Skip to main content

Secondary Metabolites from Cyanobacteria: A Potential Source for Plant Growth Promotion and Disease Management

  • Chapter
  • First Online:
Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms

Abstract

Cyanobacteria are known to be a rich source of novel metabolites of significant importance from antimicrobial activities’ point of view. Another important characteristic is their nitrogen-fixing capacity which has drawn attention to agriculturists and researchers. Cyanobacteria acquire niches in different agricultural soils, where they potentially contribute toward biological nitrogen fixation and solubilization of immobilized phosphates and thereby improve soil fertility and crop productivity. In addition to their properties of natural fertilization and balancing mineral nutrition in soil, a number of cyanobacteria are known to release different biologically active substances like carbohydrates, polysaccharide proteins, vitamins, amino acids, and phytohormones, which participate as elicitor molecules to boost plant growth and help in defense responses against biotic and abiotic stresses. These metabolites affect the expression of certain genes in the host plants which ultimately leads to qualitative and quantitative changes in the phytochemical compositions in plants. However, all these prospects are still in their infancy, and thorough investigations are required in searching more potential strains of cyanobacteria and genetically variable strains to ensure maximum benefit out of the strains. This chapter reviews the role of cyanobacteria in triggering growth and development in plants and prospects of their utilization in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Hafez SI, Abo-Elyousr KA, Abdel-Rahim IR (2015) Fungicidal activity of extracellular products of cyanobacteria against Alternaria porri. Eur J Plant Pathol 50(2):239–245

    CAS  Google Scholar 

  • Abed RMM, Dobretsov S, Sudesh K (2009) Applications of cyanobacteria in biotechnology. J Appl Microbiol 106:1–12

    CAS  PubMed  Google Scholar 

  • Abo-Shady AM, Al-ghaffar BA, Rahhal MMH, Abd-El Monem HA (2007) Biological control of faba bean pathogenic fungi by three cyanobacterial filtrates. Pak J Biol Sci 10:3029–3038

    PubMed  Google Scholar 

  • Adam MS (1999) The promotive effect of the cyanobacterium Nostoc muscorum on the growth of some crop plants. Acta Microbiol Pol 48:163–171

    CAS  Google Scholar 

  • Ahmad MR, Winter A (1968) Studies on the hormonal relationships of algae in pure culture. I. The effect of indole-3-acetic acid on the growth of blue-green and green algae. Planta 78:277–286

    CAS  PubMed  Google Scholar 

  • Apte SK, Bhagwat AA (1989) Salinity-stress-induced proteins in two nitrogen-fixing anabaena strains differentially tolerant to salt. J Bacterio 171:909–915

    CAS  Google Scholar 

  • Baracaldo PS, Hayes PK, Blank CE (2005) Morphological and habitat evolution in the cyanobacteria using a compartmentalization approach. Geobiology 3:145–165

    Google Scholar 

  • Bergman B, Gallon JR, Rai AN, Stal LJ (1997) N2 fixation by non-heterocystous cyanobacteria. FEMS Microbiol Rev 19:139–185

    CAS  Google Scholar 

  • Berry JP, Gantar M, Perez MH, Berry G, Noriega FG (2008) Cyanobacterial toxins as allelochemicals with potential applications as algaecides, herbicides and insecticides. Mar Drugs 6:117–146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Biondi N, Piccardi R, Margheri MC, Rodolfi L, Smith GD, Tredici MR (2004) Evaluation of Nostoc strain ATCC 53789 as a potential source of natural pesticides. Appl Environ Microbiol 70:3313–3320

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bloor S, England RR (1989) Antibiotic production by cyanobacterium Nostoc muscorum. J Appl Phycol 1:367–372

    Google Scholar 

  • Borowitzka MA (1995) Microalgae as source of pharmaceuticals and other biologically active compounds. J Appl Phycol 7:3–15

    CAS  Google Scholar 

  • Carmichael WW (1992) Cyanobacteria secondary metabolites-the cyanotoxins. J Appl Bacteriol 72:445–459

    CAS  PubMed  Google Scholar 

  • Chaudhary V, Prasanna R, Nain L, Dubey SC, Gupta V, Singh R, Jaggi S, Bhatnagar AK (2012) Bioefficacy of novel cyanobacteria-amended formulations in suppressing damping off disease in tomato seedlings. World J Microbiol Biotechnol 28:3301–3310

    PubMed  Google Scholar 

  • Chen J, Song L, Dai J, Gan N, Liu Z (2004) Effects of microcystins on the growth and the activity of the superoxide dismutase and peroxidase of rape (Brassica napus L.) and rice (Oryza sativa L.). Toxicon 43:393–400

    CAS  PubMed  Google Scholar 

  • Chetsumon A, Fujieda K, Hirata K, Yagi K, Miura Y (1993) Optimization of antibiotic production by the cyanobacterium Scytonema sp. TISTR 8208 immobilized on polyurethanefoam. J Appl Phycol 5:615–622

    CAS  Google Scholar 

  • Codd GA (1995) Cyanobacterial toxins: occurrence, properties and biological significance. Water Sci Technol 32(4):149–156

    CAS  Google Scholar 

  • Davies J, Ryan KS (2011) Introducing the parvome: bioactive compounds in the microbial world. ACS Chem Biol 7(2):252–259

    PubMed  Google Scholar 

  • Dittmann E, Wiegand C (2006) Cyanobacterial toxins occurrence, biosynthesis and impact on human affairs. Mol Nutr Food Res 50:7–17

    CAS  PubMed  Google Scholar 

  • El-Bahbohy RM, Khalil MK, Mahmoud AA (2014) Phytohormones impacts on the prospective nitrogen-fixing cyanobacterium Anabaena sp. isolate. Glob J Agric Food Saf Sci 1:38–51

    Google Scholar 

  • Farnkmolle WP, Larsen LK, Caplan FR, Patterson GML Knubel G (1992) Antifungal cyclic peptides from the terrestrial blue-green alga Anabaena laxa I isolation and biological properties. J Antibiot 45:1451–1457

    Google Scholar 

  • Fuller WH, Rogers RN (1952) Utilization of the phosphorus of algal cells as measured by the neubauer technique. Soil Sci 74:417–429

    CAS  Google Scholar 

  • Garcia-Gonzalez J, Sommerfeld M (2016) Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. J Appl Phycol 28:1051–1061

    PubMed  Google Scholar 

  • Grieco E, Desrochers R (1978) Production de vitamine B12 par une algae blue. Can J Microbiol 24:1562–1566

    CAS  PubMed  Google Scholar 

  • Grzesik M, Romanowska-Duda Z, Kalaji HM (2017) Effectiveness of cyanobacteria and green algae in enhancing the photosynthetic performance and growth of willow (Salix viminalis L.) plants under limited synthetic fertilizers application. Photosynthetica 55(3):510–521

    CAS  Google Scholar 

  • Gupta V, Ratha SK, Sood A, Chaudhary V, Prasanna R (2013) New insights into the biodiversity and applications of cyanobacteria (blue-green algae) prospects and challenges. Algal Res 2(2):79–97

    Google Scholar 

  • Hagmann L, Juttner F (1996) Fischerllin: a novel with the fungicide Diathane M45 on the control of photosystem II inhibiting allelochemical of the chocolate spot on leaf and pods spot on horse cyanobacterium Fischerella muscicola with beans. Agric Res Rev Cairo 53:123–134

    Google Scholar 

  • Haroun SA, Hussein MH (2003) The promotive effect of algal biofertilizers on growth, protein pattern and some metabolic activities of Lupinus termis plants grown in siliceous soil. Asian J Plant Sci 2:944–951

    Google Scholar 

  • Hashtroudi MS, Ghassempour A, Riahi H, Shariatmadari Z, Khanjir M (2013) Endogenous auxin in plant growth-promoting cyanobacteria-Anabaena vaginicola and Nostoc calcicola. J Appl Phycol 25:379–386

    CAS  Google Scholar 

  • Herrero A, Flores E (2008) The cyanobacteria: molecular biology, genomics and evolution, 1st edn. Caister Academic Press, Norfolk

    Google Scholar 

  • Hewedy MA, Rahhal MMH, Ismail IA (2000) Pathological studies on soybean damping-off disease. Egypt J Appl Sci 15:88–102

    Google Scholar 

  • Higa T (1991) Effective microorganisms: a biotechnology for mankind. In: Parr JF, Hornick SB, Simpson ME (eds) Proceedings of the first international conference on Kyusei nature farming. U.S. Department of Agriculture, Washington, DC, pp 8–14

    Google Scholar 

  • Higa T, Wididana GN (1991) Changes in the soil microflora induced by effective microorganisms. In: Parr JF, Hornick SB, Whitman CE (eds) Proceedings of the first international conference on Kyusei nature farming. U.S. Department of Agriculture, Washington, DC, pp 153–162

    Google Scholar 

  • Hussain A, Hasnain S (2011) Phytostimulation and biofertilization in wheat by cyanobacteria. J Ind Microbiol Biotechnol 38:85–92

    CAS  PubMed  Google Scholar 

  • Hussain A, Hamayun M, Shah ST (2013) Root colonization and phytostimulation by phytohormones producing entophytic Nostoc sp. AH-12. Curr Microbiol 67:624–630

    CAS  PubMed  Google Scholar 

  • Issa AA (1999) Antibiotic production by the cyanobacteria Oscillatoria angustissima and Calothrix parietina. Environ Toxicol Pharmacol 8:33–37

    CAS  PubMed  Google Scholar 

  • Jaki B, Zerbe O, Heilmann J, Sticher O (2001) Two novel cyclic peptides with antifungal activity from the cyanobacterium Tolypothrix byssoidea (EAWAG 195). J Nat Prod 64:154–158

    CAS  PubMed  Google Scholar 

  • Jimenez E, Dorta F, Medina C, RamĂ­rez A, RamĂ­rez I, Pena-Cortes H (2011) Anti-phytopathogenic activities of macro-algae extracts. Mar Drugs 9(5):739–756

    PubMed  PubMed Central  Google Scholar 

  • Karl G, Cyril P (2008) Secondary metabolites from cyanobacteria: complex structures and powerful bioactivities. Curr Org Chem 12:326–341

    Google Scholar 

  • Khan MIR, Syeed S, Nazar R, Anjum NA (2012) An insight into the role of salicylic acid and jasmonic acid in salt stress tolerance. In: Khan NA, Nazar R, Iqbal N, Anjum NA (eds) Phytohormones and abiotic stress tolerance in plants. Springer, Berlin/Heidelberg, pp 277–300

    Google Scholar 

  • Kim JD (2006) Screening of cyanobacteria (blue-green algae) from rice paddy soil for antifungal activity against plant pathogenic fungi. Mycobiology 34:138–142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kulik MM (1995) The potential for using cyanobacteria (blue green algae) and algae in the biological control of plant pathogenic bacteria and fungi. Eur J Plant Pathol 101:585–599

    Google Scholar 

  • Likhitkar VS, Tarar JL (1995) Effect of pre-soaking seed treatment with Nostoc muscorum extracts on cotton. Ann Plant Physiol 9:113–116

    Google Scholar 

  • Manjunath M, Prasanna R, Nain L, Dureja P, Singh R, Kumar A, Jaggi S, Kaushik BD (2010) Biocontrol potential of cyanobacterial metabolites against damping off disease caused by Pythium aphanidermatum in solanaceous vegetables. Arch Phytopathol Plant Protect 43(7):666–677

    Google Scholar 

  • Marsalek B, Zahradnickova H, Hronkova M (1992) Extracellular abscisic acid produced by cyanobacteria under salt stress. J Plant Physiol 139:506–508

    CAS  Google Scholar 

  • Martinez GA, Chaves AR, Anon MC (1996) Effect of exogenous application of gibberellic acid on color change and phenylalanine ammonia-lyase, chlorophyllase, and peroxidase activities during ripening of strawberry fruit (Fragaria ananassa duch.). J Plant Growth Regul 15:139–146

    CAS  Google Scholar 

  • Misra S, Kaushik BD (1989a) Growth promoting substances of cyanobacteria. I. Vitamins and their influence on rice plant. Proc Indian Sci Acad 55:295–300

    CAS  Google Scholar 

  • Misra S, Kaushik BD (1989b) Growth promoting substances of cyanobacteria II: detection of amino acids, sugars and auxins proc. Ind Natl Sci Acad 6:499–504

    Google Scholar 

  • Mohan M, Mukherji KG (1978) Some biologically active extracellular products of blue-green algae. Phykos 18:73–82

    Google Scholar 

  • Moore RE, Patterson GML, Myndrese JS, Barchi J Jr, Norton TR (1986) Toxins from cyanophyte belonging to the scytonematoceae. Pure Appl Chem 58:263–271

    CAS  Google Scholar 

  • Mostafa SM, Abdel El-All AAM, Hussien MY (2009) Bioactivity of algal extracellular byproducts on cercospora leaf spot disease, growth performance and quality of sugar beet. In 4th conference on recent technologies in agriculture, Faculty of Agriculture, Cairo University

    Google Scholar 

  • Moussa TAA, Shanab SMM (2001) Impact of cyanobacterial toxicity stress on the growth activities of some phytopathogenic Fusarium sp. Az J Microbiol 53:267–281

    Google Scholar 

  • Mundt S, Kreitlow S, Jansen R (2003) Fatty acids with antibacterial activity from the cyanobacterium Oscillatoria redekei HUB 051. J Appl Phycol 15(2–3):263–267

    CAS  Google Scholar 

  • Nikkinen H, Hakkila K, Gunnelius L, Huokko T, Pollari M, Tyystjarvi T (2012) The SigBr factor regulates multiple salt acclimation responses of the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol 158:514–523

    CAS  PubMed  Google Scholar 

  • Obreht Z, Kerby NW, Gantar M, Rowell P (1993) Effects of root associated N2-fixing cyanobacteria on the growth and nitrogen content of wheat (Triticum vulgare L.) seedlings. Biol Fertil Soils 15:68–72

    CAS  Google Scholar 

  • Okuda A, Yamaguchi M (1960) Nitrogen fixing microorganisms in paddy soils. VI. Vitamin B12 activity in nitrogen fixing blue green algae. Soil Plant Food 6:76–85

    CAS  Google Scholar 

  • Olson JM (2006) Photosynthesis in the archean era. Photosyn Res 88:109–117

    CAS  PubMed  Google Scholar 

  • Osman MEH, El-Sheekh MM, El-Naggar AH, Gheda SF (2010) Effect of two species of cyanobacteria as biofertilizers on some metabolic activities, growth, and yield of pea plant. Biol Fert Soils 46:861–875

    Google Scholar 

  • Pandhal J, Ow SY, Wright PC, Biggs CA (2009) Comparative proteomics study of salt tolerance between a non-sequenced extremely halotolerant cyanobacterium and its mildly halotolerant relative using in vivo metabolic labeling and in vitro isobaric labeling. J Proteome Res 8:818–828

    CAS  PubMed  Google Scholar 

  • Patterson GML, Larse LK, Moore RE (1994) Bioactive natural products from blue-green algae. J Appl Phycol 6:151–157

    CAS  Google Scholar 

  • Pawar ST, Puranik PR (2008) Screening of terrestrial and freshwater halotolerant cyanobacteria for antifungal activities. World J Microbiol Biotechnol 24:1019–1025

    CAS  Google Scholar 

  • Prasanna R, Chaudhary V, Gupta V, Babu S, Kumar A, Singh R, Singh Shivay YS, Lata Nain L (2013) Cyanobacteria mediated plant growth promotion and bioprotection against Fusarium wilt in tomato. Eur J Plant Pathol 136(2):337–353

    Google Scholar 

  • Priya H, Prasanna R, Ramakrishnan B, Bidyarani N, Babu S, Thapa S, Renuka N (2015) Influence of cyanobacterial inoculation on the culturable microbiome and growth of rice. Microbiol Res 171:78–89

    CAS  PubMed  Google Scholar 

  • Raja R, Hemaiswarya S, Ashok KN, Sridhar S, Rengasamy R (2008) A perspective on the biotechnological potential of microalgae. Crit Rev Microbiol 34:77–88

    CAS  PubMed  Google Scholar 

  • Rao CSVR (1994) Antimicrobial activity of cyanobacteria. I. J Mar Sci 23:55–56

    Google Scholar 

  • Ressom R, San Soong F, Fitzgerald J, Turczynowicz L, El Saadi O, Roder D, Maynard T, Falconer I (1994) Health effects of toxic cyanobacteria (blue-green algae) 27–69. Australian Government Publishing Service, Canberra

    Google Scholar 

  • Rinehart KL, Namikoshi M, Choi BW (1994) Structure and biosynthesis of toxins from blue-green algae (cyanobacteria). J Appl Phycol 6:159–176

    CAS  Google Scholar 

  • Rizk MA (2006) Growth activities of the sugarbeet pathogens Sclerotium rolfsii Sacc. Rhizoctonia solani Kuhn. and Fusarium verticillioides Sacc. Under cyanobacterial filtrates stress. Plant Pathol J 5:212–215

    Google Scholar 

  • Rodgers GA, Bergman B, Henriksson E, Udris M (1979) Utilization of blue-green algae as bio-fertilizers. Plant Soil 52:99–107

    CAS  Google Scholar 

  • Rogers SL, Burns RG (1994) Changes in aggregate stability, nutrient status, indigenous microbial populations and seedling emergence following inoculation of soil with Nostoc muscorum. Biol Fertil Soils 18:209–215

    Google Scholar 

  • Saker ML, Grifiths DJ (2000) The effect of temperature on growth and cylindrospermopsin content of seven isolates of Cylindrospermopsis raciborskii (nostocales, cyanophyceae) from water bodies in northern Australia. Phycologia 39:349–354

    Google Scholar 

  • Schaeffer DJ, Krylov VS (2000) Anti-HIV activity of extracts and compounds from algae and cyanobacteria. Ecotoxicol Environ Saf 45:208–227

    CAS  PubMed  Google Scholar 

  • Schlegel I, Doan NT, Chazal N, Smith GD (1999) Antibiotic activity of new cyanobacterial isolates from Australia and Asia against green algae and cyanobacteria. J Appl Phycol 10:471–479

    Google Scholar 

  • Schmitt EK, Moore CM, Krastel P, Petersen F (2011) Natural products as catalysts for innovation: a pharmaceutical industry perspective. Curr Opin Chem Biol 15(4):497–504

    CAS  PubMed  Google Scholar 

  • Selykh IO, Semenova LR (2000) Problems of ecology and physiology of microorganisms. Dialog-MGU, Moscow, p 94

    Google Scholar 

  • Sergeeva E, Liaimer A, Bergman B (2002) Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Planta 215:229–238

    CAS  PubMed  Google Scholar 

  • Shaieb FA, Issa AA, Meragaa A (2014) Antimicrobial activity of crude extracts of cyanobacteria Nostoc commune and Spirulina platensis. Arch Biomed Sci 2(2):34–41

    Google Scholar 

  • Shariatmadari Z, Riahi H, Hastroudi MS, Ghassempour A, Aghashariatmadary Z (2013) Plant growth promoting cyanobacteria and their distribution in terrestrial habitats of Iran. Soil Sci Plant Nutr 59:535–547

    CAS  Google Scholar 

  • Sielaff H, Christiansen G, Schwecke T (2006) Natural products from cyanobacteria: exploiting a new source for drug discovery. I Drugs 9:119–127

    CAS  PubMed  Google Scholar 

  • Singh S (2014) A review on possible elicitor molecules of cyanobacteria: their role in improving plant growth and providing tolerance against biotic or abiotic stress. J Appl Microbiol 117(5):1221–1244

    CAS  PubMed  Google Scholar 

  • Singh NK, Dhar DW (2010) Cyanobacterial reclamation of salt-affected soil. In: Lichtfouse E (ed) Genetic engineering, biofertilisation, soil quality and organic farming sustainable agriculture reviews. Springer, Dordrecht, pp 243–275

    Google Scholar 

  • Singh VP, Trehan T (1973) Effects of extracellular products of Aulosira fertilissima on the growth of rice seedlings. Plant Soil 38:457–464

    Google Scholar 

  • Sinha RP, Häder DP (2008) UV-protectants in cyanobacteria. Plant Sci 174:278–289

    CAS  Google Scholar 

  • Smith JL, Boyer GL, Zimba PV (2008) A review of cyanobacterial odorous and bioactive metabolites: impacts and management alternatives in aquaculture. Aquaculture 280:5–20

    CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    CAS  PubMed  Google Scholar 

  • Subramanian G, Sundaram SS (1986) Induced ammonia release by the nitrogen fixing cyanobacterium Anabaena. FEMS Microbiol Lett 37:151–154

    CAS  Google Scholar 

  • Thajuddin N, Subramanian G (2005) Cyanobacterial biodiversity and potential applications in biotechnology. Curr Sci 89:47–57

    CAS  Google Scholar 

  • Tiwari A, Kaur A (2014) Allelopathic impact of cyanobacteria on pathogenic fungi. Int J Pure App Biosci 2(3):63–70

    Google Scholar 

  • Tsavkelova EA, Klimova SY, Cherdyntseva TA, Netrusov AI (2006) Hormones and hormone-like substances of microorganisms: a review. Appl Biochem Microbiol 42:229–235

    CAS  Google Scholar 

  • Van Wagoner RM, Drummond AK, Wright JL (2007) Biogenetic diversity of cyanobacterial metabolites. Adv Appl Microbiol 61:89–217

    PubMed  Google Scholar 

  • Venkataraman GS, Neelakantan S (1967) Effect of cellular constituents of nitrogen fixing blue green alga Cylindrospermum on root growth of rice plant. J Gen Appl Microbiol 13:53–62

    CAS  Google Scholar 

  • Vincent WF, Quesada A (1994) Ultraviolet radiation in Antarctica: measurements and biological effects. In: Weiler CS, Penhale PA (eds) Antarctic research series, vol 63. American Geophysical Union, Washington, DC, p 111

    Google Scholar 

  • Wase NV, Wright PC (2008) Systems biology of cyanobacterial secondary metabolite production and its role in drug discovery. Exp Opin Drug Discov 3:903–929

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, G., Teli, B., Mukherjee, A., Bajpai, R., Sarma, B.K. (2019). Secondary Metabolites from Cyanobacteria: A Potential Source for Plant Growth Promotion and Disease Management. In: Singh, H., Keswani, C., Reddy, M., Sansinenea, E., GarcĂ­a-Estrada, C. (eds) Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms. Springer, Singapore. https://doi.org/10.1007/978-981-13-5862-3_12

Download citation

Publish with us

Policies and ethics