. The effects of oestrogens on spontaneous activity and responses to phenylephrine of the mammalian urethra. J Physiol. 1985;358:35–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hashitani H, Van Helden DF, Suzuki H. Properties of spontaneous depolarizations in circular smooth muscle cells of rabbit urethra. Br J Pharmacol. 1996;118:1627–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hashitani H, Edwards FR. Spontaneous and neurally activated depolarizations in smooth muscle cells of the guinea-pig urethra. J Physiol. 1999;514(Pt 2):459–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Drumm BT, Rembetski BE, Cobine CA, Baker SA, Sergeant GP, Hollywood MA, Thornbury KD, Sanders KM. Ca2+ signalling in mouse urethral smooth muscle in situ: role of Ca2+ stores and Ca2+ influx mechanisms. J Physiol. 2018;596:1433–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hashitani H, Fukuta H, Takano H, Klemm MF, Suzuki H. Origin and propagation of spontaneous excitation in smooth muscle of the guinea-pig urinary bladder. J Physiol. 2001;530(Pt 2):273–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hashitani H, Yanai Y, Kohri K, Suzuki H. Heterogeneous CPA sensitivity of spontaneous excitation in smooth muscle of the rabbit urethra. Br J Pharmacol. 2006;148(3):340–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bradley JE, Anderson UA, Woolsey SM, Thornbury KD, McHale NG, Hollywood MA. Characterization of T-type calcium current and its contribution to electrical activity in rabbit urethra. Am J Phys Cell Physiol. 2004;286(5):C1078–88.

    Article  CAS  Google Scholar 

  38. Drumm BT, Sergeant GP, Hollywood MA, Thornbury KT, Matsuda TT, Baba A, Harvey BJ, McHale NG. The effect of high [K(+)]o on spontaneous Ca(2+) waves in freshly isolated interstitial cells of Cajal from the rabbit urethra. Phys Rep. 2014;2(1):e00203.

    Article  CAS  Google Scholar 

  39. Teramoto N, Brading AF. Activation by levcromakalim and metabolic inhibition of glibenclamide-sensitive K channels in smooth muscle cells of pig proximal urethra. Br J Pharmacol. 1996;118(3):635–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Teramoto N, McMurray G, Brading AF. Effects of levcromakalim and nucleoside diphosphates on glibenclamide-sensitive K+ channels in pig urethral myocytes. Br J Pharmacol. 1997;120(7):1229–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kyle BD. Ion channels of the mammalian urethra. Channels (Austin). 2014;8(5):393–401.

    Article  Google Scholar 

  42. Cotton KD, Hollywood MA, McHale NG, Thornbury KD. Ca2+ current and Ca(2+)-activated chloride current in isolated smooth muscle cells of the sheep urethra. J Physiol. 1997;505(Pt 1):121–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sergeant GP, Hollywood MA, McHale NG, Thornbury KD. Spontaneous Ca2+ activated Cl− currents in isolated urethral smooth muscle cells. J Urol. 2001;166(3):1161–6.

    Article  CAS  PubMed  Google Scholar 

  44. Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O, Galietta LJ. TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science. 2008;322(5901):590–4.

    Article  CAS  PubMed  Google Scholar 

  45. Schroeder BC, Cheng T, Jan YN, Jan LY. Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell. 2008;134(6):1019–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, Park SP, Lee J, Lee B, Kim BM, Raouf R, Shin YK, Oh U. TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature. 2008;455(7217):1210–5.

    Article  CAS  PubMed  Google Scholar 

  47. Sancho M, García-Pascual A, Triguero D. Presence of the Ca2+-activated chloride channel anoctamin 1 in the urethra and its role in excitatory neurotransmission. Am J Physiol Ren Physiol. 2012;302(3):F390–400.

    Article  CAS  Google Scholar 

  48. Huang F, Rock JR, Harfe BD, Cheng T, Huang X, Jan YN, Jan LY. Studies on expression and function of the TMEM16A calcium-activated chloride channel. Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21413–8.

    Article  CAS  Google Scholar 

  49. Hollywood MA, Woolsey S, Walsh IK, Keane PF, McHale NG, Thornbury KD. T- and L- type Ca2+ currents in freshly dispersed smooth muscle cells from the human proximal urethra. J Physiol. 2003;550(Pt 3):753–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Smet PJ, Jonavicius J, Marshall VR, de Vente J. Distribution of nitric oxide synthase-immunoreactive nerves and identification of the cellular targets of nitric oxide in guinea-pig and human urinary bladder by cGMP immunohistochemistry. Neuroscience. 1996;71(2):337–48.

    Article  CAS  PubMed  Google Scholar 

  51. Burns AJ, Lomax AEJ, Torihashi S, Sanders KM, Ward SM. Interstitial cells of Cajal mediate inhibitory neurotransmission in the stomach. Proc Natl Acad Sci U S A. 1996;93:12008–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sanders KM. A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology. 1996;111:492–515.

    Article  CAS  PubMed  Google Scholar 

  53. Ward SM, Morris G, Reese L, Wang XY, Sanders KM. Interstitial cells of Cajal mediate enteric inhibitory neurotransmission in the lower esophageal and pyloric sphincters. Gastroenterology. 1998;115:314–29.

    Article  CAS  PubMed  Google Scholar 

  54. Ward SM, Beckett EAH, Wang XY, Baker F, Khoyi M, Sanders KM. Interstitial cells of Cajal mediate cholinergic neurotransmission from enteric motor neurons. J Neurosci. 2000;20(4):1393–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Langton P, Ward SM, Carl A, Norell MA, Sanders KM. Spontaneous electrical activity of interstitial cells of Cajal isolated from canine proximal colon. Proc Natl Acad Sci U S A. 1989;86:7280–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fedigan S, Bradley E, Webb T, Large RJ, Hollywood MA, Thornbury KD, McHale NG, Sergeant GP. Effects of new-generation TMEM16A inhibitors on calcium-activated chloride currents in rabbit urethral interstitial cells of Cajal. Pflugers Arch. 2017;469:1443–55.

    Article  CAS  PubMed  Google Scholar 

  57. Sergeant GP, Hollywood MA, McCloskey KD, McHale NG, Thornbury KD. Role of IP(3) in modulation of spontaneous activity in pacemaker cells of rabbit urethra. Am J Phys Cell Physiol. 2001;280(5):C1349–56.

    Article  CAS  Google Scholar 

  58. Johnston L, Sergeant GP, Hollywood MA, Thornbury KD, McHale NG. Calcium oscillations in interstitial cells of the rabbit urethra. J Physiol. 2005;565(Pt 2):449–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sancho M, Bradley E, Garcia-Pascual A, Triguero D, Thornbury KD, Hollywood MA, Sergeant GP. Involvement of cyclic nucleotide-gated channels in spontaneous activity generated in isolated interstitial cells of Cajal from the rabbit urethra. Eur J Pharmacol. 2017;814:216–25.

    Article  CAS  PubMed  Google Scholar 

  60. Bradley E, Hollywood MA, McHale NG, Thornbury KD, Sergeant GP. Pacemaker activity in urethral interstitial cells is not dependent on capacitative calcium entry. Am J Phys Cell Physiol. 2005;289(3):C625–32.

    Article  CAS  Google Scholar 

  61. Iwamoto T, Watano T, Shigekawa M. A novel isothiourea derivative selectively inhibits the reverse mode of Na+/Ca2+ exchange in cells expressing NCX1. J Biol Chem. 1996;271:22391–7.

    Article  CAS  PubMed  Google Scholar 

  62. Watano T, Kimura J, Morita T, Nakanishi H. A novel antagonist, KB-R7943, of the Na+/Ca2+ exchange current in guinea-pig cardiac ventricular cells. Br J Pharmacol. 1996;119:555–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Matsuda T, Arakawa N, Takuma K, Kishida Y, Kawasaki Y, Sakaue M, et al. SEA0400, a novel and selective inhibitor of the Na+-Ca2+ exchanger, attenuates reperfusion injury in the in vitro and in vivo cerebral ischemic models. J Pharmacol Exp Ther. 2001;298:249–56.

    CAS  PubMed  Google Scholar 

  64. Lee C, Visen NS, Dhalla NS, Le HD, Isaac M, Choptiany P, et al. Inhibitory profile of SEA0400 [2-[4-[(2,5-difluorophenyl) methoxy]phenoxy]-5-ethoxyaniline] assessed on the cardiac Na+-Ca2+ exchanger, NCX1.1. J Pharmacol Exp Ther. 2004;311:748–57.

    Article  CAS  PubMed  Google Scholar 

  65. Bradley E, Hollywood MA, Johnston L, Large RJ, Matsuda T, Baba A, McHale NG, Thornbury KD, Sergeant GP. Contribution of reverse Na+/Ca2+ exchange to spontaneous activity in interstitial cells of Cajal in the rabbit urethra. J Physiol. 2006;574(Pt 3):651–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Drumm BT, Large RJ, Hollywood MA, Thornbury KD, Baker SA, Harvey BJ, McHale NG, Sergeant GP. The role of Ca(2+) influx in spontaneous Ca(2+) wave propagation in interstitial cells of Cajal from the rabbit urethra. J Physiol. 2015;593(15):3333–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Triguero D, Sancho M, Garcia-Flores M, Garcia-Pascual A. Presence of cyclic nucleotide-gated channels in the rat urethra and their involvement in nerve-mediated nitrergic relaxation. Am J Physiol Ren Physiol. 2009;297:F1353–60.

    Article  CAS  Google Scholar 

  68. Ward SM, Ordog T, Koh SD, Baker SA, Jun JY, Amberg G, Monaghan K, Sanders KM. Pacemaking in interstitial cells of Cajal depends upon calcium handling by endoplasmic reticulum and mitochondria. J Physiol. 2000;525(Pt 2):355–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sergeant GP, Bradley E, Thornbury KD, McHale NG, Hollywood MA. Role of mitochondria in modulation of spontaneous Ca2+ waves in freshly dispersed interstitial cells of Cajal from the rabbit urethra. J Physiol. 2008;586(19):4631–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hashitani H, Lang RJ, Suzuki H. Role of perinuclear mitochondria in the spatiotemporal dynamics of spontaneous Ca2+ waves in interstitial cells of Cajal-like cells of the rabbit urethra. Br J Pharmacol. 2010;161(3):680–94.

    Article  PubMed  CAS  Google Scholar 

  71. Drumm BT, Sung TS, Zheng H, Baker SA, Koh SD, Sanders KM. The effects of mitochondrial inhibitors on Ca2+ signalling and electrical conductances required for pacemaking in interstitial cells of Cajal in the mouse small intestine. Cell Calcium. 2018;72:1–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. McHale NG, Hollywood MA, Sergeant GP, Shafei M, Thornbury KT, Ward SM. Organization and function of ICC in the urinary tract. J Physiol. 2006;576(Pt 3):689–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Thornbury KD, Hollywood MA, McHale NG, Sergeant GP. Cajal beyond the gut: interstitial cells in the urinary system—towards general regulatory mechanisms of smooth muscle contractility? Acta Gastroenterol Belg. 2011;74(4):536–42.

    CAS  PubMed  Google Scholar 

  74. Morita T, Tsujii T, Dokita S. Regional difference in functional roles of cAMP and cGMP in lower urinary tract smooth muscle contractility. Urol Int. 1992;49(4):191–5.

    Article  CAS  PubMed  Google Scholar 

  75. Dokita S, Smith SD, Nishimoto T, Wheeler MA, Weiss RM. Involvement of nitric oxide and cyclic GMP in rabbit urethral relaxation. Eur J Pharmacol. 1994;266(3):269–75.

    Article  CAS  PubMed  Google Scholar 

  76. Persson K, Andersson KE. Non-adrenergic, non-cholinergic relaxation and levels of cyclic nucleotides in rabbit lower urinary tract. Eur J Pharmacol. 1994;268(2):159–67.

    Article  CAS  PubMed  Google Scholar 

  77. Persson K, Pandita RK, Aszòdi A, Ahmad M, Pfeifer A, Fässler R, Andersson KE. Functional characteristics of urinary tract smooth muscles in mice lacking cGMP protein kinase type I. Am J Phys Regul Integr Comp Phys. 2000;279(3):R1112–20.

    CAS  Google Scholar 

  78. Lies B, Groneberg D, Friebe A. Correlation of cellular expression with function of NO-sensitive guanylyl cyclase in the murine lower urinary tract. J Physiol. 2013;591(21):5365–75. https://doi.org/10.1113/jphysiol.2013.262410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Waldeck K, Ny L, Persson K, Andersson KE. Mediators and mechanisms of relaxation in rabbit urethral smooth muscle. Br J Pharmacol. 1998;123(4):617–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. García-Pascual A, Sancho M, Costa G, Triguero D. Interstitial cells of Cajal in the urethra are cGMP-mediated targets of nitrergic neurotransmission. Am J Physiol Ren Physiol. 2008;295(4):F971–83.

    Article  CAS  Google Scholar 

  81. Lyons AD, Gardiner TA, McCloskey KD. Kit-positive interstitial cells in the rabbit urethra: structural relationships with nerves and smooth muscle. BJU Int. 2007;99(3):687–94.

    Article  PubMed  Google Scholar 

  82. Sergeant GP, Johnston L, McHale NG, Thornbury KD, Hollywood MA. Activation of the cGMP/PKG pathway inhibits electrical activity in rabbit urethral interstitial cells of Cajal by reducing the spatial spread of Ca2+ waves. J Physiol. 2006;574(Pt1):167–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Drumm BT, Sergeant GP, Hollywood MA, Thornbury KD, McHale NG, Harvey BJ. The role of cAMP dependent protein kinase in modulating spontaneous intracellular Ca2+ waves in interstitial cells of Cajal from the rabbit urethra. Cell Calcium. 2014;56(3):181–7.

    Article  CAS  PubMed  Google Scholar 

  84. Deplanne V, Palea S, Angel I. The adrenergic, cholinergic and NANC nerve-mediated contractions of the female rabbit bladder neck and proximal, medial and distal urethra. Br J Pharmacol. 1998;123(8):1517–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bradley E, Kadima S, Drumm B, Hollywood MA, Thornbury KD, McHale NG, Sergeant GP. Novel excitatory effects of adenosine triphosphate on contractile and pacemaker activity in rabbit urethral smooth muscle. J Urol. 2010;183(2):801–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bradley E, Kadima S, Kyle B, Hollywood MA, Thornbury KD, McHale NG, Sergeant GP. P2X receptor currents in smooth muscle cells contribute to nerve mediated contractions of rabbit urethral smooth muscle. J Urol. 2011;186(2):745–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sergeant GP, Thornbury KD, McHale NG, Hollywood MA. Characterization of norepinephrine-evoked inward currents in interstitial cells isolated from the rabbit urethra. Am J Phys Cell Physiol. 2002;283(3):C885–94.

    Article  CAS  Google Scholar 

  88. Ward SM, Sanders KM. Involvement of intramuscular interstitial cells of Cajal in neuroeffector transmission in the gastrointestinal tract. J Physiol. 2006;576(Pt 3):675–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kyle BD, Bradley E, Large R, Sergeant GP, McHale NG, Thornbury KD, Hollywood MA. Mechanisms underlying activation of transient BK current in rabbit urethral smooth muscle cells and its modulation by IP3-generating agonists. Am J Phys Cell Physiol. 2013;305(6):C609–22.

    Article  CAS  Google Scholar 

  90. Walsh MP, Thornbury K, Cole WC, Sergeant G, Hollywood M, McHale N. Rho-associated kinase plays a role in rabbit urethral smooth muscle contraction, but not via enhanced myosin light chain phosphorylation. Am J Physiol Ren Physiol. 2011;300(1):F73–85.

    Article  CAS  Google Scholar 

  91. Thind P, Lose G, Colstrup H, Andersson KE. The influence of beta-adrenoceptor and muscarinic receptor agonists and antagonists on the static urethral closure function in healthy females. Scand J Urol Nephrol. 1993;27(1):31–8.

    Article  CAS  PubMed  Google Scholar 

  92. Yamanishi T, Chapple CR, Yasuda K, Yoshida K, Chess-Williams R. The role of M2 muscarinic receptor subtypes mediating contraction of the circular and longitudinal smooth muscle of the pig proximal urethra. J Urol. 2002;168(1):308–14.

    Article  CAS  PubMed  Google Scholar 

  93. Mutoh S, Latifpour J, Saito M, Weiss RM. Evidence for the presence of regional differences in the subtype specificity of muscarinic receptors in rabbit lower urinary tract. J Urol. 1997;157(2):717–21.

    Article  CAS  PubMed  Google Scholar 

  94. Ito Y, Kimoto Y. The neural and non-neural mechanisms involved in urethral activity in rabbits. J Physiol. 1985;367:57–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Thind P, Lose G, Colstrup H, Andersson KE. The urethral resistance to rapid dilation: an analysis of the effect of autonomic receptor stimulation and blockade and of pudendal nerve blockade in healthy females. Scand J Urol Nephrol. 1995;29(1):83–91.

    Article  CAS  PubMed  Google Scholar 

  96. Nagahama K, Tsujii T, Morita T, Azuma H, Oshima H. Differences between proximal and distal portions of the male rabbit posterior urethra in the physiological role of muscarinic cholinergic receptors. Br J Pharmacol. 1998;124(6):1175–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Fleischmann N, Flisser AJ, Blaivas JG, Panagopoulos G. Sphincteric urinary incontinence: relationship of vesical leak point pressure, urethral mobility and severity of incontinence. J Urol. 2003;169(3):999–1002.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful for grant support from the Wellcome Trust (064212), NIH (RO1 DK68565) and the Health Research Board (PD/2005/4 & RP/2006/127) and for technical support from Ms. Billie McIlveen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard P. Sergeant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sergeant, G.P., Hollywood, M.A., Thornbury, K.D. (2019). Spontaneous Activity in Urethral Smooth Muscle. In: Hashitani, H., Lang, R. (eds) Smooth Muscle Spontaneous Activity. Advances in Experimental Medicine and Biology, vol 1124. Springer, Singapore. https://doi.org/10.1007/978-981-13-5895-1_6

Download citation

Publish with us

Policies and ethics