Skip to main content

Phytopathogen Biomass as Inducer of Antifungal Compounds by Trichoderma asperellum Under Solid-State Fermentation

  • Chapter
  • First Online:
Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms

Abstract

The main objective of the present study was to evaluate the phytopathogen biomass of Phytophthora capsici and Colletotrichum gloeosporioides as inducers of antifungal metabolites from Trichoderma asperellum. The experiment was carried out through a solid-state fermentation using corncob as support/substrate. Water, ethanol, and toluene were used to recover the antifungal metabolites. The strain of P. capsici was inhibited by the metabolites recovered from all extracts; however C. gloeosporioides resist them and develop a normal growth. The bioactive extracts were fractioned using Amberlite XAD16®, and each fraction was analyzed by LC-ESI-MS. LC-ESI-MS analysis showed two major compounds; an unknown compound (1) was detected as [M + H] (m/z 478) while dihydroxybergamotene (2) as [M + H] (m/z 260). In addition, other four compounds were detected: viridepyronone (3), koninginin D (4), acetyltetrahydroxyanthraquinone (5), and virone or gliotoxin (6). The results suggest that the biomass of P. capsici worked as an inducer of antibiotic compounds in T. asperellum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahluwalia V, Kumar J, Rana VS, Sati OP, Walia S (2015) Comparative evaluation of two Trichoderma harzianum strains for major secondary metabolite production and antifungal activity. Nat Prod Res 29(10):914–920

    Article  CAS  PubMed  Google Scholar 

  • Albuquerque P, Casadevall A (2012) Quorum sensing in fungi–a review. Med Mycol 50(4):337–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angel LPL, Yusof MT, Ismail IS, Ping BTY, Mohamed Azni INA, Kamarudin NH, Sundram S (2016) An in vitro study of the antifungal activity of Trichoderma virens 7b and a profile of its non-polar antifungal components released against Ganoderma boninense. J Microbiol 54(11):732–744

    Article  CAS  PubMed  Google Scholar 

  • Arinbasarova AY, Baskunov BP, Medentsev AG (2017) A low-molecular mass antimicrobial peptide from Trichoderma aureoviride Rifai VKM F-4268D. Microbiology 86(2):289–291

    Article  CAS  Google Scholar 

  • Betina V, Sedmera P, Vokoun J, Podojil M (1986) Anthraquinone pigments from a conidiating mutant of Trichoderma viride. Experientia 42(2):196–197

    Article  CAS  Google Scholar 

  • Blight MM, Grove JF (1986) Viridin. Part 8. Structures of the analogues virone and wortmannolone. J Chem Soc, Perkin Trans 1:1317–1322

    Article  Google Scholar 

  • El-Debaiky SA (2017) Antagonistic studies and hyphal interactions of the new antagonist Aspergillus piperis against some phytopathogenic fungi in vitro in comparison with Trichoderma harzianum. Microb Pathog 113:135–143

    Article  PubMed  Google Scholar 

  • Elegbede JA, Lateef A (2017) Valorization of corn-cob by fungal isolates for production of xylanase in submerged and solid state fermentation media and potential biotechnological applications. Waste Biomass Valoriz 9:1–15

    Google Scholar 

  • El-Gendy MMAA, SHM A-Z, El-Bondkly AMA (2017) Construction of potent recombinant strain through intergeneric protoplast fusion in endophytic fungi for anticancerous enzymes production using rice straw. Appl Biochem Biotechnol 183:1–21

    Article  Google Scholar 

  • Evidente A, Cabras A, Maddau L, Serra S, Andolfi A, Motta A (2003) Viridepyronone, a new antifungal 6-substituted 2H-Pyran-2-one produced by Trichoderma viride. J Agric Food Chem 51(24):6957–6960

    Article  CAS  PubMed  Google Scholar 

  • Ghorbanpour M, Omidvari M, Abbaszadeh-Dahaji P, Omidvar R, Kariman K (2018) Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biol Control 117:147–157

    Article  Google Scholar 

  • Hogan DA (2006) Talking to themselves: autoregulation and quorum sensing in fungi. Eukaryot Cell 5(4):613–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu M, Li QL, Yang YB, Liu K, Miao CP, Zhao LX, Ding ZT (2017) Koninginins R-S from the endophytic fungus Trichoderma koningiopsis. Nat Prod Res 31(7):835–839

    Article  CAS  PubMed  Google Scholar 

  • Jeerapong C, Phupong W, Bangrak P, Intana W, Tuchinda P (2015) Trichoharzianol, a new antifungal from Trichoderma harzianum F031. J Agric Food Chem 63(14):3704–3708

    Article  CAS  PubMed  Google Scholar 

  • Jeleń H, Błaszczyk L, Chełkowski J, Rogowicz K, Strakowska J (2014) Formation of 6-n-pentyl-2H-pyran-2-one (6-PAP) and other volatiles by different Trichoderma species. Mycol Prog 13(3):589–600

    Article  Google Scholar 

  • Kang D, Kim J, Choi J, Liu K, Lee C (2011) Chemotaxonomy of Trichoderma spp. using mass spectrometry-based metabolite profiling. J Microbiol Biotechnol 21(1):5–13

    Article  CAS  PubMed  Google Scholar 

  • Keswani C (2015) Ecofriendly management of plant diseases by biosynthesized secondary metabolites of Trichoderma spp. J Brief Idea. https://doi.org/10.5281/zenodo.15571

  • Keswani C, Mishra S, Sarma BK, Singh SP, Singh HB (2014) Unravelling the efficient application of secondary metabolites of various Trichoderma spp. Appl Microbiol Biotechnol 98:533–544

    Article  CAS  Google Scholar 

  • Keswani C, Bisen K, Chitara MK, Sarma BK, Singh HB (2017) Exploring the role of secondary metabolites of Trichoderma in tripartite interaction with plant and pathogens. In: Singh J, Seneviratne G (eds) Agro-environmental sustainability. Springer, Cham, pp 63–79

    Chapter  Google Scholar 

  • Li Y, Sun R, Yu J, Saravanakumar K, Chen J (2016) Antagonistic and biocontrol potential of Trichoderma asperellum zjsx5003 against the maize stalk rot pathogen Fusarium graminearum. Indian J Microbiol 56(3):318–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazzei P, Vinale F, Woo SL, Pascale A, Lorito M, Piccolo A (2016) Metabolomics by proton high-resolution magic-angle-spinning nuclear magnetic resonance of tomato plants treated with two secondary metabolites isolated from Trichoderma. J Agric Food Chem 64(18):3538–3545

    Article  CAS  PubMed  Google Scholar 

  • Mevers E, Saurí J, Moser A, Varlan M, Martin G, Clardy J (2016) Chemical warfare: the battle between termite-associated actinobacteria and Trichoderma harzianum, a fungal pathogen. Planta Med 82(01):SL5

    Google Scholar 

  • Mohamed SA, Saleh RM, Kabli SA, Al-Garni SM (2016) Influence of solid state fermentation by Trichoderma spp. on solubility, phenolic content, antioxidant, and antimicrobial activities of commercial turmeric. Biosci Biotechnol Biochem 80(5):920–928

    Article  CAS  PubMed  Google Scholar 

  • Mutawila C, Vinale F, Halleen F, Lorito M, Mostert L (2016) Isolation, production and in vitro effects of the major secondary metabolite produced by Trichoderma species used for the control of grapevine trunk diseases. Plant Pathol 65(1):104–113

    Article  CAS  Google Scholar 

  • Prabhakaran N, Prameeladevi T, Sathiyabama M, Kamil D (2015) Screening of different Trichoderma species against agriculturally important foliar plant pathogens. J Environ Biol 36(1):191–198

    PubMed  Google Scholar 

  • Ruiz-Martínez J, Ascacio J, Rodríguez R, Morales D, Aguilar C (2011) Phytochemical screening of extracts from some Mexican plants used in traditional medicine. J Med Plant Res 5(13):2791–2797

    Google Scholar 

  • Saravanakumar K, Yu C, Dou K, Wang M, Li Y, Chen J (2016) Synergistic effect of Trichoderma-derived antifungal metabolites and cell wall degrading enzymes on enhanced biocontrol of Fusarium oxysporum f. sp. cucumerinum. Biol Control 94:37–46

    Article  CAS  Google Scholar 

  • Saravanakumar K, Chelliah R, Ramakrishnan SR, Kathiresan K, Oh DH, Wang MH (2018) Antibacterial and antioxidant potentials of non-cytotoxic extract of Trichoderma atroviride. Microb Pathog 115:338–342

    Article  CAS  PubMed  Google Scholar 

  • Shakeri J, Foster HA (2007) Proteolytic activity and antibiotic production by Trichoderma harzianum in relation to pathogenicity to insects. Enzym Microb Technol 40(4):961–968

    Article  CAS  Google Scholar 

  • Shentu X, Liu W, Zhan X, Yu X, Zhang C (2013) The elicitation effect of pathogenic fungi on trichodermin production by Trichoderma brevicompactum. Sci World J 2013:6

    Article  Google Scholar 

  • Singh HB, Sarma BK, Keswani C (eds) (2016) Agriculturally important microorganisms: commercialization and regulatory requirements in Asia. Springer, Singapore

    Google Scholar 

  • Singh HB, Sarma BK, Keswani C (eds) (2017) Advances in PGPR. CABI, Wallingford

    Google Scholar 

  • Sriwati R, Melnick RL, Muarif R, Strem MD, Samuels GJ, Bailey BA (2015) Trichoderma from Aceh Sumatra reduce Phytophthora lesions on pods and cacao seedlings. Biol Control 89:33–41

    Article  Google Scholar 

  • Sun J, Pei Y, Li E, Li W, Hyde KD, Yin WB, Liu X (2016) A new species of Trichoderma hypoxylon harbours abundant secondary metabolites. Sci Rep 6:37369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinale F, Marra R, Scala F, Ghisalberti EL, Lorito M, Sivasithamparam K (2006) Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett Appl Microbiol 43(2):143–148

    Article  CAS  PubMed  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti MJ, Li H, Woo SL, Lorito M (2008) A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant Pathol 72(1):80–86

    Article  CAS  Google Scholar 

  • Vinale F, Flematti G, Sivasithamparam K, Lorito M, Marra R, Skelton BW, Ghisalberti EL (2009) Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum. J Nat Prod 72(11):2032–2035

    Article  CAS  PubMed  Google Scholar 

  • Vinale F, Nigro M, Sivasithamparam K, Flematti G, Ghisalberti EL, Ruocco M, Varlese R, Marra R, Lanzuise S, Eid A, Woo SL, Lorito M (2013) Harzianic acid: a novel siderophore from Trichoderma harzianum. FEMS Microbiol Lett 347(2):123–129

    CAS  PubMed  Google Scholar 

  • Vinale F, Strakowska J, Mazzei P, Piccolo A, Marra R, Lombardi N, Manganiello G, Pascale A, Woo SL, Lorito M (2016) Cremenolide, a new antifungal, 10-member lactone from Trichoderma cremeum with plant growth promotion activity. Nat Prod Res 30(22):2575–2581

    Article  CAS  PubMed  Google Scholar 

  • Viniegra-González G (2014) New horizons for the production of industrial enzymes by solid-state fermentation. In: Guevara-Gonzalez R, Torres-Pacheco I (eds) Biosystems engineering: biofactories for food production in the century XXI. Springer International Publishing, Cham, pp 319–340

    Chapter  Google Scholar 

  • Wafaa MH, Mohamed HAA (2002) Enhancement of antifungal metabolite production from gamma-ray induced mutants of some Trichoderma species for control onion white rot disease. 植物病理學會刊 11(1):45–56

    Google Scholar 

  • Yamazaki H, Rotinsulu H, Takahashi O, Kirikoshi R, Namikoshi M (2016) Induced production of a new dipeptide with a disulfide bridge by long-term fermentation of marine-derived Trichoderma brevicompactum. Tetrahedron Lett 57(51):5764–5767

    Article  CAS  Google Scholar 

  • Zhang P, Bao B, Dang HT, Hong J, Lee HJ, Yoo ES, Bae KS, Jung JH (2009) Anti-inflammatory sesquiterpenoids from a sponge-derived fungus Acremonium sp. J Nat Prod 72(2):270–275

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Niaz S, Khan D, Wang Z, Zhu Y, Zhou H, Lin Y, Li J, Liu L (2017) Induction of diverse bioactive secondary metabolites from the mangrove endophytic fungus Trichoderma sp. (Strain 307) by co-cultivation with Acinetobacter johnsonii (Strain B2). Mar Drugs 15(2):35

    Article  CAS  PubMed Central  Google Scholar 

  • Zhou XX, Li J, Yang YH, Zeng Y, Zhao PJ (2014) Three new koninginins from Trichoderma neokongii 8722. Phytochem Lett 8:137–140

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristóbal N. Aguilar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De la Cruz-Quiroz, R., Ascacio-Valdés, J.A., Rodríguez-Herrera, R., Roussos, S., Aguilar, C.N. (2019). Phytopathogen Biomass as Inducer of Antifungal Compounds by Trichoderma asperellum Under Solid-State Fermentation. In: Singh, H., Keswani, C., Reddy, M., Sansinenea, E., García-Estrada, C. (eds) Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms. Springer, Singapore. https://doi.org/10.1007/978-981-13-5862-3_6

Download citation

Publish with us

Policies and ethics