Skip to main content

Molecular Biomarkers and Urinary Bladder Cancer (UBC)

  • Chapter
  • First Online:
Molecular Diagnostics in Cancer Patients

Abstract

Urinary bladder cancer is the most common cancer of urinary tract. The exact etiology of urinary bladder cancer is unknown. However, exposure to various risk factors may change the susceptibility as well as patho-physiological outcome of disease among individuals. The fundamental event in cancer development is loss of genomic integrity as experimental studies dictate that genetic changes either in germ line genes or somatic genetic alteration must occur for tumor initiation as well as propagation in later stages of tumor development. Conventionally clinical and pathological methods are used for the diagnosis and clinical outcome of urinary bladder cancer. However, the prognostic ability of these methods is limited because these methods are invasive, expensive and have major complications after procedure. Therefore, the biggest challenge in front of urologist and researchers is to develop relevant protocol that is cost effective, more sensitive and a non-invasive method for diagnosis. In this chapter, we have reviewed the molecular markers and associated possible benefits of detection, surveillance and prognostication of disease as well as investigating the molecular profile of individual patient which can guide clinician into a new era of improving prediction of natural history of tumor and providing a more personalized and tailored intravesical and systemic treatment to that particular patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Cancer incidence and mortality worldwide: GLOBOCAN 2008 v2.0. Lyon: International Agency for Research; 2010. Report No.: IARC CancerBase No. 10.

    Google Scholar 

  2. Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin. 2011;61:69.

    Article  PubMed  Google Scholar 

  3. Edwards BK, Ward E, Kohler BA, et al. Annual report to the nation on the status of cancer, 1975-2006, featuring colorectal cancer trends and impact of interventions (risk factors, screening, and treatment) to reduce future rates. Cancer. 2010;116:544–73.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Karim-Kos HE, de Vries E, Soerjomataram I, et al. Recent trends of cancer in Europe: a combined approach of incidence, survival and mortality for 17 cancer sites since the 1990s. Eur J Cancer. 2008;44:1345–89.

    Article  PubMed  Google Scholar 

  5. Burger M, Catto JW, Dalbagni G, et al. Epidemiology and risk factors of urothelial bladder cancer. Eur Urol. 2013;63:234–41.

    Article  PubMed  Google Scholar 

  6. Fajkovic H, Halpern JA, Cha EK, et al. Impact of gender on bladder cancer incidence, staging, and prognosis. World J Urol. 2011;29:457–63.

    Article  PubMed  Google Scholar 

  7. Pelucchi C, Bosetti C, Negri E, et al. Mechanisms of disease: the epidemiology of bladder cancer. Nat Clin Pract Urol. 2006;3:327–40.

    Article  CAS  PubMed  Google Scholar 

  8. Madeb R, Messing EM. Gender, racial and age differences in bladder cancer incidence and mortality. Urol Oncol. 2004;22:86–92.

    Article  PubMed  Google Scholar 

  9. Underwood W 3rd, Dunn RL, Williams C, et al. Gender and geographic influence on the racial disparity in bladder cancer mortality in the US. J Am Coll Surg. 2006;202:284–90.

    Article  PubMed  Google Scholar 

  10. Yee DS, Ishill NM, Lowrance WT, et al. Ethnic differences in bladder cancer survival. Urology. 2011;78:544–9.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Vineis P, Simonato L. Proportion of lung and bladder cancers in males resulting from occupation: a systematic approach. Arch Environ Health. 1991;46:6–15.

    Article  CAS  PubMed  Google Scholar 

  12. Zeegers MP, Tan FE, Dorant E, et al. The impact of characteristics of cigarette smoking on urinary tract cancer risk: a meta-analysis of epidemiologic studies. Cancer. 2000;89:630–9.

    Article  CAS  PubMed  Google Scholar 

  13. Murata M, Tamura A, Tada M, et al. Mechanism of oxidative DNA damage induced by carcinogenic 4-aminobiphenyl. Free Radic Biol Med. 2001;30:765–73.

    Article  CAS  PubMed  Google Scholar 

  14. Fontcuberta M, Arqués JF, Martínez M, et al. Polycyclic aromatic hydrocarbons in food samples collected in Barcelona, Spain. J Food Prot. 2006;69:2024–8.

    Article  CAS  PubMed  Google Scholar 

  15. Jacobsen BK, Bjelke E, Kvåle G, et al. Coffee drinking, mortality, and cancer incidence: results from a Norwegian prospective study. J Natl Cancer Inst. 1986;76:823–31.

    CAS  PubMed  Google Scholar 

  16. Pelucchi C, Galeone C, Tramacere I, et al. Alcohol drinking and bladder cancer risk: a meta-analysis. Ann Oncol. 2012;23:1586–93.

    Article  CAS  PubMed  Google Scholar 

  17. Zeegers MP, Tan FE, Verhagen AP, et al. Elevated risk of cancer of the urinary tract for alcohol drinkers: a metaanalysis. Cancer Causes Control. 1999;10:445–51.

    Article  CAS  PubMed  Google Scholar 

  18. Pelucchi C, La Vecchia C. Alcohol, coffee, and bladder cancer risk: a review of epidemiological studies. Eur J Cancer Prev. 2009;18:62–8.

    Article  PubMed  Google Scholar 

  19. Takanashi H, Also S, Hirono I, et al. Carcinogenicity test of Quercetin and kaempferol in rats by oral administration. J Food Saf. 1983;5(2):55–60.

    Article  CAS  Google Scholar 

  20. Jankovic S, Radosavljevic V. Risk factors for bladder cancer. Tumori. 2007;93(1):4–12.

    Article  PubMed  Google Scholar 

  21. Howe GR, Burch JD, Miller AB, et al. Tobacco use, occupation, coffee, various nutrients and bladder cancer. J Natl Cancer Inst. 1980;64:701–13.

    CAS  PubMed  Google Scholar 

  22. Rehn L. Bladder tumors in Fuchsine-workers. Married Dtsch Gesellsch Chir. 1895;24:240–52.

    Google Scholar 

  23. Hueper WC, Wiley FH, Wolfe HD. Experimental production of bladder tumors in dogs by administration of ß-naphthylamine. J Ind Hyg Tox. 1938;20:46–84.

    CAS  Google Scholar 

  24. Wallace DMA. Occupational urothelial cancer. Br J Urol. 1988;61:175–82.

    Article  CAS  PubMed  Google Scholar 

  25. Clapp RW, Jacob MM, Loechler EL. Environmental and occupational causes of cancer: new evidence 2005-2007. Rev Environ Health. 2008;23(1):1–37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Angervall L, Bengtsson U, Zetterlund CG, et al. Renal pelvic carcinoma in a Swedish district with abuse of a phenacetin-containing drug. Br J Urol. 1969;41:401–5.

    Article  CAS  PubMed  Google Scholar 

  27. Knight A, Askling J, Granath F, et al. Urinary bladder cancer in Wegener’s granulomatosis: risks and relation to cyclophosphamide. Ann Rheum Dis. 2004;63:1307–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Laursen B. Cancer of the bladder in patients treated with chlornaphazine. Br Med J. 1970;3:684–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. IARC. Aromatic amines, organic dyes, and related exposures. IARC Monogr Eval Carcinog Risks Hum. 2010;99:1–658.

    Google Scholar 

  30. IARC. Chemical agents and related occupations. IARC Monogr Eval Carcinog Risks Hum. 2012;100(Pt-F):9-562.

    Google Scholar 

  31. Bartsch H, Ohshima H, Pignatelli B, et al. Endogenously formed N-nitroso compounds and nitrosating agents in human cancer etiology. Pharmacogenetics. 1992;2:272–7.

    Article  CAS  PubMed  Google Scholar 

  32. Arlt VM, Stiborova M, Schmeiser HH. Aristolochic acid as a probable human cancer hazard in herbal remedies: a review. Mutagenesis. 2002;17:265–77.

    Article  CAS  PubMed  Google Scholar 

  33. Goldgar DE, Easton DF, Cannon-Albright LA, et al. Systematic population-based assessment of cancer risk in first-degree relatives of cancer probands. J Natl Cancer Inst. 1994;86(21):1600–8.

    Article  CAS  Google Scholar 

  34. Plna K, Hemminki K. Familial bladder cancer in the National Swedish Family Cancer Database. J Urol. 2001;166:2129–33.

    Article  CAS  PubMed  Google Scholar 

  35. Crawford JM. The origins of bladder cancer. Lab Investig. 2008;88(7):686–93.

    Article  CAS  PubMed  Google Scholar 

  36. Hail M, Grover PL. Polycyclic aromatic hydrocarbons: metabolism, activation, and tumour initiation. In: Cooper CS, Grover PL, editors. Chemical carcinogenesis and mutagenesis. 1st ed. Berlin: Springer; 1990. p. 327–72.

    Chapter  Google Scholar 

  37. Shields PG, Harris CC. Principles of carcinogenesis: chemical. In: DeVita VT, Hellman S, Rosenberg SA, editors. Cancer: principles and practice of oncology. Chapt 11. 4th ed. Philadelphia: Lippincott; 1993. p. 200–12.

    Google Scholar 

  38. Kadlubar FF. DNA adducts of carcinogenic aromatic amines. IARC Sci Pub. 1994;125:199–216.

    CAS  Google Scholar 

  39. Robbins JR, Yang L-NL, Anderson BG, et al. Photogenerated arylnitrenium ions. Reactions of N-tertbutyl 1(2-acetyl 1±4-substituted) phenyl nitrenium ions with alcohols and water studied by laser flash photolysis. J Am Chem Soc. 1995;117:6544–52.

    Article  CAS  Google Scholar 

  40. Longe J. Gale encyclopedia of cancer: a guide to cancer and its treatments, vol. 137. Detroit: Thomson Gale; 2005.

    Google Scholar 

  41. Hall RR, Prout GR. Staging of bladder cancer: is the tumor, node, metastasis system adequate? Semin Oncol. 1990;17:517–23.

    CAS  PubMed  Google Scholar 

  42. Malmstrom PU, Wijkstrom H, Thordtenson A, et al. Recurrence, progression and survival in bladder cancer: a retrospective analysis of 232 patients with greater than or equal to 5-year follow-up. Scand J Urol Nephrol. 1987;21:185–95.

    Article  CAS  PubMed  Google Scholar 

  43. Mostofi FKDC, Sesterhnn IA. Histological typing of urinary bladder tumors. Geneva: WHO; 1999.

    Book  Google Scholar 

  44. Montironi R, Lopez-Beltran A. The 2004 WHO classification of bladder tumors: a summary and commentary. Int J Surg Pathol. 2005;13:143–53.

    Article  PubMed  Google Scholar 

  45. Larsson P, Wijkstrom H, Thorstenson A, et al. A population based study of 53 patients with newly detected urinary bladder neoplasms followed during 5 years. Scand J Urol Nephrol. 2003;37:195–201.

    Article  PubMed  Google Scholar 

  46. Sankaranarayanan R, Swaminathan R, Brenner H, et al. Cancer survival in Africa, Asia, and Central America: a population-based study. Lancet Oncol. 2010;11(2):165–73.

    Article  PubMed  Google Scholar 

  47. Altekruse SF, Kosary CL, Krapcho M, et al., editors. SEER cancer statistics review; 1975 2007. Bethesda: National Cancer Institute. http://seer.cancer.gov/csr/1975_2007/ [based on November 2009 SEER data submission, posted to the SEER web site 2010].

  48. Sant M, Allemani C, Santaquilani M, et al. EUROCARE working group: survival of cancer patients diagnosed in 1995–1999. Results and commentary. Eur J Cancer. 2009;45(6):931–91.

    Article  PubMed  Google Scholar 

  49. Smith ZL, Guzzo TJ. Urinary markers of bladder cancer. F1000Prime Rep. 2013;5:5–21.

    Article  Google Scholar 

  50. Kim WJ, Bae SC. Molecular biomarkers in urothelial bladder cancer. Cancer Sci. 2008;99(4):646–52.

    Article  CAS  PubMed  Google Scholar 

  51. Shariat SF, Karam JA, Lerner SP. Molecular markers in bladder cancer. Curr Opin Urol. 2008;18(1):1–8.

    Article  PubMed  Google Scholar 

  52. Lokeshwar VB, Habuchi T, Grossman HB, et al. Bladder tumor markers beyond cytology: International Consensus Panel on bladder tumor markers. Urology. 2005;66:35–63.

    Article  PubMed  Google Scholar 

  53. Van RBW, Van DPHG, Van DKTH. Urine markers for bladder cancer surveillance: a systematic review. Eur Urol. 2005;47:736–48.

    Article  CAS  Google Scholar 

  54. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  PubMed  Google Scholar 

  55. Hanahan D, Weinberg RA. The hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed Central  Google Scholar 

  56. Botstein D, Risch N. Discovering genotype underlying human phenotype: past successes for mendelian disease, future approaches for complex disease. Nat Genet. 2003;33(Suppl):228–37.

    Article  CAS  PubMed  Google Scholar 

  57. Knowles MA. What we could do now: molecular pathology of bladder cancer. Mol Pathol. 2001;54:215–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Fadl-Elmula I, Kytola S, Pan Y, et al. Characterization of chromosomal abnormalities in uroepithelial carcinomas by G-banding, spectral karyotyping and FISH analysis. Int J Cancer. 2001;92:824–31.

    Article  CAS  PubMed  Google Scholar 

  59. Sardi I, Bartoletti R, Occhini I, et al. Microsatellite alterations in superficial and locally advanced transitional cell carcinoma of the bladder. Oncol Rep. 1999;6:901–5.

    CAS  PubMed  Google Scholar 

  60. Thibodeau SN, Bren G, Schaid D. Microsatellite instability in cancer of the proximal colon. Science. 1993;260:816–9.

    Article  CAS  PubMed  Google Scholar 

  61. Tsai YC, Nichols PW, Hiti AL, et al. Allelic losses of chromosomes 9, 11, and 17 in human bladder cancer. Cancer Res. 1990;50:44–7.

    CAS  PubMed  Google Scholar 

  62. Presti JC Jr, Reuter VE, Galan T, et al. Molecular genetic alterations in superficial and locally advanced human bladder cancer. Cancer Res. 1991;51:5405–9.

    PubMed  Google Scholar 

  63. Altayli E, et al. CYP1A2, CYP2D6, GSTM1, GSTP1, and GSTT1 gene polymorphisms in patients with bladder cancer in a Turkish population. Int Urol Nephrol. 2009;41(2):259–66.

    Article  CAS  PubMed  Google Scholar 

  64. Pavanello S, et al. CYP1A2 polymorphisms, occupational and environmental exposures and risk of bladder cancer. Eur J Epidemiol. 2010;25(7):491–500.

    Article  CAS  PubMed  Google Scholar 

  65. Tian Z, et al. Role of CYP1A2 1F polymorphism in cancer risk: evidence from a meta-analysis of 46 case-control studies. Gene. 2013;524(2):168–74.

    Article  CAS  PubMed  Google Scholar 

  66. Tao L, et al. Cytochrome P4501A2 phenotype and bladder cancer risk: the Shanghai bladder cancer study. Int J Cancer. 2012;130(5):1174–83.

    Article  CAS  PubMed  Google Scholar 

  67. Brockmoller J, Cascorbi I, Henning S, et al. Molecular genetics of cancer susceptibility. Pharmacology. 2000;61:212–27.

    Article  CAS  PubMed  Google Scholar 

  68. Strange RC, Fryer AA. The glutathione S-transferases: influence of polymorphism on cancer susceptibility. In: Vineis P, Malats N, Lang M, d’Errico A, Caporaso N, Cuzick J, Boffetta P, editors. Metabolic polymorphisms and susceptibility to cancer. Lyon: IARC; 1999. p. 231–49.

    Google Scholar 

  69. Hayes JD, Pulford DJ. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemo-protection and drug resistance. Crit Rev Biochem Mol Biol. 1995;30:445–600.

    Article  CAS  PubMed  Google Scholar 

  70. Mishra DK, Kumar A, Srivastava DSL, et al. Allelic variation of GSTT1, GSTM1 and GSTP1 genes in north Indian population. Asian Pac J Cancer Prev. 2004;5:362–5.

    PubMed  Google Scholar 

  71. Smith CM, Kelsey KT, Wiencke JK, et al. Inherited glutathione S-transferase deficiency is a risk factor for pulmonary asbestosis. Cancer Epidemiol Biomark Prev. 1994;3:471–7.

    CAS  Google Scholar 

  72. Shao J, Gu M, Zhang Z, et al. Genetic variants of the cytochrome P450 and glutathione S-transferase associated risk of bladder cancer in a south-eastern Chinese population. Int J Urol. 2008;15:216–21.

    Article  CAS  PubMed  Google Scholar 

  73. Grando JP, Kuasne H, Losi-Guembarovski R, et al. Association between polymorphisms in the biometabolism gene CYP1A1, GSTM1, GSTT1 and GSTP1 in bladder cancer. Clin Exp Med. 2009;9:21–8.

    Article  CAS  PubMed  Google Scholar 

  74. McGrath M, Michaud D, De Vivo I. Polymorphisms in GSTT1, GSTM1, NAT1 and NAT2 genes and bladder cancer risk in men and women. BMC Cancer. 2006;6:239.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Nelson HH, Wiencke JK, Christiani DC, et al. Ethnic differences in the prevalence of the homozygous deleted genotype of glutathione S-transferase q. Carcinogenesis. 1995;16:1243–5.

    Article  CAS  PubMed  Google Scholar 

  76. Brockmoller J, Cascorbi I, Kerb R, et al. Combined analysis of inherited polymorphisms in Arylamine N-acetyltransferase 2, glutathione S-transferases M1 and T1, microsomal epoxide hydrolase, and cytochrome P450 enzymes as modulators of bladder cancer risk. Cancer Res. 1996;56:3915–25.

    CAS  PubMed  Google Scholar 

  77. Moore LE, Wiencke JK, Bates MN, et al. Investigation of genetic polymorphisms and smoking in a bladder cancer case- control study in Argentina. Cancer Lett. 2004;211:199–207.

    Article  CAS  PubMed  Google Scholar 

  78. Sanyal S, Festa F, Sakano S, et al. Polymorphisms in DNA repair and metabolic genes in bladder cancer. Carcinogenesis. 2004;25:729–34.

    Article  CAS  PubMed  Google Scholar 

  79. Srivastava DS, Kumar A, Mittal RD, et al. NAT2 gene polymorphism in bladder cancer: a study from north India. Int J Hum Genet. 2004;4:201–5.

    Article  CAS  Google Scholar 

  80. Ali-Osmam F, Akande O, Antoun G, et al. Molecular cloning, characterization and expression in Escherichia coli of full length cDNAs of three human glutathione S-transferase pi gene variants. Evidence for different catalytic activity of the encoded protiens. J Biol Chem. 1997;272:10004–12.

    Article  Google Scholar 

  81. Wu K, Wang X, Xie Z, et al. Glutathione S-transferase P1 gene polymorphism and bladder cancer susceptibility: an updated analysis. Mol Biol Rep. 2013;40:687–95.

    Article  CAS  PubMed  Google Scholar 

  82. Inskip A, Elexperu-Camiruaga J, Buxton N, et al. Identification of polymorphism at the glutathione S-transferase, GSTM3 locus: evidence for linkage with GSTM1*A. Biochem J. 1995;312:713–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Hein DW, Doll MA, Rustan TD, et al. Metabolic activation and deactivation of arylamine carcinogens by recombinant human NAT1 and polymorphic Mat2 acetyltransferases. Carcinogenesis. 1993;14:1633–8.

    Article  CAS  PubMed  Google Scholar 

  84. Hein DW, Doll MA, Fretland AJ, et al. Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms. Cancer Epidemiol Biomark Prev. 2000;9:29–42.

    CAS  Google Scholar 

  85. Jian G, Liang D, Wang Y, et al. Effects of N-acetly transferase 1 and 2 polymorphisms on bladder cancer risk in Caucasians. Mutat Res. 2005;581:97–104.

    Article  CAS  Google Scholar 

  86. Franekova M, Halasova E, Bukovska E, et al. Gene polymorphisms in bladder cancer. Urol Oncol. 2008;26(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  87. Carreon T, Ruder AM, Schulte PA, et al. NAT2 slow acetylation and bladder cancer in workers exposed to benzidine. Int J Cancer. 2006;118:161–8.

    Article  CAS  PubMed  Google Scholar 

  88. Hsieh FI, Pu YS, Chern HD, et al. Genetic polymorphisms on M-acetyltransferase 1 and 2 and risk of cigarette smoking-related bladder cancer. Br J Cancer. 1999;81:537–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Weber WW, Hein DW. N-acetylation pharmacogenetics. Pharmacol Rev. 1985;37:25–79.

    CAS  PubMed  Google Scholar 

  90. Taylor JA, Umbach DM, Stephens E, et al. The role of N-acetylation polymorphisms in smoking-associated bladder cancer: evidence of a gene-gene-exposure three-way interaction. Cancer Res. 1998;58(16):3603–10.

    CAS  PubMed  Google Scholar 

  91. Hung RJ, Boffetta P, Brennan P, et al. Genetic polymorphism of MPO, COMT, MnSOD, NQO1, interaction with environmental exposures and bladder cancer risk. Carcinogenesis. 2004;25:973–8.

    Article  CAS  PubMed  Google Scholar 

  92. Sanderson S, Salanti G, Higgins J. Joint effects of the N-acetyltransferase 1 and 2 (NAT1 and NAT2) genes and smoking on bladder carcinogenesis: a literature-based systematic HuGE review and evidence synthesis. Am J Epidemiol. 2007;166(7):741–51.

    Article  PubMed  Google Scholar 

  93. Zheng L, Wang Y, Schabath MB, et al. Sulfotransferase 1A1 (SULT1A1) polymorphism and bladder cancer risk: a case-control study. Cancer Lett. 2003;202:61–9.

    Article  CAS  PubMed  Google Scholar 

  94. Hu DG, Mackenzie PI, McKinnon RA, et al. Genetic polymorphisms of human UDP-glucuronosyltransferase (UGT) genes and cancer risk. Drug Metab Rev. 2016;48:47–69.

    Article  CAS  PubMed  Google Scholar 

  95. Lin GF, Guo WC, Chen JG, et al. An association of UDPglucuronosyltransferase 2B7 C802T (His268Tyr) polymorphism with bladder cancer in benzidine-exposed workers in China. Toxicol Sci. 2005;85:502–6.

    Article  CAS  PubMed  Google Scholar 

  96. Kadlubar FF, Butler MA, Kaderlik KR, et al. Polymorphisms for aromatic amine metabolism in humans: relevance for human carcinogenesis. Environ Health Perspect. 1992;98:69–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Piedrafita FJ, Molander RB, Vansant G, et al. An Alu element in the myeloperoxidase promoter contains a composite SP1-thyroid hormone-retinoic acid response element. J Biol Chem. 1996;271:14412–20.

    Article  CAS  PubMed  Google Scholar 

  98. Zhu BT. Catechol-O-methyltransferase (COMT)-mediated methylation metabolism of endogenous bioactive catechols and modulation by endobitics and xenobiotics: importance in pathophysiology and pathogenesis. Curr Drug Metab. 2002;3:321–49.

    Article  CAS  PubMed  Google Scholar 

  99. Lotta T, Vidgren J, Tilgmann C, et al. Kinetics of human soluble and membrane-bound catechol O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry. 1995;34:4202–10.

    Article  CAS  PubMed  Google Scholar 

  100. McCord JM. Superoxide dismutase in aging and disease: an overview. Methods Enzymol. 2002;349:331–41.

    Article  CAS  PubMed  Google Scholar 

  101. Rosenblum JS, Gilula NB, Lerner RA. On signal sequence polymorphisms and diseases of distribution. Proc Natl Acad Sci U S A. 1996;93:4471–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Chada S, Whitney C, Newburger PE. Posttranscriptional regulation of glutathione peroxidase gene expression by selenium in the HL-60 human myeloid cell line. Blood. 1989;74:2535–41.

    CAS  PubMed  Google Scholar 

  103. Hu YJ, Diamond AM. Role of glutathione peroxidase 1 in breast cancer: loss of heterozygosity and allelic differences in the response to selenium. Cancer Res. 2003;63:3347–51.

    CAS  PubMed  Google Scholar 

  104. van Dijk B, van Houwelingen KP, Witjes JA, et al. Alcohol dehydrogenase type 3 (ADH3) and the risk of bladder cancer. Eur Urol. 2001;40:509–14.

    Article  PubMed  Google Scholar 

  105. Zhu Z, Shen Z, Xu C. Inflammatory pathways as promising targets to increase chemotherapy response in bladder cancer. Mediat Inflamm. 2012;2012:1–11.

    Article  CAS  Google Scholar 

  106. Tawara K, Jorcyk C, Oxford JT. Clinical significance of interleukin (IL)-6 in cancer metastasis to bone: potential of anti-IL-6 therapies. Cancer Manag Res. 2011;3:177–89.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Scheller J, Chalaris A, Schmidt-Arras D, et al. The pro- and anti inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta. 2011;1813:878–88.

    Article  CAS  PubMed  Google Scholar 

  108. Li CG, Li ML, Shu XH, et al. Antitumor effects of recombinant human interleukin-6 on mouse bladder carcinoma through Fas-mediated apoptosis. Cancer Chemother Pharmacol. 2010;66(5):981–6.

    Article  CAS  PubMed  Google Scholar 

  109. Naik DS, Sharma S, Ray A, et al. Epidermal growth factor receptor expression in urinary bladder cancer. Indian J Urol. 2011;27:208–14.

    Article  PubMed Central  PubMed  Google Scholar 

  110. Fishman D, Faulds G, Jeffery R, et al. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J Clin Invest. 1998;102:1369–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Muller-Hermelink N, Braumuller H, Pichler B, et al. TNFR1 signalling and IFN-gamma signalling determine whether T cells induce tumor dormancy or promote multistage carcinogenesis. Cancer Cell. 2008;13:507–18.

    Article  CAS  PubMed  Google Scholar 

  112. Chu H, Ma L, Wang M, et al. The polymorphisms of IL-4, IL-4R and IL-13 genes and bladder cancer risk in a Chinese population: a case-control study. Mol Biol Rep. 2012;395:5349–57.

    Article  CAS  Google Scholar 

  113. Gaur P, Mittal M, Mohanti B, Das S. Functional variants of IL4 and IL6 genes and risk of tobacco-related oral carcinoma in high-risk Asian Indians. Oral Dis. 2011;17:720–6.

    Article  CAS  PubMed  Google Scholar 

  114. Gomes M, Coelho A, Araujo A, Teixeira AL, Catarino R, Medeiros R. Influence of functional genetic polymorphism (-590C/T) in non-small cell lung cancer (NSCLC) development: the paradoxal role of IL-4. Gene. 2012;504:111–5.

    Article  CAS  PubMed  Google Scholar 

  115. Watanable Y, Kinoshita A, Yamada T, et al. A catalog of 106 single-nucleotide polymorphisms (SNPs) and 11 other types of variations in genes for transforming growth factor-beta1 (TGF-beta1) and its signaling pathway. J Hum Genet. 2002;47:478–83.

    Article  Google Scholar 

  116. Alexandrow MG, Moses HL. Transforming growth factor β and cell cycle regulation. Cancer Res. 1995;55:1452–7.

    CAS  PubMed  Google Scholar 

  117. Massague J. Receptors for the TGF-β family. Cell. 1992;69:1067–70.

    Article  CAS  PubMed  Google Scholar 

  118. Parsons R, Myeroff LL, Liu B, et al. Microsatellite instability and mutations of the transforming growth factor β type II receptor gene in colorectal cancer. Cancer Res. 1995;55:5548–50.

    CAS  PubMed  Google Scholar 

  119. Ding Z, Wu CJ, Chu GC, et al. SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression. Nature. 2011;470:269–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Kubiczkova L, Sedlarikova L, Hajek R, et al. TGF-β—an excellent servant but a bad master. J Transl Med. 2012;10:183.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Noordhuis MG, Fehrmann RS, Wisman GB, et al. Involvement of the TGF-β and β-catenin pathways in pelvic lymph node metastasis in early-stage cervical cancer. Clin Cancer Res. 2011;17(6):1317–30.

    Article  CAS  PubMed  Google Scholar 

  122. Gautam KA, Singh P, Sankhwar SN, et al. c.29C>T polymorphism in the transforming growth factor-β1 (TGFB1) gene correlates with increased risk of urinary bladder cancer. Cytokine. 2015;75(2):344–8.

    Article  CAS  PubMed  Google Scholar 

  123. Joshi NN, Kale MD, Hake SS, et al. Transforming growth factor β signaling pathway associated gene polymorphisms may explain lower breast cancer risk in western Indian women. PLoS One. 2011;6(8):e21866.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Wu GY, Lu Q, Hasenberg T, et al. Association between EGF, TGF-β1, TNF-α gene polymorphisms and cancer of the pancreatic head. Anticancer Res. 2010;30:5257–62.

    CAS  PubMed  Google Scholar 

  125. Balkwill F. Tumor necrosis factor or tumor promoting factor? Cytokine Growth Factor Rev. 2002;13:135–41.

    Article  CAS  PubMed  Google Scholar 

  126. Sethi G, Sung B, Aggarwal B. TNF: a master switch for inflammation to cancer. Front Biosci. 2008;13:5094–107.

    Article  CAS  PubMed  Google Scholar 

  127. Schmiegel W, Roeder C, Schmielau J, et al. Tumor necrosis factor alpha induces the expression of transforming growth factor alpha and the epidermal growth factor receptor. Proc Natl Acad Sci U S A. 1993;90:863–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  128. McDermott MF. TNF and TNFR biology in health and disease. Cell Mol Biol. 2001;47:619–35.

    CAS  PubMed  Google Scholar 

  129. Azmy IAK, Balasubramanian SP, Wilson AG, et al. Role of tumor necrosis factor gene polymorphisms (−308 and −238) in breast cancer susceptibility and severity. Breast Cancer Res. 2004;6:395–400.

    Article  CAS  Google Scholar 

  130. Gupta R, Sharma SC, Das SN, et al. Association of TNF-alpha and TNFR1 promoters and 3’UTR region of TNFR2 gene polymorphisms with genetic susceptibility to tobacco-related oral carcinoma in Asian Indians. Oral Oncol. 2008;44:455–63.

    Article  CAS  PubMed  Google Scholar 

  131. Kohaar I, Tiwari P, Kumar R, et al. Association of single nucleotide polymorphisms (SNPs) in TNF-LTA locus with breast cancer risk in Indian population. Breast Cancer Res Treat. 2009;114:347–55.

    Article  CAS  PubMed  Google Scholar 

  132. Dunning KR, Anastasi MR, Zhang VJ, et al. Regulation of fatty acid oxidation in mouse cumulus-oocyte complexes during maturation and modulation by PPAR agonists. PLoS One. 2014;9(2):e87327.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  133. Wang Y, Lerner S, Leibovici D, et al. Polymorphisms in the inflammatory genes IL-6, IL-8, TNF- alpha, NFKB1, and PPARG and bladder cancer risk. Proc Am Assoc Cancer Res Abstract. 2004;45:3979.

    Google Scholar 

  134. Yoshimura R, Matsuyama M, Segawa Y, et al. Expression of peroxisome proliferator-receptors (PPARs) in human urinary bladder carcinoma and growth inhibition by its agonists. Int J Cancer. 2003;104(5):597–602.

    Article  CAS  PubMed  Google Scholar 

  135. Mansure JJ, Nassim R, Kassouf W. Peroxisome proliferator-activated receptors gamma in bladder cancer: a promising therapeutic target. Cancer Biol Ther. 2009;8(7):6–15.

    Article  PubMed  Google Scholar 

  136. Vane JR, Bakhle YS, Botting R. Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol. 1998;38:493–501.

    Article  Google Scholar 

  137. Tsujii M, Kawano S, Tsujii S, et al. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell. 1998;93:705–16.

    Article  CAS  PubMed  Google Scholar 

  138. Gangwar R, Mandhani A, Mittal RD. Functional polymorphisms of cyclooxygenase-2 (COX-2 gene) and risk of urinary bladder cancer in India. Surgery. 2011;149(1):126–34.

    Article  PubMed  Google Scholar 

  139. Kang S, Kim YB, Kim MH, et al. Polymorphism in the nuclear factor kappa-B binding promoter region of cyclooxygenase-2 is associated with an increased risk of bladder cancer. Cancer Lett. 2005;217:11–6.

    Article  CAS  PubMed  Google Scholar 

  140. Shariat SF, Chade DC, Karakiewicz PI, et al. Combination of multiple molecular markers can improve prognostication in patients with locally advanced and lymph node positive bladder Cancer. J Urol. 2010;183:68–75.

    Article  PubMed  Google Scholar 

  141. Lamont FR, Tomlinson DC, Cooper PA, et al. Small molecule FGF receptor inhibitors block FGFR-dependent urothelial carcinoma growth in vitro and in vivo. Br J Cancer. 2011;104:75–82.

    Article  CAS  PubMed  Google Scholar 

  142. Jirawatnotai S, Hu Y, Michowski W, et al. A function for cyclinD1 in DNA repair uncovered by protein interactome analyses in human cancers. Nature. 2011;474:230–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  143. Kopparapu PK, Boorjian SA, Robinson BD, et al. Expression of cyclind1 and its association with disease characteristics in bladder cancer. Anticancer Res. 2013;33:5235–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Liukkonen T, Lipponen P, Raitanen M, et al. Evaluation of p21WAF1/CIP1 and cyclin D1 expression in the progression of superficial bladder cancer. Finbladder Group. Urol Res. 2000;28:285–92.

    Article  CAS  PubMed  Google Scholar 

  145. Kamai T, Takagi K, Asami H, et al. Decreasing of p27 (Kip1) and cyclin E protein levels is associated with progression from superficial into invasive bladder cancer. Br J Cancer. 2001;84:1242–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  146. Salinas-Sánchez AS, Atienzar-Tobarra M, Lorenzo-Romero JG, et al. Sensitivity and specificity of p53 protein detection by immunohistochemistry in patients with urothelial bladder carcinoma. Urol Int. 2007;79:321–7.

    Article  CAS  PubMed  Google Scholar 

  147. Ecke TH, Sachs MD, Lenk SV, et al. TP53 gene mutations as an independent marker for urinary bladder cancer progression. Int J Mol Med. 2008;21:655–61.

    CAS  PubMed  Google Scholar 

  148. Youssef RF, Mitra AP, Bartsch G, Jones PA, et al. Molecular targets and targeted therapies in bladder cancer management. World J Urol. 2009;27:9–20.

    Article  PubMed  Google Scholar 

  149. Malats N, Bustos A, Nascimento CM, et al. P53 as a prognostic marker for bladder cancer: a meta-analysis and review. Lancet Oncol. 2005;6:678–86.

    Article  CAS  PubMed  Google Scholar 

  150. Stadler WM, Lerner SP, Groshen S, et al. Phase III study of molecularly targeted adjuvant therapy in locally advanced urothelial cancer of the bladder based on p53 status. J Clin Oncol. 2011;29:3443–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  151. Cheng L, Zhang S, MacLennan GT, et al. Bladder cancer: translating molecular genetic insights into clinical practice. Hum Pathol. 2011;42(4):455–81.

    Article  CAS  PubMed  Google Scholar 

  152. Bryan RT, Zeegers MP, James ND, et al. Biomarkers in bladder cancer. BJU Int. 2000;105:608–13.

    Article  CAS  Google Scholar 

  153. Villares GJ, Zigler M, Blehm K, et al. Targeting EGFR in bladder cancer. World J Urol. 2007;25:573–9.

    Article  CAS  PubMed  Google Scholar 

  154. Vrooman OP, Witjes JA. Molecular markers for detection, surveillance and prognostication of bladder cancer. Int J Urol. 2009;16:234–43.

    Article  CAS  PubMed  Google Scholar 

  155. Adida C, Crotty PL, McGrath J, et al. Developmentally regulated expression of the novel cancer anti-apoptosis gene survivin in human and mouse differentiation. Am J Pathol. 1998;152:43–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Ku JH, Godoy G, Amiel GE, Lerner SP. Urine survivin as a diagnostic biomarker for bladder cancer: a systematic review. BJU Int. 2012;110:630–6.

    Article  CAS  PubMed  Google Scholar 

  157. Barbisan F, Santinelli A, Mazzucchelli R, et al. Strong immunohistochemical expression of fibroblast growth factor receptor 3, superficial staining pattern of cytokeratin 20, and low proliferative activity define those papillary urothelial neoplasms of low malignant potential that do not recur. Cancer. 2008;112:636–44.

    Article  PubMed  Google Scholar 

  158. Korkolopoulou P, Christodoulou P, Konstantinidou AE, et al. Cell cycle regulators in bladder cancer: a multivariate survival study with emphasis on p27Kip1. Hum Pathol. 2000;31:751–60.

    Article  CAS  PubMed  Google Scholar 

  159. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3:415–28.

    Article  CAS  PubMed  Google Scholar 

  160. Tozawa T, Tamura G, Honda T, et al. Promoter hypermethylation of DAPkinase is associated with poor survival in primary biliary tract carcinoma patients. Cancer Sci. 2004;95:736–40.

    Article  CAS  PubMed  Google Scholar 

  161. Catto JW, Azzouzi AR, Rehman I, et al. Promoter hypermethylation is associated with tumor location, stage, and subsequent progression in transitional cell carcinoma. J Clin Oncol 2005;23:2903–10

    Google Scholar 

  162. Kim WJ, Kim EJ, Jeong P, et al. RUNX3 inactivation by point mutations and aberrant DNA methylation in bladder tumors. Cancer Res. 2005;65:9347–54.

    Article  CAS  PubMed  Google Scholar 

  163. Bryan RT, Zeegers MP, Nicholas DJ, WallaceMA, et al. Biomarkers in bladder cancer. BJU Int 2010;105:608–13.

    Google Scholar 

  164. Stein JP, Ginsberg DA, Grossfeld GD, et al. Effect of p21WAF1/CIP1 expression on tumor progression in bladder cancer. J Natl Cancer Inst 1998;90(14):1072–9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, A.N., Gautam, K.A., Sankhwar, S.N. (2019). Molecular Biomarkers and Urinary Bladder Cancer (UBC). In: Shukla, K., Sharma, P., Misra, S. (eds) Molecular Diagnostics in Cancer Patients. Springer, Singapore. https://doi.org/10.1007/978-981-13-5877-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-5877-7_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-5876-0

  • Online ISBN: 978-981-13-5877-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics