Skip to main content

Generation of Spontaneous Tone by Gastrointestinal Sphincters

  • Chapter
  • First Online:
Smooth Muscle Spontaneous Activity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1124))

Abstract

An important feature of the gastrointestinal (GI) muscularis externa is its ability to generate phasic contractile activity. However, in some GI regions, a more sustained contraction, referred to as “tone,” also occurs. Sphincters are muscles oriented in an annular manner that raise intraluminal pressure, thereby reducing or blocking the movement of luminal contents from one compartment to another. Spontaneous tone generation is often a feature of these muscles. Four distinct smooth muscle sphincters are present in the GI tract: the lower esophageal sphincter (LES), the pyloric sphincter (PS), the ileocecal sphincter (ICS), and the internal anal sphincter (IAS). This chapter examines how tone generation contributes to the functional behavior of these sphincters. Historically, tone was attributed to contractile activity arising directly from the properties of the smooth muscle cells. However, there is increasing evidence that interstitial cells of Cajal (ICC) play a significant role in tone generation in GI muscles. Indeed, ICC are present in each of the sphincters listed above. In this chapter, we explore various mechanisms that may contribute to tone generation in sphincters including: (1) summation of asynchronous phasic activity, (2) partial tetanus, (3) window current, and (4) myofilament sensitization. Importantly, the first two mechanisms involve tone generation through summation of phasic events. Thus, the historical distinction between “phasic” versus “tonic” smooth muscles in the GI tract requires revision. As described in this chapter, it is clear that the unique functional role of each sphincter in the GI tract is accompanied by a unique combination of contractile mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liebermann-Meffert D, Allgower M, Schmid P, Blum AL. Muscular equivalent of the lower esophageal sphincter. Gastroenterology. 1979;76:31–8.

    CAS  PubMed  Google Scholar 

  2. Preiksaitis HG, Tremblay L, Diamant NE. Nitric oxide mediates inhibitory nerve effects in human esophagus and lower esophageal sphincter. Dig Dis Sci. 1994;39:770–5.

    Article  CAS  PubMed  Google Scholar 

  3. Brookes SJ, Chen BN, Hodgson WM, Costa M. Characterization of excitatory and inhibitory motor neurons to the guinea pig lower esophageal sphincter. Gastroenterology. 1996;111:108–17.

    Article  CAS  PubMed  Google Scholar 

  4. Yuan S, Costa M, Brookes SJ. Neuronal pathways and transmission to the lower esophageal sphincter of the guinea pig. Gastroenterology. 1998;115:661–71.

    Article  CAS  PubMed  Google Scholar 

  5. Lecea B, Gallego D, Farre R, Opazo A, Auli M, Jimenez M, Clave P. Regional functional specialization and inhibitory nitrergic and nonnitrergic coneurotransmission in the human esophagus. Am J Physiol Gastrointest Liver Physiol. 2011;300:G782–94.

    Article  CAS  PubMed  Google Scholar 

  6. Farre R, Auli M, Lecea B, Estrada O, Sunol X, Clave P. Mechanisms controlling function in the clasp and sling regions of porcine lower oesophageal sphincter. Br J Surg. 2007;94:1427–36.

    Article  CAS  PubMed  Google Scholar 

  7. Gonzalez AA, Farre R, Clave P. Different responsiveness of excitatory and inhibitory enteric motor neurons in the human esophagus to electrical field stimulation and to nicotine. Am J Physiol Gastrointest Liver Physiol. 2004;287:G299–306.

    Article  CAS  PubMed  Google Scholar 

  8. L’Heureux MC, Muinuddin A, Gaisano HY, Diamant NE. Feline lower esophageal sphincter sling and circular muscles have different functional inhibitory neuronal responses. Am J Physiol Gastrointest Liver Physiol. 2006;290:G23–9.

    Article  PubMed  CAS  Google Scholar 

  9. Zhang Y, Mashimo H, Paterson WG. Regional differences in nitrergic innervation of the smooth muscle of murine lower oesophageal sphincter. Br J Pharmacol. 2008;153:517–27.

    Article  CAS  PubMed  Google Scholar 

  10. Liu JF, Lu HL, Wen SW, Wu RF. Effects of acetylcholine on sling and clasp fibers of the human lower esophageal sphincter. J Gastroenterol Hepatol. 2011;26:1309–17.

    Article  CAS  PubMed  Google Scholar 

  11. Miller L, Vegesna A, Ruggieri M, Braverman A. Normal and abnormal physiology, pharmacology, and anatomy of the gastroesophageal junction high-pressure zone. Ann N Y Acad Sci. 2016;1380:48–57.

    Article  PubMed  Google Scholar 

  12. Zifan A, Kumar D, Cheng LK, Mittal RK. Three-dimensional myoarchitecture of the lower esophageal sphincter and esophageal hiatus using optical sectioning microscopy. Sci Rep. 2017;7:13188.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Mittal RK, Zifan A, Kumar D, Ledgerwood-Lee M, Ruppert E, Ghahremani G. Functional morphology of the lower esophageal sphincter and crural diaphragm determined by three-dimensional high-resolution esophago-gastric junction pressure profile and CT imaging. Am J Physiol Gastrointest Liver Physiol. 2017;313:G212–9.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mittal RK, Balaban DH. The esophagogastric junction. N Engl J Med. 1997;336:924–32.

    Article  CAS  PubMed  Google Scholar 

  15. Cowgill SM, Bloomston M, Al-Saadi S, Villadolid D, Rosemurgy AS. Normal lower esophageal sphincter pressure and length does not impact outcome after laparoscopic Nissen fundoplication. J Gastrointest Surg. 2007;11:701–7.

    Article  PubMed  Google Scholar 

  16. Richter JE, Wu WC, Johns DN, Blackwell JN, Nelson JL III, Castell JA, Castell DO. Esophageal manometry in 95 healthy adult volunteers. Variability of pressures with age and frequency of “abnormal” contractions. Dig Dis Sci. 1987;32:583–92.

    Article  CAS  PubMed  Google Scholar 

  17. Jiang Y, Bhargava V, Lal HA, Mittal RK. Variability in the muscle composition of rat esophagus and neural pathway of lower esophageal sphincter relaxation. Am J Physiol Gastrointest Liver Physiol. 2011;301:G1014–9.

    Article  CAS  PubMed  Google Scholar 

  18. Vitaic S, Stupnisek M, Drmic D, Bauk L, Kokot A, Klicek R, Vcev A, Luetic K, Seiwerth S, Sikiric P. Nonsteroidal anti-inflammatory drugs-induced failure of lower esophageal and pyloric sphincter and counteraction of sphincters failure with stable gatric pentadecapeptide BPC 157 in rats. J Physiol Pharmacol. 2017;68:265–72.

    CAS  PubMed  Google Scholar 

  19. Richardson BJ, Welch RW. Differential effect of atropine on rightward and leftward lower esophageal sphincter pressure. Gastroenterology. 1981;81:85–9.

    Article  CAS  PubMed  Google Scholar 

  20. Schulze K, Dodds WJ, Christensen J, Wood JD. Esophageal manometry in the opossum. Am J Phys. 1977;233:E152–9.

    CAS  Google Scholar 

  21. Vicente Y, Da RC, Yu J, Hernandez-Peredo G, Martinez L, Perez-Mies B, Tovar JA. Architecture and function of the gastroesophageal barrier in the piglet. Dig Dis Sci. 2001;46:1899–908.

    Article  CAS  PubMed  Google Scholar 

  22. Rattan S, Goyal RK. Effect of nicotine on the lower esophageal sphincter. Studies on the mechanism of action. Gastroenterology. 1975;69:154–9.

    Article  CAS  PubMed  Google Scholar 

  23. Behar J, Kerstein M, Biancani P. Neural control of the lower esophageal sphincter in the cat: studies on the excitatory pathways to the lower esophageal sphincter. Gastroenterology. 1982;82:680–8.

    Article  CAS  PubMed  Google Scholar 

  24. Biancani P, Zabinski M, Kerstein M, Behar J. Lower esophageal sphincter mechanics: anatomic and physiologic relationships of the esophagogastric junction of cat. Gastroenterology. 1982;82:468–75.

    CAS  PubMed  Google Scholar 

  25. Goyal RK, Chaudhury A. Physiology of normal esophageal motility. J Clin Gastroenterol. 2008;42:610–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rossiter CD, Norman WP, Jain M, Hornby PJ, Benjamin S, Gillis RA. Control of lower esophageal sphincter pressure by two sites in dorsal motor nucleus of the vagus. Am J Phys. 1990;259:G899–906.

    CAS  Google Scholar 

  27. Miller LS, Vegesna AK, Brasseur JG, Braverman AS, Ruggieri MR. The esophagogastric junction. Ann N Y Acad Sci. 2011;1232:323–30.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Opie JC, Chaye H, Fraser GC. Fundoplication and pediatric esophageal manometry: actuarial analysis over 7 years. J Pediatr Surg. 1987;22:935–8.

    Article  CAS  PubMed  Google Scholar 

  29. Papasova M. Sphincteric function. In: Handbook of physiology: the gastrointestinal system. Washington, DC: American Physiological Society; 1989. p. 987–1024.

    Google Scholar 

  30. Imaeda K, Cunnane TC. Electrophysiological properties of inhibitory junction potential in murine lower oesophageal sphincter. J Smooth Muscle Res. 2003;39:119–33.

    Article  PubMed  Google Scholar 

  31. Tottrup A, Svane D, Forman A. Nitric oxide mediating NANC inhibition in opossum lower esophageal sphincter. Am J Phys. 1991;260:G385–9.

    CAS  Google Scholar 

  32. Kwiatek MA, Kahrilas PJ. Physiology of the LES. Dis Esophagus. 2012;25:286–91.

    Article  CAS  PubMed  Google Scholar 

  33. Muinuddin A, Ji J, Sheu L, Kang Y, Gaisano HY, Diamant NE. L-type Ca(2+) channel expression along feline smooth muscle oesophagus. Neurogastroenterol Motil. 2004;16:325–34.

    Article  CAS  PubMed  Google Scholar 

  34. Papasova M, Milousheva E, Bonev A, Boev K, Kortezova N. On the changes in the membrane potential and the contractile activity of the smooth muscle of the lower esophageal and ileo-caecal sphincters upon increased K in the nutrient solution. Acta Physiol Pharmacol Bulg. 1980;6:41–9.

    CAS  PubMed  Google Scholar 

  35. Zhang Y, Miller DV, Paterson WG. Opposing roles of K(+) and Cl(−) channels in maintenance of opossum lower esophageal sphincter tone. Am J Physiol Gastrointest Liver Physiol. 2000;279:G1226–34.

    Article  CAS  PubMed  Google Scholar 

  36. Asoh R, Goyal RK. Electrical activity of the opossum lower esophageal sphincter in vivo. Its role in the basal sphincter pressure. Gastroenterology. 1978;74:835–40.

    Article  CAS  PubMed  Google Scholar 

  37. Camilleri M. Integrated upper gastrointestinal response to food intake. Gastroenterology. 2006;131:640–58.

    Article  CAS  PubMed  Google Scholar 

  38. Indireshkumar K, Brasseur JG, Faas H, Hebbard GS, Kunz P, Dent J, Feinle C, Li M, Boesiger P, Fried M, et al. Relative contributions of “pressure pump” and “peristaltic pump” to gastric emptying. Am J Physiol Gastrointest Liver Physiol. 2000;278:G604–16.

    Article  CAS  PubMed  Google Scholar 

  39. Friedenberg FK, Palit A, Parkman HP, Hanlon A, Nelson DB. Botulinum toxin A for the treatment of delayed gastric emptying. Am J Gastroenterol. 2008;103:416–23.

    Article  CAS  PubMed  Google Scholar 

  40. Desipio J, Friedenberg FK, Korimilli A, Richter JE, Parkman HP, Fisher RS. High-resolution solid-state manometry of the antropyloroduodenal region. Neurogastroenterol Motil. 2007;19:188–95.

    Article  CAS  PubMed  Google Scholar 

  41. Allescher HD, Daniel EE, Dent J, Fox JE, Kostolanska F. Extrinsic and intrinsic neural control of pyloric sphincter pressure in the dog. J Physiol. 1988;401:17–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Keinke O, Ehrlein HJ. Effect of oleic acid on canine gastroduodenal motility, pyloric diameter and gastric emptying. Q J Exp Physiol. 1983;68:675–86.

    Article  CAS  PubMed  Google Scholar 

  43. Keinke O, Schemann M, Ehrlein HJ. Mechanical factors regulating gastric emptying of viscous nutrient meals in dogs. Q J Exp Physiol. 1984;69:781–95.

    Article  CAS  PubMed  Google Scholar 

  44. Rao SS, Safadi R, Lu C, Schulze-Delrieu K. Manometric responses of human duodenum during infusion of HCl, hyperosmolar saline, bile and oleic acid. Neurogastroenterol Motil. 1996;8:35–43.

    Article  CAS  PubMed  Google Scholar 

  45. Deane AM, Besanko LK, Burgstad CM, Chapman MJ, Horowitz M, Fraser RJ. Modulation of individual components of gastric motor response to duodenal glucose. World J Gastroenterol. 2013;19:5863–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vogalis F, Sanders KM. Excitatory and inhibitory neural regulation of canine pyloric smooth muscle. Am J Phys. 1990;259:G125–33.

    CAS  Google Scholar 

  47. Tomita R, Tanjoh K, Fujisaki S, Fukuzawa M. The role of nitric oxide (NO) in the human pyloric sphincter. Hepato-Gastroenterology. 1999;46:2999–3003.

    CAS  PubMed  Google Scholar 

  48. Tomita R, Igarashi S, Fijisaki S, Koshinaga T, Tanjoh K. Regulation of enteric nervous system in the proximal and distal parts of the normal human pyloric sphincter—in vitro study. Hepato-Gastroenterology. 2007;54:1289–92.

    PubMed  Google Scholar 

  49. Allescher HD, Tougas G, Vergara P, Lu S, Daniel EE. Nitric oxide as a putative nonadrenergic noncholinergic inhibitory transmitter in the canine pylorus in vivo. Am J Phys. 1992;262:G695–702.

    CAS  Google Scholar 

  50. Deloof S, Croix D, Tramu G. The role of vasoactive intestinal polypeptide in the inhibition of antral and pyloric electrical activity in rabbits. J Auton Nerv Syst. 1988;22:167–73.

    Article  CAS  PubMed  Google Scholar 

  51. Deloof S. Sympathetic control of antral and pyloric electrical activity in the rabbit. J Auton Nerv Syst. 1988;22:1–10.

    Article  CAS  PubMed  Google Scholar 

  52. Allescher HD, Ahmad S, Kostolanska F, Kwan CY, Daniel EE. Modulation of pyloric motor activity via adrenergic receptors. J Pharmacol Exp Ther. 1989;249:652–9.

    CAS  PubMed  Google Scholar 

  53. Parkman HP, Pagano AP, Ryan JP. Erythromycin inhibits rabbit pyloric smooth muscle through neuronal motilin receptors. Gastroenterology. 1996;111:682–90.

    Article  CAS  PubMed  Google Scholar 

  54. Yuan SY, Costa M, Brookes SJ. Neuronal control of the pyloric sphincter of the guinea-pig. Neurogastroenterol Motil. 2001;13:187–98.

    Article  CAS  PubMed  Google Scholar 

  55. Mandrek K, Kreis S. Regional differentiation of gastric and of pyloric smooth muscle in the pig: mechanical responses to acetylcholine, histamine, substance P, noradrenaline and adrenaline. J Auton Pharmacol. 1992;12:37–49.

    Article  CAS  PubMed  Google Scholar 

  56. Ishiguchi T, Takahashi T, Itoh H, Owyang C. Nitrergic and purinergic regulation of the rat pylorus. Am J Physiol Gastrointest Liver Physiol. 2000;279:G740–7.

    Article  CAS  PubMed  Google Scholar 

  57. Milenov K, Golenhofen K. Differentiated contractile responses of gastric smooth muscle to substance P. Pflugers Arch. 1983;397:29–34.

    Article  CAS  PubMed  Google Scholar 

  58. Domae K, Hashitani H, Suzuki H. Regional differences in the frequency of slow waves in smooth muscle of the guinea-pig stomach. J Smooth Muscle Res. 2008;44:231–48.

    Article  PubMed  Google Scholar 

  59. Sanders KM, Vogalis F. Organization of electrical activity in the canine pyloric canal. J Physiol. 1989;416:49–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Van Helden DF, Imtiaz MS. Ca2+ phase waves: a basis for cellular pacemaking and long-range synchronicity in the guinea-pig gastric pylorus. J Physiol. 2003;548:271–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Van Helden DF, Imtiaz MS, Nurgaliyeva K, von der WP, Dosen PJ. Role of calcium stores and membrane voltage in the generation of slow wave action potentials in guinea-pig gastric pylorus. J Physiol. 2000;524(Pt 1):245–65.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Vogalis F, Publicover NG, Hume JR, Sanders KM. Relationship between calcium current and cytosolic calcium in canine gastric smooth muscle cells. Am J Phys. 1991;260:C1012–8.

    Article  CAS  Google Scholar 

  63. Cserni T, Paran S, Kanyari Z, O’Donnell AM, Kutasy B, Nemeth N, Puri P. New insights into the neuromuscular anatomy of the ileocecal valve. Anat Rec (Hoboken). 2009;292:254–61.

    Article  Google Scholar 

  64. Phillips SF, Quigley EM, Kumar D, Kamath PS. Motility of the ileocolonic junction. Gut. 1988;29:390–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cohen S, Harris LD, Levitan R. Manometric characteristics of the human ileocecal junctional zone. Gastroenterology. 1968;54:72–5.

    Article  CAS  PubMed  Google Scholar 

  66. Dinning PG, Bampton PA, Kennedy ML, Kajimoto T, Lubowski DZ, de Carle DJ, Cook IJ. Basal pressure patterns and reflexive motor responses in the human ileocolonic junction. Am J Phys. 1999;276:G331–40.

    CAS  Google Scholar 

  67. Quigley EM, Phillips SF, Dent J, Taylor BM. Myoelectric activity and intraluminal pressure of the canine ileocolonic sphincter. Gastroenterology. 1983;85:1054–62.

    CAS  PubMed  Google Scholar 

  68. Quigley EM, Dent J, Phillips SF. Manometry of canine ileocolonic sphincter: comparison of sleeve method to point sensors. Am J Phys. 1987;252:G585–91.

    CAS  Google Scholar 

  69. Nasmyth DG, Williams NS. Pressure characteristics of the human ileocecal region—a key to its function. Gastroenterology. 1985;89:345–51.

    Article  CAS  PubMed  Google Scholar 

  70. Quigley EM, Phillips SF, Dent J. Distinctive patterns of interdigestive motility at the canine ileocolonic junction. Gastroenterology. 1984;87:836–44.

    Article  CAS  PubMed  Google Scholar 

  71. Quigley EM, Phillips SF, Cranley B, Taylor BM, Dent J. Tone of canine ileocolonic junction: topography and response to phasic contractions. Am J Phys. 1985;249:G350–7.

    CAS  Google Scholar 

  72. Pelckmans PA, Van Maercke YM, De Maeyer MH, Herman AG, Verbeuren TJ. Cholinergic and adrenergic contractile properties of the canine ileocolonic junction. J Pharmacol Exp Ther. 1990;254:158–64.

    CAS  PubMed  Google Scholar 

  73. Ward SM, McKeen ES, Sanders KM. Role of nitric oxide in non-adrenergic, non-cholinergic inhibitory junction potentials in canine ileocolonic sphincter. Br J Pharmacol. 1992;105:776–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rubin MR, Fournet J, Snape WJ Jr, Cohen S. Adrenergic regulation of ileocecal sphincter function in the cat. Gastroenterology. 1980;78:15–21.

    Article  CAS  PubMed  Google Scholar 

  75. Rubin MR, Cardwell BA, Ouyang A, Snape WJ Jr, Cohen S. Effect of bethanechol or vagal nerve stimulation on ileocecal sphincter pressure in the cat. Gastroenterology. 1981;80:974–9.

    Article  CAS  PubMed  Google Scholar 

  76. Kubota M. Electrical and mechanical properties and neuro-effector transmission in the smooth muscle layer of the guinea-pig ileocecal junction. Pflugers Arch. 1982;394:355–61.

    Article  CAS  PubMed  Google Scholar 

  77. Boeckxstaens GE, Pelckmans PA, Bult H, De Man JG, Herman AG, Van Maercke YM. Non-adrenergic non-cholinergic relaxation mediated by nitric oxide in the canine ileocolonic junction. Eur J Pharmacol. 1990;190:246.

    Article  Google Scholar 

  78. Boeckxstaens GE, De Man JG, Pelckmans PA, Herman AG, Van Maercke YM. Alpha 2-adrenoceptor-mediated modulation of the nitrergic innervation of the canine isolated ileocolonic junction. Br J Pharmacol. 1993;109:1079–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. McKirdy HC, Marshall RW, Taylor BA. Control of the human ileocaecal junction: an in vitro analysis of adrenergic and non-adrenergic non-cholinergic mechanisms. Digestion. 1993;54:200–6.

    Article  CAS  PubMed  Google Scholar 

  80. Leelakusolvong S, Sarr MG, Miller SM, Phillips SF, Bharucha AE. Role of extrinsic innervation in modulating nitrergic transmission in the canine ileocolonic region. Am J Physiol Gastrointest Liver Physiol. 2002;283:G230–9.

    Article  CAS  PubMed  Google Scholar 

  81. Ward SM, Xue C, Sanders KM. Localization of nitric oxide synthase in canine ileocolonic and pyloric sphincters. Cell Tissue Res. 1994;275:513–27.

    Article  CAS  PubMed  Google Scholar 

  82. Vadokas B, Ludtke FE, Lepsien G, Golenhofen K, Mandrek K. Effects of gastrin-releasing peptide (GRP) on the mechanical activity of the human ileocaecal region in vitro. Neurogastroenterol Motil. 1997;9:265–70.

    Article  CAS  PubMed  Google Scholar 

  83. Kubota M, Ito Y, Domae M. Actions of prostaglandins and indomethacin on the electrical and mechanical properties of smooth muscle cells of the guinea-pig ileocecal junction. Pflugers Arch. 1982;394:347–54.

    Article  CAS  PubMed  Google Scholar 

  84. Papasova M, Boev K, Bonev A, Milusheva E. Relationship between the changes in the membrane potential and the contraction of the smooth muscles of the lower oesophageal sphincter and the ileocaecal sphincter. Agressologie. 1981;22:205–8.

    CAS  PubMed  Google Scholar 

  85. Papasova M, Milousheva E, Bonev A, Gachilova S. Specific features in the electrical and contractile activities of the gastro-intestinal sphincters. Acta Physiol Pharmacol Bulg. 1980;6:19–27.

    CAS  PubMed  Google Scholar 

  86. Horiguchi K, Keef KD, Ward SM. Distribution of interstitial cells of Cajal in tunica muscularis of the canine rectoanal region. Am J Physiol Gastrointest Liver Physiol. 2003;284:G756–67.

    Article  CAS  PubMed  Google Scholar 

  87. Cobine CA, Hennig GW, Bayguinov YR, Hatton WJ, Ward SM, Keef KD. Interstitial cells of Cajal in the cynomolgus monkey rectoanal region and their relationship to sympathetic and nitrergic nerves. Am J Physiol Gastrointest Liver Physiol. 2010;298:G643–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rao SS, Meduri K. What is necessary to diagnose constipation? Best Pract Res Clin Gastroenterol. 2011;25:127–40.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Bharucha A. Anorectal disorders. In: Spiller R, Grundy D, editors. Pathophysiology of the enteric nervous system: a basis for understanding functional diseases. Oxford: Wiley Blackwell Publishing; 2004. p. 161–75.

    Chapter  Google Scholar 

  90. Lee YY, Erdogan A, Rao SS. High resolution and high definition anorectal manometry and pressure topography: diagnostic advance or a new kid on the block? Curr Gastroenterol Rep. 2013;15:360.

    Article  PubMed  Google Scholar 

  91. Seong MK, Park UC, Jung SI. Determinant of anal resting pressure gradient in association with continence function. J Neurogastroenterol Motil. 2011;17:300–4.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Noelting J, Ratuapli SK, Bharucha AE, Harvey DM, Ravi K, Zinsmeister AR. Normal values for high-resolution anorectal manometry in healthy women: effects of age and significance of rectoanal gradient. Am J Gastroenterol. 2012;107:1530–6.

    Article  PubMed  PubMed Central  Google Scholar 

  93. de Lorijn F, de Jonge WJ, Wedel T, Vanderwinden JM, Benninga MA, Boeckxstaens GE. Interstitial cells of Cajal are involved in the afferent limb of the rectoanal inhibitory reflex. Gut. 2005;54:1107–13.

    Article  PubMed  PubMed Central  Google Scholar 

  94. De Godoy MA, Rattan S. Angiotensin-converting enzyme and angiotensin II receptor subtype 1 inhibitors restitute hypertensive internal anal sphincter in the spontaneously hypertensive rats. J Pharmacol Exp Ther. 2006;318:725–34.

    Article  PubMed  CAS  Google Scholar 

  95. Stebbing JF. Nitric oxide synthase neurones and neuromuscular behaviour of the anorectum. Ann R Coll Surg Engl. 1998;80:137–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Hedlund H, Fasth S, Hulten L. Efferent sympathetic nervous control of rectal motility in the cat. Acta Physiol Scand. 1984;121:317–24.

    Article  CAS  PubMed  Google Scholar 

  97. Garrett JR, Howard ER, Jones W. The internal anal sphincter in the cat: a study of nervous mechanisms affecting tone and reflex activity. J Physiol. 1974;243:153–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Frenckner B, Ihre T. Influence of autonomic nerves on the internal and sphincter in man. Gut. 1976;17:306–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Carlstedt A, Nordgren S, Fasth S, Appelgren L, Hulten L. Sympathetic nervous influence on the internal anal sphincter and rectum in man. Int J Colorectal Dis. 1988;3:90–5.

    Article  CAS  PubMed  Google Scholar 

  100. Carlstedt A, Fasth S, Hulten L, Nordgren S. The sympathetic innervation of the internal anal sphincter and rectum in the cat. Acta Physiol Scand. 1988;133:423–31.

    Article  CAS  PubMed  Google Scholar 

  101. Mizutani M, Neya T, Ono K, Yamasato T, Tokunaga A. Histochemical study of the lumbar colonic nerve supply to the internal anal sphincter and its physiological role in dogs. Brain Res. 1992;598:45–50.

    Article  CAS  PubMed  Google Scholar 

  102. Brading AF, Ramalingam T. Mechanisms controlling normal defecation and the potential effects of spinal cord injury. Prog Brain Res. 2006;152:345–58.

    Article  CAS  PubMed  Google Scholar 

  103. Rattan S. Sympathetic (adrenergic) innervation modulates but does not generate basal tone in the internal anal sphincter smooth muscle. Gastroenterology. 2008;134:2179–81.

    Article  PubMed  Google Scholar 

  104. O’Kelly TJ. Nerves that say NO: a new perspective on the human rectoanal inhibitory reflex. Ann R Coll Surg Engl. 1996;78:31–8.

    PubMed  PubMed Central  Google Scholar 

  105. Hall KA, Ward SM, Cobine CA, Keef KD. Spatial organization and coordination of slow waves in the mouse anorectum. J Physiol. 2014;592:3813–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. McKechnie M, Harvey N, Cobine C, Keef K. Comparison of inhibitory motor innervation in the primate and mouse internal anal sphincter. Gastroenterology. 2008;134(4):A686.

    Article  Google Scholar 

  107. O’Kelly T, Brading A, Mortensen N. Nerve mediated relaxation of the human internal anal sphincter: the role of nitric oxide. Gut. 1993;34:689–93.

    Article  PubMed  PubMed Central  Google Scholar 

  108. McDonnell B, Hamilton R, Fong M, Ward SM, Keef KD. Functional evidence for purinergic inhibitory neuromuscular transmission in the mouse internal anal sphincter. Am J Physiol Gastrointest Liver Physiol. 2008;294:G1041–51.

    Article  CAS  PubMed  Google Scholar 

  109. Cobine CA, Sotherton AG, Peri LE, Sanders KM, Ward SM, Keef KD. Nitrergic neuromuscular transmission in the mouse internal anal sphincter is accomplished by multiple pathways and post-junctional effector cells. Am J Physiol Gastrointest Liver Physiol. 2014;307:G1057–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Duffy AM, Cobine CA, Keef KD. Changes in neuromuscular transmission in the W/W(v) mouse internal anal sphincter. Neurogastroenterol Motil. 2012;24:e41–55.

    Article  CAS  PubMed  Google Scholar 

  111. Opazo A, Lecea B, Gil V, Jimenez M, Clave P, Gallego D. Specific and complementary roles for nitric oxide and ATP in the inhibitory motor pathways to rat internal anal sphincter. Neurogastroenterol Motil. 2011;23:e11–25.

    Article  CAS  PubMed  Google Scholar 

  112. Rae MG, Muir TC. Neuronal mediators of inhibitory junction potentials and relaxation in the guinea-pig internal anal sphincter. J Physiol Lond. 1996;493:517–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Keef KD, Saxton SN, McDowall RA, Kaminski RE, Duffy AM, Cobine CA. Functional role of vasoactive intestinal polypeptide in inhibitory motor innervation in the mouse internal anal sphincter. J Physiol. 2013;591:1489–506.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Kubota M, Suita S, Szurszewski JH. Membrane properties and the neuro-effector transmission of smooth muscle cells in the canine internal anal sphincter. J Smooth Muscle Res. 1998;34:173–84.

    Article  CAS  PubMed  Google Scholar 

  115. Cobine CA, Fong M, Hamilton R, Keef KD. Species dependent differences in the actions of sympathetic nerves and noradrenaline in the internal anal sphincter. Neurogastroenterol Motil. 2007;19:937–45.

    Article  CAS  PubMed  Google Scholar 

  116. Cook TA, Brading AF, Mortensen NJ. Effects of nifedipine on anorectal smooth muscle in vitro. Dis Colon Rectum. 1999;42:782–7.

    Article  CAS  PubMed  Google Scholar 

  117. Jonas-Obichere M, Scholefield JH, Acheson A, Mundey M, Tyler H, Wilson VG. Comparison of the effects of nitric oxide donors and calcium channel blockers on the intrinsic myogenic tone of sheep isolated internal anal sphincter. Br J Surg. 2005;92:1263–9.

    Article  CAS  PubMed  Google Scholar 

  118. Mutafova-Yambolieva VN, O’Driscoll K, Farrelly A, Ward SM, Keef KD. Spatial localization and properties of pacemaker potentials in the canine rectoanal region. Am J Physiol Gastrointest Liver Physiol. 2003;284:G748–55.

    Article  CAS  PubMed  Google Scholar 

  119. Cobine CA, Hannah EE, Zhu MH, Lyle HE, Rock JR, Sanders KM, Ward SM, Keef KD. ANO1 in intramuscular interstitial cells of Cajal plays a key role in the generation of slow waves and tone in the internal anal sphincter. J Physiol. 2017;595:2021–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Harvey N, McDonnell B, McKechnie M, Keef K. Role of L-type calcium channels, membrane potential and nitric oxide in the control of myogenic activity in the primate internal anal sphincter. Gastroenterology. 2008;134(4):A63.

    Article  Google Scholar 

  121. Keef KD, Cobine CA. Control of motility in the internal Anal Sphincter. J. Neurogastroenterol Motil. 2019, March 2 [ePub ahead of print] PMID 30827084.

    Google Scholar 

  122. Ward SM, Sanders KM. Upstroke component of electrical slow waves in canine colonic smooth muscle due to nifedipine-resistant calcium current. J Physiol Lond. 1992;455:321–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kito Y, Mitsui R, Ward SM, Sanders KM. Characterization of slow waves generated by myenteric interstitial cells of Cajal of the rabbit small intestine. Am J Physiol Gastrointest Liver Physiol. 2015;308:G378–88.

    Article  CAS  PubMed  Google Scholar 

  124. Sanders KM, Kito Y, Hwang SJ, Ward SM. Regulation of gastrointestinal smooth muscle function by interstitial cells. Physiology (Bethesda). 2016;31:316–26.

    CAS  Google Scholar 

  125. Ward SM, Sanders KM. Involvement of intramuscular interstitial cells of Cajal in neuroeffector transmission in the gastrointestinal tract. J Physiol. 2006;576:675–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Komuro T, Seki K, Horiguchi K. Ultrastructural characterization of the interstitial cells of Cajal. Arch Histol Cytol. 1999;62:295–316.

    Article  CAS  PubMed  Google Scholar 

  127. Sanders KM, Koh SD, Ro S, Ward SM. Regulation of gastrointestinal motility—insights from smooth muscle biology. Nat Rev Gastroenterol Hepatol. 2012;9:633–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Miyamoto-Kikuta S, Ezaki T, Komuro T. Distribution and morphological characteristics of the interstitial cells of Cajal in the ileocaecal junction of the guinea-pig. Cell Tissue Res. 2009;338:29–35.

    Article  PubMed  Google Scholar 

  129. Blair PJ, Bayguinov Y, Sanders KM, Ward SM. Interstitial cells in the primate gastrointestinal tract. Cell Tissue Res. 2012;350:199–213.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Smith TK, Reed JB, Sanders KM. Origin and propagation of electrical slow waves in circular muscle of canine proximal colon. Am J Phys. 1987;252:C215–24.

    Article  CAS  Google Scholar 

  131. Ward SM, Harney SC, Bayguinov JR, McLaren GJ, Sanders KM. Development of electrical rhythmicity in the murine gastrointestinal tract is specifically encoded in the tunica muscularis. J Physiol Lond. 1997;505(Pt 1):241–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wang XY, Lammers WJ, Bercik P, Huizinga JD. Lack of pyloric interstitial cells of Cajal explains distinct peristaltic motor patterns in stomach and small intestine. Am J Physiol Gastrointest Liver Physiol. 2005;289:G539–49.

    Article  CAS  PubMed  Google Scholar 

  133. Farre R, Wang XY, Vidal E, Domenech A, Pumarola M, Clave P, Huizinga JD, Jimenez M. Interstitial cells of Cajal and neuromuscular transmission in the rat lower oesophageal sphincter. Neurogastroenterol Motil. 2007;19:484–96.

    Article  CAS  PubMed  Google Scholar 

  134. Cobine C, Foulkes H, Sanders K, Baker S, Keef K. Visualization of pacemaker activity in intramuscular ICC in the internal anal sphincter. Neurogastroenterol Motil. 2016;28(Suppl 1)):11–2.

    Google Scholar 

  135. Keef K, Ward S, Cobine C. Evidence supporting a pivotal role for intramuscular interstitial cells of Cajal in the generation of pacemaker activity, phasic contractions and tone in the internal anal sphincter. Transl Androl Urol. 2016;5(Suppl 2):S346.

    Google Scholar 

  136. Aickin CC, Brading AF. Measurement of intracellular chloride in guinea-pig vas deferens by ion analysis, chloride efflux and micro-electrodes. J Physiol. 1982;326:139–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kitamura K, Yamazaki J. Chloride channels and their functional roles in smooth muscle tone in the vasculature. Jpn J Pharmacol. 2001;85:351–7.

    Article  CAS  PubMed  Google Scholar 

  138. Leblanc N, Ledoux J, Saleh S, Sanguinetti A, Angermann J, O’Driscoll K, Britton F, Perrino BA, Greenwood IA. Regulation of calcium-activated chloride channels in smooth muscle cells: a complex picture is emerging. Can J Physiol Pharmacol. 2005;83:541–56.

    Article  CAS  PubMed  Google Scholar 

  139. Lee MY, Park C, Berent RM, Park PJ, Fuchs R, Syn H, Chin A, Townsend J, Benson CC, Redelman D, et al. Smooth muscle cell genome browser: enabling the identification of novel serum response factor target genes. PLoS One. 2015;10:e0133751.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Daniel EE, Taylor GS, Holman ME. The myogenic basis of active tension in the lower esophageal sphincter. Gastroenterology. 1976;70:874.

    Google Scholar 

  141. Zhang Y, Paterson WG. Role of sarcoplasmic reticulum in control of membrane potential and nitrergic response in opossum lower esophageal sphincter. Br J Pharmacol. 2003;140:1097–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lee MY, Ha SE, Park C, Park PJ, Fuchs R, Wei L, Jorgensen BG, Redelman D, Ward SM, Sanders KM, et al. Transcriptome of interstitial cells of Cajal reveals unique and selective gene signatures. PLoS One. 2017;12:e0176031.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Sanders KM, Zhu MH, Britton F, Koh SD, Ward SM. Anoctamins and gastrointestinal smooth muscle excitability. Exp Physiol. 2012;97:200–6.

    Article  CAS  PubMed  Google Scholar 

  144. Sanders KM, Ward SM. Kit mutants and gastrointestinal physiology. J Physiol. 2007;578:33–42.

    Article  CAS  PubMed  Google Scholar 

  145. Ward SM, Sanders KM. Interstitial cells of Cajal: primary targets of enteric motor innervation. Anat Rec. 2001;262:125–35.

    Article  CAS  PubMed  Google Scholar 

  146. Zhang Y, Carmichael SA, Wang XY, Huizinga JD, Paterson WG. Neurotransmission in lower esophageal sphincter of W/Wv mutant mice. Am J Physiol Gastrointest Liver Physiol. 2010;298:G14–24.

    Article  CAS  PubMed  Google Scholar 

  147. Cobine CA, Hennig GW, Kurahashi M, Sanders KM, Ward SM, Keef KD. Relationship between interstitial cells of Cajal, fibroblast-like cells and inhibitory motor nerves in the internal anal sphincter. Cell Tissue Res. 2011;344:17–30.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Nocka K, Tan JC, Chiu E, Chu TY, Ray P, Traktman P, Besmer P. Molecular bases of dominant negative and loss of function mutations at the murine c-kit/white spotting locus: W37, Wv, W41 and W. EMBO J. 1990;9:1805–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Iino S, Horiguchi S, Horiguchi K, Nojyo Y. Interstitial cells of Cajal in the gastrointestinal musculature of W mutant mice. Arch Histol Cytol. 2007;70:163–73.

    Article  CAS  PubMed  Google Scholar 

  150. Ward SM, Morris G, Reese L, Wang XY, Sanders KM. Interstitial cells of Cajal mediate enteric inhibitory neurotransmission in the lower esophageal and pyloric sphincters. Gastroenterology. 1998;115:314–29.

    Article  CAS  PubMed  Google Scholar 

  151. Kluppel M, Huizinga JD, Malysz J, Bernstein A. Developmental origin and Kit-dependent development of the interstitial cells of cajal in the mammalian small intestine. Dev Dyn. 1998;211:60–71.

    Article  CAS  PubMed  Google Scholar 

  152. Vanderwinden JM, Rumessen JJ, de Kerchove dA Jr, Gillard K, Panthier JJ, De Laet MH, Schiffmann SN. Kit-negative fibroblast-like cells expressing SK3, a Ca2+-activated K+ channel, in the gut musculature in health and disease. Cell Tissue Res. 2002;310:349–58.

    Article  CAS  PubMed  Google Scholar 

  153. Carmona R, Cano E, Mattiotti A, Gaztambide J, Munoz-Chapuli R. Cells derived from the coelomic epithelium contribute to multiple gastrointestinal tissues in mouse embryos. PLoS One. 2013;8:e55890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Bourret A, Chauvet N, de Santa BP, Faure S. Colonic mesenchyme differentiates into smooth muscle before its colonization by vagal enteric neural crest-derived cells in the chick embryo. Cell Tissue Res. 2017;368:503–11.

    Article  CAS  PubMed  Google Scholar 

  155. Kurahashi M, Niwa Y, Cheng J, Ohsaki Y, Fujita A, Goto H, Fujimoto T, Torihashi S. Platelet-derived growth factor signals play critical roles in differentiation of longitudinal smooth muscle cells in mouse embryonic gut. Neurogastroenterol Motil. 2008;20:521–31.

    Article  CAS  PubMed  Google Scholar 

  156. Martini F. Muscle tissue. In: Anatomy and physiology. San Francisco, CA: Pearson Education, Inc; 2005. p. 209–40.

    Google Scholar 

  157. Caputo C, Edman KA, Lou F, Sun YB. Variation in myoplasmic Ca2+ concentration during contraction and relaxation studied by the indicator fluo-3 in frog muscle fibres. J Physiol. 1994;478(Pt 1):137–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Lang RJ. The whole-cell Ca2+ channel current in single smooth muscle cells of the guinea-pig ureter. J Physiol. 1990;423:453–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Sims SM. Calcium and potassium currents in canine gastric smooth muscle cells. Am J Phys. 1992;262:G859–67.

    CAS  Google Scholar 

  160. Fleischmann BK, Murray RK, Kotlikoff MI. Voltage window for sustained elevation of cytosolic calcium in smooth muscle cells. Proc Natl Acad Sci U S A. 1994;91:11914–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Langton PD, Standen NB. Calcium currents elicited by voltage steps and steady voltages in myocytes isolated from the rat basilar artery. J Physiol. 1993;469:535–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Imaizumi Y, Muraki K, Takeda M, Watanabe M. Measurement and simulation of noninactivating Ca current in smooth muscle cells. Am J Phys. 1989;256:C880–5.

    Article  CAS  Google Scholar 

  163. Bayguinov O, Sanders KM. Role of nitric oxide as an inhibitory neurotransmitter in the canine pyloric sphincter. Am J Phys. 1993;264:G975–83.

    CAS  Google Scholar 

  164. Farre R, Auli M, Lecea B, Martinez E, Clave P. Pharmacologic characterization of intrinsic mechanisms controlling tone and relaxation of porcine lower esophageal sphincter. J Pharmacol Exp Ther. 2006;316:1238–48.

    Article  CAS  PubMed  Google Scholar 

  165. Middleton SJ, Cuthbert AW, Shorthouse M, Hunter JO. Nitric oxide affects mammalian distal colonic smooth muscle by tonic neural inhibition. Br J Pharmacol. 1993;108:974–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Mule F, D’Angelo S, Amato A, Contino I, Serio R. Modulation by nitric oxide of spontaneous mechanical activity in rat proximal colon. J Auton Pharmacol. 1999;19:1–6.

    Article  CAS  PubMed  Google Scholar 

  167. Fox-Threlkeld JE, Woskowska Z, Daniel EE. Sites of nitric oxide (NO) actions in control of circular muscle motility of the perfused isolated canine ileum. Can J Physiol Pharmacol. 1997;75:1340–9.

    Article  CAS  PubMed  Google Scholar 

  168. Yamato S, Spechler SJ, Goyal RK. Role of nitric oxide in esophageal peristalsis in the opossum. Gastroenterology. 1992;103:197–204.

    Article  CAS  PubMed  Google Scholar 

  169. Groneberg D, Zizer E, Lies B, Seidler B, Saur D, Wagner M, Friebe A. Dominant role of interstitial cells of Cajal in nitrergic relaxation of murine lower oesophageal sphincter. J Physiol. 2015;593:403–14.

    Article  CAS  PubMed  Google Scholar 

  170. Bauer AJ, Sanders KM. Gradient in excitation-contraction coupling in canine gastric antral circular muscle. J Physiol Lond. 1985;369:283–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Kamm KE, Stull JT. Regulation of smooth muscle contractile elements by second messengers. Annu Rev Physiol. 1989;51:299–313.

    Article  CAS  PubMed  Google Scholar 

  172. Nagai R, Kuro-o M, Babij P, Periasamy M. Identification of two types of smooth muscle myosin heavy chain isoforms by cDNA cloning and immunoblot analysis. J Biol Chem. 1989;264:9734–7.

    CAS  PubMed  Google Scholar 

  173. Kelley CA, Takahashi M, Yu JH, Adelstein RS. An insert of seven amino acids confers functional differences between smooth muscle myosins from the intestines and vasculature. J Biol Chem. 1993;268:12848–54.

    CAS  PubMed  Google Scholar 

  174. White S, Martin AF, Periasamy M. Identification of a novel smooth muscle myosin heavy chain cDNA: isoform diversity in the S1 head region. Am J Phys. 1993;264:C1252–8.

    Article  CAS  Google Scholar 

  175. Somlyo AP, Somlyo AV. Signal transduction by G-proteins, rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J Physiol (Lond). 2000;522(Pt 2):177–85.

    Article  CAS  Google Scholar 

  176. Somlyo AP, Somlyo AV. Signal transduction through the RhoA/Rho-kinase pathway in smooth muscle. J Muscle Res Cell Motil. 2004;25:613–5.

    Article  PubMed  Google Scholar 

  177. Matsumura F, Hartshorne DJ. Myosin phosphatase target subunit: many roles in cell function. Biochem Biophys Res Commun. 2008;369:149–56.

    Article  CAS  PubMed  Google Scholar 

  178. Hartshorne DJ, Ito M, Erdodi F. Role of protein phosphatase type 1 in contractile functions: myosin phosphatase. J Biol Chem. 2004;279:37211–4.

    Article  CAS  PubMed  Google Scholar 

  179. Grassie ME, Moffat LD, Walsh MP, MacDonald JA. The myosin phosphatase targeting protein (MYPT) family: a regulated mechanism for achieving substrate specificity of the catalytic subunit of protein phosphatase type 1delta. Arch Biochem Biophys. 2011;510:147–59.

    Article  CAS  PubMed  Google Scholar 

  180. Velasco G, Armstrong C, Morrice N, Frame S, Cohen P. Phosphorylation of the regulatory subunit of smooth muscle protein phosphatase 1M at Thr850 induces its dissociation from myosin. FEBS Lett. 2002;527:101–4.

    Article  CAS  PubMed  Google Scholar 

  181. Gao N, Chang AN, He W, Chen CP, Qiao YN, Zhu M, Kamm KE, Stull JT. Physiological signalling to myosin phosphatase targeting subunit-1 phosphorylation in ileal smooth muscle. J Physiol. 2016;594:3209–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Somlyo AP, Somlyo AV. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev. 2003;83:1325–58.

    Article  CAS  PubMed  Google Scholar 

  183. Dimopoulos GJ, Semba S, Kitazawa K, Eto M, Kitazawa T. Ca2+-dependent rapid Ca2+ sensitization of contraction in arterial smooth muscle. Circ Res. 2007;100:121–9.

    Article  CAS  PubMed  Google Scholar 

  184. Kitazawa T. G protein-mediated Ca(2)+-sensitization of CPI-17 phosphorylation in arterial smooth muscle. Biochem Biophys Res Commun. 2010;401:75–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Khasnis M, Nakatomi A, Gumpper K, Eto M. Reconstituted human myosin light chain phosphatase reveals distinct roles of two inhibitory phosphorylation sites of the regulatory subunit, MYPT1. Biochemistry. 2014;53:2701–9.

    Article  CAS  PubMed  Google Scholar 

  186. Wang T, Kendig DM, Smolock EM, Moreland RS. Carbachol-induced rabbit bladder smooth muscle contraction: roles of protein kinase C and Rho kinase. Am J Physiol Renal Physiol. 2009;297:F1534–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Mori D, Hori M, Murata T, Ohama T, Kishi H, Kobayashi S, Ozaki H. Synchronous phosphorylation of CPI-17 and MYPT1 is essential for inducing Ca(2+) sensitization in intestinal smooth muscle. Neurogastroenterol Motil. 2011;23:1111–22.

    Article  CAS  PubMed  Google Scholar 

  188. Tsai MH, Chang AN, Huang J, He W, Sweeney HL, Zhu M, Kamm KE, Stull JT. Constitutive phosphorylation of myosin phosphatase targeting subunit-1 in smooth muscle. J Physiol. 2014;592:3031–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Woodsome TP, Polzin A, Kitazawa K, Eto M, Kitazawa T. Agonist- and depolarization-induced signals for myosin light chain phosphorylation and force generation of cultured vascular smooth muscle cells. J Cell Sci. 2006;119:1769–80.

    Article  CAS  PubMed  Google Scholar 

  190. Bhetwal BP, An CL, Fisher SA, Perrino BA. Regulation of basal LC20 phosphorylation by MYPT1 and CPI-17 in murine gastric antrum, gastric fundus, and proximal colon smooth muscles. Neurogastroenterol Motil. 2011;23:e425–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Perrino BA. Calcium sensitization mechanisms in gastrointestinal smooth muscles. J Neurogastroenterol Motil. 2016;22:213–25.

    Article  PubMed  PubMed Central  Google Scholar 

  192. He WQ, Qiao YN, Peng YJ, Zha JM, Zhang CH, Chen C, Chen CP, Wang P, Yang X, Li CJ, et al. Altered contractile phenotypes of intestinal smooth muscle in mice deficient in myosin phosphatase target subunit 1. Gastroenterology. 2013;144:1456–65–1465.e1–5.

    Article  CAS  Google Scholar 

  193. Zhang CH, Wang P, Liu DH, Chen CP, Zhao W, Chen X, Chen C, He WQ, Qiao YN, Tao T, et al. The molecular basis of the genesis of basal tone in internal anal sphincter. Nat Commun. 2016;7:11358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Scotto-Lavino E, Garcia-Diaz M, Du G, Frohman MA. Basis for the isoform-specific interaction of myosin phosphatase subunits protein phosphatase 1c beta and myosin phosphatase targeting subunit 1. J Biol Chem. 2010;285:6419–24.

    Article  CAS  PubMed  Google Scholar 

  195. Gao N, Tsai MH, Chang AN, He W, Chen CP, Zhu M, Kamm KE, Stull JT. Physiological vs. pharmacological signalling to myosin phosphorylation in airway smooth muscle. J Physiol. 2017;595:6231–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Patel CA, Rattan S. Cellular regulation of basal tone in internal anal sphincter smooth muscle by RhoA/ROCK. Am J Physiol Gastrointest Liver Physiol. 2007;292:G1747–56.

    Article  CAS  PubMed  Google Scholar 

  197. Patel CA, Rattan S. Spontaneously tonic smooth muscle has characteristically higher levels of RhoA/ROK compared with the phasic smooth muscle. Am J Physiol Gastrointest Liver Physiol. 2006;291:G830–7.

    Article  CAS  PubMed  Google Scholar 

  198. Rattan S, Patel CA. Selectivity of ROCK inhibitors in the spontaneously tonic smooth muscle. Am J Physiol Gastrointest Liver Physiol. 2008;294:G687–93.

    Article  CAS  PubMed  Google Scholar 

  199. Rattan S, Singh J. RhoA/ROCK pathway is the major molecular determinant of basal tone in intact human internal anal sphincter. Am J Physiol Gastrointest Liver Physiol. 2012;302:G664–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Cobine C, Bhetwal B, Stever J, Keef K, Perrino B. Comparison of proteins involved in the regulation of myosin light chain (MLC(20)) phosphorylation in the monkey IAS and rectum. Neurogastroenterol Motil. 2013;25(Suppl 1)):43.

    Google Scholar 

  201. Eto M. Regulation of cellular protein phosphatase-1 (PP1) by phosphorylation of the CPI-17 family, C-kinase-activated PP1 inhibitors. J Biol Chem. 2009;284:35273–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Hirano K. Current topics in the regulatory mechanism underlying the Ca2+ sensitization of the contractile apparatus in vascular smooth muscle. J Pharmacol Sci. 2007;104:109–15.

    Article  CAS  PubMed  Google Scholar 

  203. Woodsome TP, Eto M, Everett A, Brautigan DL, Kitazawa T. Expression of CPI-17 and myosin phosphatase correlates with Ca(2+) sensitivity of protein kinase C-induced contraction in rabbit smooth muscle. J Physiol. 2001;535:553–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Bhetwal BP, Sanders KM, An C, Trappanese DM, Moreland RS, Perrino BA. Ca2+ sensitization pathways accessed by cholinergic neurotransmission in the murine gastric fundus. J Physiol. 2013;591:2971–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Bhetwal BP, An C, Baker SA, Lyon KL, Perrino BA. Impaired contractile responses and altered expression and phosphorylation of Ca(2+) sensitization proteins in gastric antrum smooth muscles from ob/ob mice. J Muscle Res Cell Motil. 2013;34:137–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Huang J, Zhou H, Mahavadi S, Sriwai W, Lyall V, Murthy KS. Signaling pathways mediating gastrointestinal smooth muscle contraction and MLC20 phosphorylation by motilin receptors. Am J Physiol Gastrointest Liver Physiol. 2005;288:G23–31.

    Article  CAS  PubMed  Google Scholar 

  207. Ihara E, Moffat L, Ostrander J, Walsh MP, MacDonald JA. Characterization of protein kinase pathways responsible for Ca2+ sensitization in rat ileal longitudinal smooth muscle. Am J Physiol Gastrointest Liver Physiol. 2007;293:G699–710.

    Article  CAS  PubMed  Google Scholar 

  208. Hersch E, Huang J, Grider JR, Murthy KS. Gq/G13 signaling by ET-1 in smooth muscle: MYPT1 phosphorylation via ETA and CPI-17 dephosphorylation via ETB. Am J Physiol Cell Physiol. 2004;287:C1209–18.

    Article  CAS  PubMed  Google Scholar 

  209. Ohama T, Hori M, Sato K, Ozaki H, Karaki H. Chronic treatment with interleukin-1beta attenuates contractions by decreasing the activities of CPI-17 and MYPT-1 in intestinal smooth muscle. J Biol Chem. 2003;278:48794–804.

    Article  CAS  PubMed  Google Scholar 

  210. Ohama T, Hori M, Fujisawa M, Kiyosue M, Hashimoto M, Ikenoue Y, Jinno Y, Miwa H, Matsumoto T, Murata T, et al. Downregulation of CPI-17 contributes to dysfunctional motility in chronic intestinal inflammation model mice and ulcerative colitis patients. J Gastroenterol. 2008;43:858–65.

    Article  PubMed  Google Scholar 

  211. Shimomura A, Ohama T, Hori M, Ozaki H. 17Beta-estradiol induces gastrointestinal motility disorder by decreasing CPI-17 phosphorylation via changes in rho-family G-protein Rnd expression in small intestine. J Vet Med Sci. 2009;71:1591–7.

    Article  CAS  PubMed  Google Scholar 

  212. Harnett KM, Cao W, Biancani P. Signal-transduction pathways that regulate smooth muscle function I. Signal transduction in phasic (esophageal) and tonic (gastroesophageal sphincter) smooth muscles. Am J Physiol Gastrointest Liver Physiol. 2005;288:G407–16.

    Article  CAS  PubMed  Google Scholar 

  213. Sims SM, Chrones T, Preiksaitis HG. Calcium sensitization in human esophageal muscle: role for RhoA kinase in maintenance of lower esophageal sphincter tone. J Pharmacol Exp Ther. 2008;327:178–86.

    Article  CAS  PubMed  Google Scholar 

  214. Himpens B, Matthijs G, Somlyo AP. Desensitization to cytoplasmic Ca2+ and Ca2+ sensitivities of guinea-pig ileum and rabbit pulmonary artery smooth muscle. J Physiol. 1989;413:489–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Kitazawa T, Somlyo AP. Desensitization and muscarinic re-sensitization of force and myosin light chain phosphorylation to cytoplasmic Ca2+ in smooth muscle. Biochem Biophys Res Commun. 1990;172:1291–7.

    Article  CAS  PubMed  Google Scholar 

  216. Lee MR, Li L, Kitazawa T. Cyclic GMP causes Ca2+ desensitization in vascular smooth muscle by activating the myosin light chain phosphatase. J Biol Chem. 1997;272:5063–8.

    Article  CAS  PubMed  Google Scholar 

  217. Sausbier M, Schubert R, Voigt V, Hirneiss C, Pfeifer A, Korth M, Kleppisch T, Ruth P, Hofmann F. Mechanisms of NO/cGMP-dependent vasorelaxation. Circ Res. 2000;87:825–30.

    Article  CAS  PubMed  Google Scholar 

  218. Etter EF, Eto M, Wardle RL, Brautigan DL, Murphy RA. Activation of myosin light chain phosphatase in intact arterial smooth muscle during nitric oxide-induced relaxation. J Biol Chem. 2001;276:34681–5.

    Article  CAS  PubMed  Google Scholar 

  219. Bonnevier J, Arner A. Actions downstream of cyclic GMP/protein kinase G can reverse protein kinase C-mediated phosphorylation of CPI-17 and Ca(2+) sensitization in smooth muscle. J Biol Chem. 2004;279:28998–9003.

    Article  CAS  PubMed  Google Scholar 

  220. Wooldridge AA, MacDonald JA, Erdodi F, Ma C, Borman MA, Hartshorne DJ, Haystead TA. Smooth muscle phosphatase is regulated in vivo by exclusion of phosphorylation of threonine 696 of MYPT1 by phosphorylation of Serine 695 in response to cyclic nucleotides. J Biol Chem. 2004;279:34496–504.

    Article  CAS  PubMed  Google Scholar 

  221. Nakamura K, Koga Y, Sakai H, Homma K, Ikebe M. cGMP-dependent relaxation of smooth muscle is coupled with the change in the phosphorylation of myosin phosphatase. Circ Res. 2007;101:712–22.

    Article  CAS  PubMed  Google Scholar 

  222. Neppl RL, Lubomirov LT, Momotani K, Pfitzer G, Eto M, Somlyo AV. Thromboxane A2-induced bi-directional regulation of cerebral arterial tone. J Biol Chem. 2009;284:6348–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Shirinsky VP, Vorotnikov AV, Birukov KG, Nanaev AK, Collinge M, Lukas TJ, Sellers JR, Watterson DM. A kinase-related protein stabilizes unphosphorylated smooth muscle myosin minifilaments in the presence of ATP. J Biol Chem. 1993;268:16578–83.

    CAS  PubMed  Google Scholar 

  224. Khromov AS, Wang H, Choudhury N, McDuffie M, Herring BP, Nakamoto R, Owens GK, Somlyo AP, Somlyo AV. Smooth muscle of telokin-deficient mice exhibits increased sensitivity to Ca2+ and decreased cGMP-induced relaxation. Proc Natl Acad Sci U S A. 2006;103:2440–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Rattan S. Ca2+/calmodulin/MLCK pathway initiates, and RhoA/ROCK maintains, the internal anal sphincter smooth muscle tone. Am J Physiol Gastrointest Liver Physiol. 2017;312:G63–6.

    Article  PubMed  Google Scholar 

  226. Bashashati M, Moraveji S, Torabi A, Sarosiek I, Davis BR, Diaz J, McCallum RW. Pathological findings of the antral and pyloric smooth muscle in patients with gastroparesis-like syndrome compared to gastroparesis: similarities and differences. Dig Dis Sci. 2017;62:2828–33.

    Article  PubMed  Google Scholar 

  227. Chander RB, Mullin GE, Passi M, Zheng X, Salem A, Yolken R, Pasricha PJ. A prospective evaluation of ileocecal valve dysfunction and intestinal motility derangements in small intestinal bacterial overgrowth. Dig Dis Sci. 2017;62:3525–35.

    Article  Google Scholar 

  228. Bharucha AE. Pelvic floor: anatomy and function. Neurogastroenterol Motil. 2006;18:507–19.

    Article  CAS  PubMed  Google Scholar 

  229. Doodnath R, Puri P. Internal anal sphincter achalasia. Semin Pediatr Surg. 2009;18:246–8.

    Article  PubMed  Google Scholar 

  230. Shafik A, Ahmed I, El SO, Shafik AA. Interstitial cells of Cajal in reflux esophagitis: role in the pathogenesis of the disease. Med Sci Monit. 2005;11:BR452–6.

    PubMed  Google Scholar 

  231. Vanderwinden JM, Liu H, De Laet MH, Vanderhaeghen JJ. Study of the interstitial cells of Cajal in infantile hypertrophic pyloric stenosis (published erratum appears in Gastroenterology 1996 Nov;111(5):1403). Gastroenterology. 1996;111:279–88.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are extremely grateful to the NIDDK for their support through Grant No. DK078736.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen Keef .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Keef, K., Cobine, C. (2019). Generation of Spontaneous Tone by Gastrointestinal Sphincters. In: Hashitani, H., Lang, R. (eds) Smooth Muscle Spontaneous Activity. Advances in Experimental Medicine and Biology, vol 1124. Springer, Singapore. https://doi.org/10.1007/978-981-13-5895-1_2

Download citation

Publish with us

Policies and ethics