Skip to main content

Microbial Remediation of Crude Oil-Contaminated Sites

  • Chapter
  • First Online:
Environmental Concerns and Sustainable Development

Abstract

Sustainable development becomes a need for economic growth of any country that allows the use of natural resources with minimum damage to our environment. The same is applied for the use of crude oil. The demand for crude oil can’t be denied as it is a major source of energy (production of electricity, cooking gas, and facilitating transportation) and raw materials for various petroleum products like solvents, fertilizers, plastics, paints, pesticides, etc. Development of remediation technology to remediate petroleum hydrocarbon-contaminated sites due to crude oil spillage during its transportation becomes essential as it contains various hazardous, toxic, and carcinogenic compounds. Compared to physical and chemical processes of remediation, bioremediation is a highly efficient and self-propelling economic process. This review article presented a brief discussion on development of bioremediation of petroleum hydrocarbon in soil or in water. This article especially emphasizes the inherent characteristics of microbes that facilitate the bioremediation and the use of different biostimulants for fastest remediation of petroleum hydrocarbon-contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Mawgoud AM, Lepine F, Deziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86:1323–1336

    Article  CAS  Google Scholar 

  • Abdel-Megeed A (2004) Psychrophilic degradation of long chain alkanes. http://faculty.ksu.edu.sa/75164/ph%20d%20thesis/thesis.pdf. pp 158

  • Alexander M (1994) Biodegradation and bioremediation. Academic Press, San Diego

    Google Scholar 

  • Alvarez PJJ, Vogel TM (1991) Substrate interactions of benzene, toluene, and para-xylene during microbial degradation by pure cultures and mixed culture aquifer slurries. Appl Environ Microbiol 57(10):2981–2985

    CAS  Google Scholar 

  • Andreas KA, Ekelund NGA (2005) Effects on motile factors and cell growth of Euglena gracilis after exposure to wood ash solution; assessment of toxicity, nutrient availability and pH-dependency. Water Air Soil Pollut 162:353–368

    Article  CAS  Google Scholar 

  • Barnabas J, Saha S, Singh V, Das S (2013) Effect of enzyme extracts on bacterial degradation of garage petroleum oils. J Environ Sci Comp Sci Eng Technol 2(2):206–211

    Google Scholar 

  • Bautista LF, Sanz R, Molina MC, González N, Sánchez D (2009) Effect of different non-ionic surfactants on the biodegradation of PAHs by diverse aerobic bacteria. Int Biodeterior Biodegrad 63:913–922

    Article  CAS  Google Scholar 

  • Bogusławska-Was E, Dąbrowski W (2001) The seasonal variability of yeasts and yeast-like organisms in water and bottom sediment of the Szczecin Lagoon. Int J Hyg Environ Health 203(5–6):451–458

    Article  Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67

    Article  CAS  Google Scholar 

  • Cao B, Nagarajan K, Loh KC (2009) Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Appl Microbiol Biotechnol 85(2):207–228

    Article  CAS  Google Scholar 

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368

    Article  CAS  Google Scholar 

  • Cerniglia CE (1993) Biodegradation of polycyclic aromatic hydrocarbons. Curr Opin Biotechnol 4:331–338

    Article  CAS  Google Scholar 

  • Cernigilia CE, Gibson DT (1977) Metabolism of naphthalene by Cunninghamella elegans. Appl Environ Microbiol 34:363

    Google Scholar 

  • Chaillan F, Le Fleche A, Bury E, Phantavonga Y, Grimont P, Saliotc A, Oudot J (2004) Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms. Res Microbiol 155(7):587–595

    Article  CAS  Google Scholar 

  • Chandran P, Das N (2010) Biosurfactant production and diesel oil degradation by yeast species Trichosporon asahii isolated from petroleum hydrocarbon contaminated soil. Int J Eng Sci Technol 2:6942–6953

    Google Scholar 

  • Chandran P, Das N (2012) Role of plasmid in diesel oil degradation by yeast species isolated from petroleum hydrocarbon-contaminated soil. Environ Technol 33(6):645–652

    Article  CAS  Google Scholar 

  • Chromo M, Sharifi HS, Motamedi H (2010) Bioremediation of a crude oil –polluted soil by applying of fertilizers. Iran J Env Health Sci Eng 7(4):319–326

    Google Scholar 

  • Coon MJ (2005) Omega oxygenases: nonheme-iron enzymes and P450 cytochromes. Biochem Biophys Res Commun 338:378–385

    Article  CAS  Google Scholar 

  • Coulon F, Pelletier E, Gourhant L, Delille D (2005) Effects of nutrient and temperature on degradation of petroleum hydrocarbons in contaminated sub-Antarctic soil. Chemosphere 58:1439–1448

    Article  CAS  Google Scholar 

  • Daverey A, Pakshirajan K (2009) Production of sophorolipids by the yeast Candida bombicola using simple and low cost fermentative media. Food Res Int 42(4):499–504

    Article  CAS  Google Scholar 

  • de Carvalho CCCR, Wick LY, Heipieper HJ (2009) Cell wall adaptations of planktonic and biofilm Rhodococcus erythropolis cells to growth on C5 to C16 n-alkane hydrocarbons. Appl Microbiol Biotechnol 82:311–320

    Article  CAS  Google Scholar 

  • Delille D, Coulon F, Pelletier E (2004) Effects of temperature warming during a bioremediation study of natural and nutrient-amended hydrocarbon-contaminated sub-Antarctic soils. Cold Reg Sci Technol 40:61–70

    Article  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    CAS  Google Scholar 

  • Dufrêne YF, Rouxhet PG (1996) Surface composition, surface properties, and adhesiveness of Azospirillum brasilense- Variation during growth. Can J Microbiol 42:548–556

    Article  Google Scholar 

  • EIA (2006) World Oil consumption by region. http://www.eia.gov/forecasts/ieo/index.cfm

  • Ercoli E, Galvez J, Calleja C, Calvo V, Cantero J, Videla S, Medaura M C, Dipaola M (2001) Extensive evaluation of aerated accumulation technique for soil treatments. SPE Paper 69445, presented at the SPE Latin American and Caribbean Petroleum Engineering Conf., Buenos Aires, Argentina, 25–28 March

    Google Scholar 

  • Gentry TJ, Rensing C, Pepper IL (2004) New approaches for bioaugmentation as a remediation technology. Crit Rev Environ Sci Technol 34:447–494

    Article  CAS  Google Scholar 

  • Grimberg SJ, Stringfellow WT, Aitken MD (1996) Quantifying the biodegradation of phenanthrene by Pseudomonas stutzeri P16 in the presence of a nonionic surfactant. Appl Environ Microbiol 62:2387–2392

    CAS  Google Scholar 

  • Konishi M, Fukuoka T, Morita T, Imura T, Kitamoto D (2008) Production of new types of sophorolipids by Candida batistae. J Oleo Sci 57:359–369

    Article  CAS  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15

    Article  CAS  Google Scholar 

  • Hillel D (1980) Soil structure and aggregation. In: Introduction to soil physics. Academic, London, pp 40–52

    Google Scholar 

  • Ilori MO, Amobi CJ, Odocha AC (2005) Factors affecting biosurfactant production by oil degrading Aeromonas spp. isolated from a tropical environment. Chemosphere 61(7):985–992

    Article  CAS  Google Scholar 

  • Jadhav M, Kalme S, Tamboli D, Govindwar S (2011) Rhamnolipid from Pseudomonas desmolyticum NCIM-2112 and its role in the degradation of Brown 3REL. J Basic Microbiol 51:385–396

    Article  CAS  Google Scholar 

  • Jin S, Fallgren PH (2007) Site-specific limitations of using urea as nitrogen source in biodegradation of petroleum wastes. Soil Sediment Contam 16(5):497–505

    Article  CAS  Google Scholar 

  • Joutey NT, Bahafid W, Sayel H, El Ghachtouli N (2013) Biodegradation: involved microorganism and genetically engineered microorganism. INTECH. http://creativecommon.org/licenses/by/3.0

  • Jussila MM, Zhao J, Suominen L, Lindström K (2007) TOL plasmid transfer during bacterial conjugation in vitro and rhizoremediation of oil compounds in vivo. Environ Pollut 146(2):510–524

    Article  CAS  Google Scholar 

  • Kadali KK, Simons KL, Sheppard PJ, Ball AS (2012) Mineralization of weathered crude oil by a hydrocarbon plastic consortium in marine microcosms. Water Air Soil Pollut 223:4283–4295

    Article  CAS  Google Scholar 

  • Khomenkov VG, Shevelev AB, Zhukov VG, Zagustina NA, Bezborodov AM, Popov VO (2008) Organization of metabolic pathways and molecular-genetic mechanisms of xenobiotic degradation in microorganisms: a review. Appl Biochem Microbiol 44:117–135

    Article  CAS  Google Scholar 

  • Kim IS, Park JS, Kim KW (2001) Enhanced biodegradation of polycyclic aromatic hydrocarbons using non-ionic surfactants in soil slurry. Appl Geochem 16:1419–1428

    Article  CAS  Google Scholar 

  • Komnitsas K, Bartzas G, Paspaliaris I (2004) Efficiency of limestone and red mud barriers: laboratory column studies. Miner Eng 17:183–194

    Article  CAS  Google Scholar 

  • Koolivand A, Naddafi K, Nabizadeh R, Nasseri S, Jafari AJ, Yunesian M, Yaghmaeian K, Nazmara S (2013) Biodegradation of petroleum hydrocarbons of bottom sludge from crude oil storage tanks by in-vessel composting. Toxicol Environ Chem 95(1):101–109

    Article  CAS  Google Scholar 

  • Kose T, Mukai T, Takimoto K, Okada M (2003) Effect of non-aqueous phaseliquid on biodegradation of PAHs in spilled oil on tidal flat. Water Res 37:1729–1736

    Article  CAS  Google Scholar 

  • Krishnaswamy M, Subbuchettiar G, Ravi TK, Panchaksharam S (2008) Biosurfactants properties, commercial production and application. Curr Sci 94:736–747

    Google Scholar 

  • Kumar M, León V, De Sisto Materano A, Ilzins OA, Luis L (2008) Biosurfactant production and hydrocarbon-degradation by halotolerant and thermotolerant Pseudomonas sp. World J Microbiol Biotechnol 24(7):1047–1057

    Article  CAS  Google Scholar 

  • Kumar S, Upadhayay SK, Kumari B, Tiwari S, Singh SN, Singh P (2011) In vitro degradation of fluoranthene by bacteria isolated from petroleum sludge. Bioresour Technol 102:3709–3715

    Article  CAS  Google Scholar 

  • Kumari B, Singh SN, Singh DP (2012) Characterization of two biosurfactant producing strains in crude oil degradation. Process Biochem 47(12):2463–2471

    Article  CAS  Google Scholar 

  • Kumari B, Singh SN, Singh DP (2016) Induced degradation of crude oil mediated by microbial augmentation and bulking agents. Int J Environ Sci Technol 13(4):1029–1042

    Article  CAS  Google Scholar 

  • Kuntz J, Nassr-Amellal N, Lollier M, Schmidt JE, Lebeau T (2008) Effect of sludges on bacteria in agricultural soil. Analysis at laboratory and outdoor lysimeter scale. Ecotoxicol Environ Saf 69:277–288

    Article  CAS  Google Scholar 

  • Laha S, Luthy RG (1992) Effects of nonionic surfactants on the solubilization and mineralization of phenanthrene in soil-water systems. Biotechnol Bioeng 40:1367–1380

    Article  CAS  Google Scholar 

  • Lavania M, Cheema S, Sarma PM, Mandal AK, Lal B (2012) Biodegradation of asphalt by Garciaellapetrolearia TERIG02 for viscosity reduction of heavy oil. Biodegradation 23:15–24

    Article  CAS  Google Scholar 

  • Lee SE, Seo JS, Keum YS, Lee KJ, Li QX (2007) Fluoranthene metabolism and associated proteins in Mycobacterium sp. JS14. Proteomics 7:2059–2069

    Article  CAS  Google Scholar 

  • Leilei Z, Mingxin H, Suiyi Z (2012) Enzymatic remediation of the polluted crude oil by Rhodococcus. Afr J Microbiol Res 6(7):1540–1547

    Article  CAS  Google Scholar 

  • Leonardi V, Ssek V, Petruccioli M, Annibale AD, Erbanova P, Cajthaml T (2007) Bioavailability modification and fungal biodegradation of PAHs in aged industrial soils. Int Biodeterior Biodegrad 60:165–170

    Article  CAS  Google Scholar 

  • Lethbridge G, Vits HJJ, Watkinson RJ (1994) Exxon Valdez and bioremediation. Nature 371:97–98

    Article  Google Scholar 

  • Li JL, Chen BH (2008) Effect of non-ionic surfactants on biodegradation of phenanthrene by a marine bacteria of Neptunomonas naphathovarans. J Hazard Mater 162(1):66–73

    Article  CAS  Google Scholar 

  • Li XJ, Lin X, Li PJ, Li W, Wang L, Ma F, Chukwuka KS (2009) Biodegradation of the low concentration of polycyclic aromatic hydrocarbons in soil by microbial consortium during incubation. J Hazard Mater 172:601–605

    Article  CAS  Google Scholar 

  • Liang Y, Gardner DR, Miller CD, Chen D, Anderson AJ, Weimer BC, Sims RC (2006) Study of biochemical pathways and enzymes involved in pyrene degradation by Mycobacterium sp. strain KMS. Appl Environ Microbiol 72:7821–7828

    Article  CAS  Google Scholar 

  • Liu Z, Edwards DA, Luthy RG (1992) Sorption of non-ionic surfactant onto soil. Water Res 26:1337–1345

    Article  CAS  Google Scholar 

  • Liu Y, Zhu L, Shen X (2001) Polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air of Hangzhou, China. Environ Sci Technol 35:840–844

    Article  CAS  Google Scholar 

  • Liu S, Guo C, Liang X, Wu F, Dang Z (2016) Nonionic surfactants induced changes in cell characteristics and phenanthrene degradation ability of Sphingomonas sp. GY2B. Ecotoxicol Environ Saf 129:210–218

    Article  CAS  Google Scholar 

  • Madigan MT, Martinko JM, Dunlap PV, Clark DP (2010) Brock biology of microorganisms, 12th edn. Benjamin Cummings, San Francisco

    Google Scholar 

  • Mahmound A, Aziza Y, Abdeltif A, Rachida M (2008) Biosurfactant production by Bacillus strain injected in the petroleum reservoirs. J Ind Microbiol Biotechnol 35:1303–1306

    Article  CAS  Google Scholar 

  • Moody JD, Freeman JP, Fu PP, Cerniglia CE (2004) Degradation of benzo[a]pyrene by Mycobacterium vanbaalenii PYR-1. Appl Environ Microbiol 70:340–345

    Article  CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Surfactant-enhanced remediation of contaminated soil: a review. Eng Geol 60:371–380

    Article  Google Scholar 

  • Muthusamy K, Gopalakrishnan S, Ravi TK, Sivachidambaram P (2008) Biosurfactants: properties, commercial production and application. Curr Sci 94(6):736–747

    CAS  Google Scholar 

  • Nakles D, Ray L (2002) Overview of Bioremediation Research of University of Texas and Gas Research Institute. Presentation at DOE/PERF Bioremediation Workshop. May 30

    Google Scholar 

  • Nikolopoulou M, Kalogerakis N (2009) Biostimulation strategies for fresh and chronically polluted marine environments with petroleum hydrocarbons. J Chem Technol Biotechnol 84(6):802–807

    Article  CAS  Google Scholar 

  • Nitschke M, Pastore GM (2006) Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater. Bioresour Technol 97:336–341

    Article  CAS  Google Scholar 

  • Noha H, Nguyen T, Sabatini A (2007) Basis for biosurfactant mixtures to achieve ultra low interfacial tension values against hydrocarbons. J Ind Microbiol Biotechnol 34:497–507

    Article  CAS  Google Scholar 

  • Noudeh GD, Noodeh AD, Moshafi MH, Behravan E, Afzadi MA, Sodagar M (2010) Investigation of cellular hydrophobicity and surface activity effects of biosynthesed biosurfactant from broth media of PTCC 1561. Afr J Microbiol Res 4(17):1814–1822

    CAS  Google Scholar 

  • Nyer EK, Payne F, Suthersan S (2002) Environment vs. bacteria or let’s play ‘name that bacteria. Ground Water Monit Remediat 23:36–45

    Article  CAS  Google Scholar 

  • Prakash B, Irfan M (2011) Pseudomonas aeruginosa is present in crude oil contaminated sites of Barmer region (India). J Bioremed Biodegrad 2:129

    Article  CAS  Google Scholar 

  • Prince R (2002) Bioremediation effectiveness: removing hydrocarbons while minimizing environmental impact. ExxonMobil Research and Engineering. Hand-out at DOE/PERF Bioremediation Workshop. May 30

    Google Scholar 

  • Resnick SM, Torok DS, Lee K, Brand JM, Gibson DT (1994) Regiospecific and stereoselective hydroxylation of 1-indanone and 2-indanone by naphthalene dioxygenase and toluene dioxygenase. Appl Environ Microbiol 60:3323–3328

    CAS  Google Scholar 

  • Ripp S, Nivens DE, Ahn Y, Werner C, Jarrel J, Easter JP, Cox CD, Burlage RS, Sayler GS (2000) Controlled field release of a bioluminescent genetically engineered microorganism for bioremediation process monitoring and control. Environ Sci Technol 34:846–853

    Article  CAS  Google Scholar 

  • Robinson C, Barry DA, McCarty PL, Gerhard JI, Kouznetsova I (2009) pH control for enhanced reductive bioremediation of chlorinated solvent source zones. Sci Total Environ 407:4560–4573

    Article  CAS  Google Scholar 

  • Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13:249–252

    Article  CAS  Google Scholar 

  • Salminen JM, Tuomi PM, Suortti AM, Jorgensen KS (2004) Potential for aerobic and anaerobic biodegradation of petroleum hydrocarbons in boreal subsurface. Biodegradation 15(1):29–39

    Article  CAS  Google Scholar 

  • Sampath R, Venkatakrishnan H, Ravichandran V, Chaudhury RR (2012) Biochemistry of TBT degrading marine Pseudomonas isolated from Indian coastal water. Water Air Soil Pollut 223:99–106

    Article  CAS  Google Scholar 

  • Satpute SK, Bhuyan SS, Pardesi KR, Mujumdar SS, Dhakephalkar PK, Shere AM, Chopade BA (2010) Molecular genetics of biosurfactant synthesis in microorganism. In: Sen R (ed) Biosurfactants. Landes Bioscience and Springer Science+Business Media, New York, pp 14–41

    Chapter  Google Scholar 

  • Sayler GS, Rip S (2000) Field applications of genetically engineered microorganisms for bioremediation processes. Curr Opin Biotechnol 11:286–289

    Article  CAS  Google Scholar 

  • Singh H (2006) Mycoremediation: fungal bioremediation. Wiley-Interscience, New York

    Book  Google Scholar 

  • Sutherland JB (1992) Detoxification of polycyclic hydrocarbons by fungi. J Ind Microbiol 9:53–62

    Article  CAS  Google Scholar 

  • Swannell RPJ, Lee K, McDonagh M (1996) Field evaluations of marine oil spill bioremediation. Microbiol Rev 60:342–365

    CAS  Google Scholar 

  • Tabatabaee A, Assadi MM, Noohi AA, Sajadian VA (2005) Isolation of biosurfactant producing bacteria from oil reservoirs. Iran. J Environ Health Sci Eng 2(1):6–12

    Google Scholar 

  • Thompson IP, van der Gast CJ, Ciric L, Singer AC (2005) Bioaugmentation for bioremediation: the challenge of strain selection. Environ Microbiol 7:909–915

    Article  CAS  Google Scholar 

  • Trasar-Cepeda C, Gil-Sotres F, Leiro’s MC (2007) Thermodynamic parameters of enzymes in grassland soils from Galicia, NW Spain. Soil Biol Biochem 39:311–319

    Article  CAS  Google Scholar 

  • Valentin L, Lu-Chau TA, Lopez C, Feijoo G, Moreira MT, Lerna JM (2007) Biodegradation of dibenzothiophene, fluoranthene, pyrene, and chrysene in a soil slurry reactor by the white-rot fungus Bjerkandera sp. BOS55. Process Biochem 42:641–648

    Article  CAS  Google Scholar 

  • van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74(1):13–21

    Article  CAS  Google Scholar 

  • van Beilen JB, Li Z, Duetz WA, Smits THM, Witholt B (2003) Diversity of alkane hydroxylase systems in the environment. Oil Gas Sci Technol 58:427–440

    Article  Google Scholar 

  • van Beilen JB, Marin MM, Smits TH, Rothlisberger M, Franchini AG, Witholt B, Rojo F (2004) Characterization of two alkane hydroxylase genes from the marine hydrocarbonoclastic bacterium Alcanivorax borkumensis. Environ Microbiol 6:264–273

    Article  CAS  Google Scholar 

  • van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549

    Article  CAS  Google Scholar 

  • Vater J, Kablitz B, Wilde C, Franke P, Mehta N, Cameotra SS (2002) Matrix-assisted laser desorption ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl Environ Microbiol 68:6210–6219

    Article  CAS  Google Scholar 

  • Walker JD, Colwell RR, Vaituzis Z, Meyer SA (1975) Petroleum-degrading achlorophyllous alga Protothecazopfi. Nature (London) 254:423–424

    Article  CAS  Google Scholar 

  • Ward OP (2010) Microbial biosurfactants and biodegradation. Adv Exp Med Biol (Sen R) 672:65–74. Biosurfactants book series

    Article  CAS  Google Scholar 

  • Wasilkowski D, Swedziol Z, Mrozik A (2012) The applicability of genetically modified microorganism in bioremediation of contaminated environments. Chemik 66(8):817–826

    CAS  Google Scholar 

  • Wentzel A, Ellingsen TE, Kotlar HK, Zotchev SB, Throne-Holst M (2007) Bacterial metabolism of longchain n-alkanes. Appl Microbiol Biotechnol 76:1209–1221

    Article  CAS  Google Scholar 

  • Wiehe IA, Kennedy RJ (2000) The oil compatibility model and crude oil incompatibility. Energy Fuel 14(1):56–59

    Article  CAS  Google Scholar 

  • Willumsen PA (2001) Degradation of phenanthrene-analogue azaarenes by Mycobacterium gilvum strain LB307T under aerobic conditions. Appl Microbiol Biotechnol 56:539–544

    Article  CAS  Google Scholar 

  • Yates GT, Smotzer T (2007) On the lag phase and initial decline of microbial growth curves. J Theor Biol 244:511–517

    Article  Google Scholar 

  • Yateem A, Balba M, Al-Awadhi N, El-Nawawy A (1997) White rot fungi and their role in remediating oil-contaminated soil. Environ Int 24:181–187

    Article  Google Scholar 

  • Yuan SY, Wei SH, Chang BV (2000) Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture. Chemosphere 41:1463–1468

    Article  CAS  Google Scholar 

  • Youssef N, Simpson DR, Duncan KE, McInerney MJ, Folmsbee M, Fincher T, Knapp RM (2007) In situ biosurfactant production by Bacillus strains injected into a limestone petroleum reservoir. Appl Environ Microbiol 73(4):1239–1247

    Article  CAS  Google Scholar 

  • Zhong H, Zeng GM, Liu JX (2008) Adsorption of mono rhamnolipid and di rhamnolipid on two strains and the effect on cell surface hydrophobicity. Appl Microbiol Biotechnol 79:671–677

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Author is thankful to CSIR-NBRI and Babasaheb Bhimrao Ambedkar University, Lucknow, for providing a place and opportunity to work on biodegradation of crude oil. Author also acknowledges the trainees working for their dissertation work with us.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumari, B., Kriti, Singh, G., Sinam, G., Singh, D.P. (2020). Microbial Remediation of Crude Oil-Contaminated Sites. In: Shukla, V., Kumar, N. (eds) Environmental Concerns and Sustainable Development. Springer, Singapore. https://doi.org/10.1007/978-981-13-5889-0_17

Download citation

Publish with us

Policies and ethics