Skip to main content

Absorption, Metabolism, and Disposition of Flavonoids and Their Role in the Prevention of Distinctive Cancer Types

  • Chapter
  • First Online:

Abstract

Flavonoids consist of a large family of polyphenolic molecules like flavones, flavonols, flavanols, isoflavones, flavanones, and anthocyanidins which are ubiquitously distributed in nature and are present in a wide array of plant products, including fruits, vegetables, and green tea. Because of their powerful antioxidant, anti-inflammatory, and anticancer properties, rigorous research is going on with a number of flavonoids (quercetin, quercitrin, rutin, morin, kaempferol, etc.) to investigate their disease-preventive and health-promoting benefits in humans. Several studies have shown that the cancer prevention and pharmacotherapeutic potential of different flavonoids depend on the type of flavonoid and its chemical structure, bioavailability, effective blood levels, and pharmacokinetic and pharmacodynamic characteristics. Many in vivo and in vitro studies conducted with different types of flavonoids have revealed diverse effects against different types of cancers. However, the major flavonoids (apigenin, luteolin, kaempferol) found in vegetarian diet have depicted limited possibility of curing cancer. In vitro studies done with apigenin and luteolin have shown effectiveness against cervical cancer cells, while kaempferol produced oncolytic effects against gastric and ovarian cancer cells. These flavonoids and their metabolites have revealed different anticancer effects due to their rapid metabolism in the small intestine and liver. Cancers comprise a group of noncommunicable diseases characterized by long-term debilitating illnesses that cause heavy burden on the healthcare system. At present, certain types of cancers are incurable, and palliative interventions are directed to delay the spread of malignant cancer and to ameliorate the painful episodes associated with cancer. The purpose of this review is to focus on the absorption, distribution, metabolism, and excretion (ADME) of different flavonoids and to evaluate the immune-boosting, cancer-preventive, and therapeutic potential of flavonoids against different types of cancers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ananga A, Obuya J, Ochieng J et al (2017) Grape seed nutraceuticals for disease prevention: current status and future prospects. In: Phenolic compounds-biological activity. InTech, London

    Google Scholar 

  • Androutsopoulos VP, Spandidos DA (2013) The flavonoids diosmetin and luteolin exert synergistic cytostatic effects in human hepatoma HepG2 cells via CYP1A-catalyzed metabolism, activation of JNK and ERK and P53/P21 up-regulation. J Nutr Biochem 24:496–504

    Article  CAS  Google Scholar 

  • Baba S, Furuta T, Fujioka M et al (1983) Studies on drug metabolism by use of isotopes XXVII: urinary metabolites of rutin in rats and the role of intestinal microflora in the metabolism of rutin. J Pharm Sci 72:1155–1158

    Article  CAS  Google Scholar 

  • Beydokthi SS, Sendker J, Brandt S et al (2017) Traditionally used medicinal plants against uncomplicated urinary tract infections: Hexadecyl coumaric acid ester from the rhizomes of Agropyron repens (L.) P. Beauv. With antiadhesive activity against uropathogenic E. coli. Fitoterapia 117:22–27

    Article  CAS  Google Scholar 

  • Bilyk A, Sapers GM (1985) Distribution of quercetin and kaempferol in lettuce, kale, chive, garlic chive, leek, horseradish, red radish, and red cabbage tissues. J Agric Food Chem 33:226–228

    Article  CAS  Google Scholar 

  • Brouillard R, Cheminant A (1988) Flavonoids and plant color. In: Cody V, Middleton E, Harborne JB (eds) Plant flavonoids in biology and medicine: biochemical, cellular and medicinal properties. Alan R. Liss, Inc., New York, pp 93–106

    Google Scholar 

  • Bulzomi P, Bolli A, Galluzo P et al (2012) The naringenin-induced proapoptotic effect in breast cancer cell lines holds out against a high bisphenol a background. IUBMB Life 64:690–696

    Article  CAS  Google Scholar 

  • Cermak R, Landgraf S, Wolffram S (2004) Quercetin glucosides inhibit glucose uptake into brush-border-membrane vesicles of porcine jejunum. Br J Nutr 91:849–855

    Article  CAS  Google Scholar 

  • Chien CS, Shen KH, Huang JS et al (2010) Antimetastatic potential of fisetin involves inactivation of the PI3K/Akt and JNK signaling pathways with downregulation of MMP-2/9 expressions in prostate cancer PC-3 cells. Mol Cell Biochem 333:169

    Article  CAS  Google Scholar 

  • Cody V, Middleton E, Harborne JB (1986) Plant flavonoids in biology and medicine: biochemical, pharmacological, and structure-activity relationships. Prog Clin Biol Res 213:1–592

    Google Scholar 

  • Cook NC, Samman S (1996) Flavonoids–chemistry, metabolism, cardioprotective effects, and dietary sources. J Nutr Biochem 7:66–76

    Article  CAS  Google Scholar 

  • Cummings JH, Macfarlane GT (1991) The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol 70:443–459

    Article  CAS  Google Scholar 

  • Dai Z, Nair V, Khan M et al (2010) Pomegranate extract inhibits the proliferation and viability of MMTV-Wnt-1 mouse mammary cancer stem cells in vitro. Oncol Rep 24:1087–1091

    CAS  PubMed  Google Scholar 

  • Daniels LB, Coyle PJ, Chiao YB et al (1981) Purification and characterization of a cytosolic broad specificity beta-glucosidase from human liver. J Biol Chem 256:13004–13013

    CAS  PubMed  Google Scholar 

  • Day AJ, Cañada FJ, Díaz JC et al (2000) Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett 468:166–170

    Article  CAS  Google Scholar 

  • Déprez S, Mila I, Scalbert A (1999) Carbon-14 biolabeling of (+)-catechin and proanthocyanidin oligomers in willow tree cuttings. J Agric Food Chem 47:4219–4230

    Article  Google Scholar 

  • Doostdar H, Burke MD, Mayer RT (2000) Bioflavonoids: selective substrates and inhibitors for cytochrome P450 CYP1A and CYP1B1. Toxicology 144:31–38

    Article  CAS  Google Scholar 

  • Eckberg WR, Perotti ME (1983) Inhibition of gamete membrane fusion in the sea urchin by quercetin. Biol Bull 164:62–70

    Article  CAS  Google Scholar 

  • Erlund I, Alfthan G, Mäenpää J et al (2001) Tea and coronary heart disease: the flavonoid quercetin is more bioavailable from rutin in women than in men. Arch Intern Med 161:1919–1920

    Article  CAS  Google Scholar 

  • Farkas L, Gabor M, Kallay F (1986) Flavonoids and bioflavonoids. Akademiai Kiado, Budapest

    Google Scholar 

  • Gabor M (1986) The pharmacology of benzopyrone derivatives and related compounds. Akademiai Kiad, Budapest

    Google Scholar 

  • Gee JM, DuPont MS, Rhodes MJ et al (1998) Quercetin glucosides interact with the intestinal glucose transport pathway 1. Free Radic Biol Med 25:19–25

    Article  CAS  Google Scholar 

  • Gibellini L, Pinti M, Nasi M et al (2011) Quercetin and cancer chemoprevention. Evid Based Complement Alternat Med 2011:591356

    Article  Google Scholar 

  • Gopalan VE, Pastuszyn A, Galey WR et al (1992) Exolytic hydrolysis of toxic plant glucosides by Guinea pig liver cytosolic beta-glucosidase. J Biol Chem 267:14027–14032

    CAS  PubMed  Google Scholar 

  • Griffiths LA, Barrow A (1972) The fate of orally and parenterally administered flavonoids in the mammal. Angiologica 9:162–174

    CAS  PubMed  Google Scholar 

  • Griffiths K, Aggarwal BB, Singh RB et al (2016) Food antioxidants and their anti-inflammatory properties: a potential role in cardiovascular diseases and cancer prevention. Diseases 4:28

    Article  Google Scholar 

  • Groenewoud G, Hundt HKL (1986) The microbial metabolism of condensed (+)-catechins by rat-caecal microflora. Xenobiotica 16:99–107

    Article  CAS  Google Scholar 

  • Gullón B, Lú-Chau TA, Moreira MT et al (2017) Rutin: a review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends Food Sci Technol 67:220–235

    Article  Google Scholar 

  • Hackett AM (1986) The metabolism of flavonoid compounds in mammals. Prog Clin Biol Res 213:177

    CAS  PubMed  Google Scholar 

  • Hallman K, Aleck K, Quigley M et al (2017) The regulation of steroid receptors by epigallocatechin-3-gallate in breast cancer cells. Breast Cancer (Dove Med Press) 9:365

    CAS  Google Scholar 

  • Hammerstone JF, Lazarus SA, Schmitz HH (2000) Procyanidin content and variation in some commonly consumed foods. J Nutr 130:2086S–2092S

    Article  CAS  Google Scholar 

  • Havsteen B (1984) Flavonoids: a class of natural products of high pharmacological potency. Biochem Pharmacol 32:1141–1148

    Article  Google Scholar 

  • Hertog MGL, Hollman PCH, Katan MB (1992) Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands. J Agric Food Chem 40:2379–2383

    Article  CAS  Google Scholar 

  • Hertog MG, Hollman PC, Katan MB et al (1993) Intake of potentially anticarcinogenic flavonoids and their determinants in adults in the Netherlands. Nutr Cancer 20:21–29

    Article  CAS  Google Scholar 

  • Hollman PC, Katan MB (1998) Bioavailability and health effects of dietary flavonols in man. Arch Toxicol Suppl 20:237–248

    Article  CAS  Google Scholar 

  • Hollman PH, Katan MB (1999) Dietary flavonoids: intake, health effects and bioavailability. Food Chem Toxicol 37:937–942

    Article  CAS  Google Scholar 

  • Hollman PC, Bijsman MN, van Gameren Y et al (1999) The sugar moiety is a major determinant of the absorption of dietary flavonoid glycosides in man. Free Radic Res 31:569–573

    Article  CAS  Google Scholar 

  • Hostetler GL, Ralston RA, Schwartz SJ (2017) Flavones: food sources, bioavailability, metabolism, and bioactivity. Adv Nutr 8:423–435

    Article  CAS  Google Scholar 

  • Kefford JF, Chandler BV (eds) (1970) The chemical constituents of citrus fruits. Academic Press, New York

    Google Scholar 

  • Kinjo J, Nagao T, Tanaka T et al (2002) Activity-guided fractionation of green tea extract with antiproliferative activity against human stomach cancer cells. Biol Pharm Bull 25:1238–1240

    Article  CAS  Google Scholar 

  • Knekt P, Isotupa S, Rissanen H et al (2000) Quercetin intake and the incidence of cerebrovascular disease. Eur J Clin Nutr 54:415

    Article  CAS  Google Scholar 

  • Křížková J, Burdová K, Stiborová M et al (2009) The effects of selected flavonoids on cytochromes P450 in rat liver and small intestine. Interdiscip Toxicol 2:201–204

    Article  Google Scholar 

  • Leese HJ, Semenza G (1973) On the identity between the small intestinal enzymes phlorizin hydrolase and glycosylceramidase. J Biol Chem 248:8170–8173

    CAS  PubMed  Google Scholar 

  • Levy R, Faber KA, Ayyash L et al (1995) The effect of prenatal exposure to the phytoestrogen genistein on sexual differentiation in rats. Proc Soc Exp Biol Med 208:60–66

    Article  CAS  Google Scholar 

  • Liao S, Umekita Y, Guo J et al (1995) Growth inhibition and regression of human prostate and breast tumors in athymic mice by tea epigallocatechin gallate. Cancer Lett 96:239–243

    Article  CAS  Google Scholar 

  • Moon JH, Nakata R, Oshima S et al (2000) Accumulation of quercetin conjugates in blood plasma after the short-term ingestion of onion by women. Am J Phys Regul Integr Comp Phys 279:R461–R467

    CAS  Google Scholar 

  • Morales P, Haza AI (2012) Selective apoptotic effects of piceatannol and myricetin in human cancer cells. J Appl Toxicol 32:986–993

    Article  CAS  Google Scholar 

  • Mukherjee S, Debata PR, Hussaini R et al (2017) Unique synergistic formulation of curcumin, epicatechin gallate and resveratrol, tricurin, suppresses HPV E6, eliminates HPV+ cancer cells, and inhibits tumor progression. Oncotarget 8:60904

    PubMed  PubMed Central  Google Scholar 

  • Murota K, Shimizu S, Miyamoto S et al (2002) Unique uptake and transport of isoflavone aglycones by human intestinal Caco-2 cells: comparison of isoflavonoids and flavonoids. J Nutr 132:1956–1961

    Article  CAS  Google Scholar 

  • Nass-Arden L, Breitbart H (1990) Modulation of mammalian sperm motility by quercetin. Mol Reprod Dev 25:369–373

    Article  CAS  Google Scholar 

  • Olthof MR, Hollman PC, Vree TB et al (2000) Bioavailabilities of quercetin-3-glucoside and quercetin-4′-glucoside do not differ in humans. J Nutr 130:1200–1203

    Article  CAS  Google Scholar 

  • Olthof MR, Hollman PC, Buijsman MN et al (2003) Chlorogenic acid, quercetin-3-rutinoside and black tea phenols are extensively metabolized in humans. J Nutr 133:1806–1814

    Article  CAS  Google Scholar 

  • Passamonti S, Terdoslavich M, Franca R et al (2009) Bioavailability of flavonoids: a review of their membrane transport and the function of bilitranslocase in animal and plant organisms. Curr Drug Metab 10:369–394

    Article  CAS  Google Scholar 

  • Rice-Evans CA, Packer L (eds) (1998) Flavonoids in health and disease. Marcel Dekker, Inc., New York

    Google Scholar 

  • Sato F, Matsukawa Y, Matsumoto K et al (1994) Apigenin induces morphological differentiation and G2-M arrest in rat neuronal cells. Biochem Biophys Res Commun 204:578–584

    Article  CAS  Google Scholar 

  • Scheline RR (1991) Handbook of mammalian metabolism of plant compounds. CRC Press, Boca Raton

    Google Scholar 

  • Semwal DK, Semwal RB, Combrinck S et al (2016) Myricetin: a dietary molecule with diverse biological activities. Nutrients 8:90

    Article  Google Scholar 

  • Spencer JP, Chaudry F, Pannala AS et al (2000) Decomposition of cocoa procyanidins in the gastric milieu. Biochem Biophys Res Commun 272:236–241

    Article  CAS  Google Scholar 

  • Strouch MJ, Milam BM, Melstrom LG et al (2009) The flavonoid apigenin potentiates the growth inhibitory effects of gemcitabine and abrogates gemcitabine resistance in human pancreatic cancer cells. Pancreas 38:409–415

    Article  CAS  Google Scholar 

  • Swain T (1975) Evolution of flavonoid compounds. In: Harborne JB, Mabry TJ, Mabry H (eds) The flavonoids. Chapman and Hall, Ltd., London, pp 109–1129

    Google Scholar 

  • Terao J, Kawai Y, Murota K (2008) Vegetable flavonoids and cardiovascular disease. Asia Pac J Clin Nutr 17:291–293

    CAS  PubMed  Google Scholar 

  • Truong HH, Neilson KA, McInerney BV et al (2017) Comparative performance of broiler chickens offered nutritionally equivalent diets based on six diverse, ‘tannin-free’sorghum varieties with quantified concentrations of phenolic compounds, kafirin, and phytate. Anim Prod Sci 57:828–838

    Article  CAS  Google Scholar 

  • Welton AR, Hurley I, Will P (1988) Flavonoids and arachidonic acid metabolism. In: Cody V, Middleton E, Harborne JB, Beretz A (eds) Plant flavonoids in biology and medicine II: biochemical, cellular and medicinal properties. Alan R. Liss, Inc., New York, pp 301–312

    Google Scholar 

  • Winter J, Popoff MR, Grimont P et al (1991) Clostridium orbiscindens sp. nov., a human intestinal bacterium capable of cleaving the flavonoid C-ring. Int J Syst Evol Microbiol 41:355–357

    CAS  Google Scholar 

  • Xiang L-P et al (2016) Suppressive effects of tea catechins on breast cancer. Nutrients 8(8):458

    Article  Google Scholar 

  • Yin F, Giuliano AE, Law RE et al (2001) Apigenin inhibits growth and induces G2/M arrest by modulating cyclin-CDK regulators and ERK MAP kinase activation in breast carcinoma cells. Anticancer Res 21:413–420

    CAS  PubMed  Google Scholar 

  • Yu C, Jiao Y, Xue J et al (2017) Metformin sensitizes non-small cell lung cancer cells to an epigallocatechin-3-gallate (EGCG) treatment by suppressing the Nrf2/HO-1 signaling pathway. Int J Biol Sci 13:1560–1569

    Article  CAS  Google Scholar 

Download references

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bagwe-Parab, S., Kaur, G., Buttar, H.S., Singh Tuli, H. (2019). Absorption, Metabolism, and Disposition of Flavonoids and Their Role in the Prevention of Distinctive Cancer Types. In: Singh Tuli, H. (eds) Current Aspects of Flavonoids: Their Role in Cancer Treatment . Springer, Singapore. https://doi.org/10.1007/978-981-13-5874-6_6

Download citation

Publish with us

Policies and ethics