Skip to main content

Bacillus spp.: As Plant Growth-Promoting Bacteria

  • Chapter
  • First Online:
Book cover Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms

Abstract

There is an increasing demand on the productivity of crops, and the use of biofertilizers in the production plays an important role as a supplement to improve the growth and yield of several agricultural plants. Plant growth results from interaction of roots with the environment. Plant growth-promoting rhizobacteria (PGPR) are able to facilitate plant nutrient acquisition and can also act as biocontrol agents by suppressing soilborne diseases. The mechanisms by which these bacteria act are multiple and diverse. Several Bacillus species have been identified as plant growth-promoting bacteria since they suppress pathogens or otherwise promote plant growth. Improvements in plant health and productivity are mediated by three different ecological mechanisms: production of antifungals that cause antagonism of pest and pathogens, secretion of compounds that promote the plant growth and stimulation of plant host defences inducing the plant systemic resistance. The present review indicates the role of Bacillus spp. as PGPR with biological promotion of different characteristics of plant growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  CAS  Google Scholar 

  • Almaghrabi OA, Massoud SI, Abdelmoneim TS (2013) Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi J Biol Sci 20:57–61

    Article  Google Scholar 

  • Arachchilage APW, Wang F, Feyer V, Plekan O, Prince KCJ (2012) Photoelectron spectra and structures of three cyclic dipeptides: PhePhe, TyrPro and HisGly. Chem Phys 135:1243301–1243301

    Google Scholar 

  • Arguelles-Arias A, Ongena M, Halimi B, Lara Y, Brans A, Joris B, Fickers P (2009) Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb Cell Factories 8:63–74

    Article  Google Scholar 

  • Bashan Y, de-Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth – a critical assessment. Adv Agron 108:77–136

    Article  CAS  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Gen Mol Biol 35:1044–1051

    Article  CAS  Google Scholar 

  • Bisen K, Keswani C, Mishra S, Saxena A, Rakshit A, Singh HB (2015) Unrealized potential of seed biopriming for versatile agriculture. In: Rakshit A, Singh HB, Sen A (eds) Nutrient use efficiency: from basics to advances. Springer, New Delhi, pp 193–206

    Chapter  Google Scholar 

  • Borriss R (2011) Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Berlin, pp 41–76

    Chapter  Google Scholar 

  • Bottini R, Cassan F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503

    Article  CAS  Google Scholar 

  • Castro-Sowinski S, Herschkovitz Y, Okon Y, Jurkevitch E (2007) Ejects of inoculation with plant growth-promoting rhizobacteria on resident rhizosphere microorganisms. FEMS Microbiol Lett 276:1–11

    Article  CAS  Google Scholar 

  • Cawoy H, Debois D, Franzil L, De Pauw E, Thonart P, Ongena M (2015) Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/ amyloliquefaciens. Microb Biotechnol 8:281–295

    Article  CAS  Google Scholar 

  • Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM (2013) Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS One 8:e55731

    Article  CAS  Google Scholar 

  • Chen XH, Koumoutsi A, Scholz R, Borriss R (2009) More than anticipated production of antibiotics and other secondary metabolites by Bacillus amyloliquefaciens FZB42. J Mol Microbiol Biotechnol 16:14–24

    Article  CAS  Google Scholar 

  • Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants–with special reference to induced systemic resistance (ISR). Microbiol Res 164:493–513

    Article  CAS  Google Scholar 

  • Dawwam GE, Elbeltagy A, Emara HM, Abbas IH, Hassan MM (2013) Beneficial effect of plant growth promoting bacteria isolated from the roots of potato plant. Ann Agric Sci 58:195–201

    Article  Google Scholar 

  • Debeaujon I, Koornneef M (2000) Gibberellin requirement for Arabidopsis seed germination is determined both by test a characteristics and embryonic abscisic acid. Plant Physiol 122:415–424

    Article  CAS  Google Scholar 

  • Demain AL (2006) From natural products discovery to commercialization: a success story. J Ind Microbiol Biotechnol 33:486–495

    Article  CAS  Google Scholar 

  • Desai S, Grover M, Amalraj ELD, Kumar GP, Ahmed SKMH (2011) Exploiting plant growth promoting Rhizomicroorganisms for enhanced crop productivity. In: Satyanarayana T et al (eds) Microorganisms in sustainable agriculture and biotechnology. Springer, Dordrecht, pp 227–241

    Google Scholar 

  • Figueiredo MVB, Bonifacio A, Rodrigues AC, de Araujo FF (2016) Plant growth-promoting Rhizobacteria: key mechanisms of action. In: Choudhary DK, Varma A (eds) Microbial-mediated induced systemic resistance in plants. Springer, Singapore, pp 23–37

    Chapter  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  Google Scholar 

  • Gomi K, Matsuoka M (2003) Gibberellin signalling pathway. Curr Opin Plant Biol 6:489–493

    Article  CAS  Google Scholar 

  • Gutierrez-Manero FJ, Ramos-Solano B, Probanza A, Mehouachi J, Tadeo FR, Talon M (2001) The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–211

    Article  Google Scholar 

  • Islam MR, Jeong YT, Lee YS, Song CH (2012) Isolation and identification of antifungal compounds from Bacillus subtilis C9 inhibiting the growth of plant pathogenic fungi. Mycobiol 40:59–66

    Article  CAS  Google Scholar 

  • Islam F, Yasmeen T, Ali Q et al (2014) Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress. Ecotox Environ Safe 104:285–293

    Article  CAS  Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    Article  CAS  Google Scholar 

  • Kohler J, Hernandez JA, Caravaca F, Roldan A (2009) Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ Exp Bot 65:245–252

    Article  CAS  Google Scholar 

  • Kumar A, Maurya BR, Raghuwanshi R (2014) Isolation and characterization of PGPR and their effect on growth, yield and nutrient content in wheat (Triticum aestivum L.). Biocatalysis Agric Biotechnol 3:121–128

    Article  Google Scholar 

  • Lavakush YJ, Verma JP, Jaiswal DK et al (2014) Evaluation of PGPR and different concentration of phosphorus level on plant growth, yield and nutrient content of rice (Oryza sativa). Ecol Eng 62:123–128

    Article  Google Scholar 

  • Lee H, Kim HY (2010) Lantibiotics, class I bacteriocins from the genus Bacillus. J Microbiol Biotechnol 21:229–235

    Google Scholar 

  • Lee YJ, Lee SJ, Kim SH, Lee SJ, Kim BC, Lee HS, Jeong H, Lee DW (2012) Draft genome sequence of Bacillus endophyticus 2102. J Bacteriol 194:5705–5706

    Article  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  Google Scholar 

  • Mahmood A, Turgay OC, Farooq M, Hayat R (2016) Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiol Ecol 92:1–14

    Article  Google Scholar 

  • Makarewicz O, Dubrac S, Msadek T, Borriss R (2006) Dual role of the PhoP~P response regulator: Bacillus amyloliquefaciens FZB45 phytase gene transcription is directed by positive and negative interaction with the phy C promoter. J Bacteriol 188:6953–6965

    Article  CAS  Google Scholar 

  • Martinez-Viveros O, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319

    Article  Google Scholar 

  • Masciarelli O, Llanes A, Luna V (2014) A new PGPR co-inoculated with Bradyrhizobium japonicum enhances soybean nodulation. Microbiol Res 169:609–615

    Article  CAS  Google Scholar 

  • Mishra S, Singh A, Keswani C, Saxena A, Sarma BK, Singh HB (2015) Harnessing plant-microbe interactions for enhanced protection against phytopathogens. In: Arora NK (ed) Plant microbe Symbiosis–applied facets. Springer, New Delhi, pp 111–125

    Google Scholar 

  • Ortiz-Castro R, Díaz-Pérez C, Martínez-Trujillo M, del Río RE, Campos-García J, López-Bucio J (2011) Transkingdom signaling based on bacterial cyclodipeptides with auxin activity in plants. Proc Natl Acad Sci USA 108:7253–7258

    Article  CAS  Google Scholar 

  • Patel HA, Patel RK, Khristi SM et al (2012) Isolation and characterization of bacterial endophytes from Lycopersicon esculentum plant and their plant growth promoting characteristics. Nepal J Biotechnol 2:37–52

    Article  Google Scholar 

  • Paulucci NS, Gallarato LA, Reguera YB et al (2015) Arachis hypogaea PGPR isolated from Argentine soil modifies its lipids components in response to temperature and salinity. Microbiol Res 173:1–9

    Article  CAS  Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28:897–906

    Google Scholar 

  • Riefler M, Novak O, Strnad M, Schmülling T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and Cytokinin metabolism. Plant Cell 18:40–54

    Article  CAS  Google Scholar 

  • Rojas-Tapias D, Moreno-Galvan A, Pardo-Dıaz S et al (2012) Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl Soil Ecol 61:264–272

    Article  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy M, Wei HX, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932

    Article  CAS  Google Scholar 

  • Sansinenea E (2012) Bacillus thuringiensis: biotechnology. Springer, Dordrecht

    Book  Google Scholar 

  • Sansinenea E, Ortiz A (2012) Zwittermicin A: a promising aminopolyol antibiotic from biocontrol bacteria. Curr Org Chem 16:978–987

    Article  CAS  Google Scholar 

  • Schneider K, Chen XH, Vater J, Franke P, Nicholson G, Borriss R, S€ussmuth RD (2007) Macrolactin is the polyketide biosynthesis product of the pks2 cluster of Bacillus amyloliquefaciens FZB42. J Nat Prod 70:1417–1423

    Article  CAS  Google Scholar 

  • Shaligram NS, Singhal RS (2010) Surfactin–a review on biosynthesis, fermentation, purification and applications. Food Technol Biotechnol 48:119–134

    CAS  Google Scholar 

  • Shukla KP, Sharma S, Singh NK, Singh V, Tiwari K, Singh S (2011) Nature and role of root exudates: efficacy in bioremediation. Afr J Biotechnol 10:9717–9724

    Google Scholar 

  • Silo-Suh LA, Stabb EV, Raffel SJ, Handelsman J (1998) Target range of zwittermicin a, an aminopolyol antibiotic from Bacillus cereus. Curr Microbiol 37:6–11

    Article  CAS  Google Scholar 

  • Singh HB, Sarma BK, Keswani C (eds) (2016) Agriculturally important microorganisms: commercialization and regulatory requirements in Asia. Springer, Singapore

    Google Scholar 

  • Singh HB, Sarma BK, Keswani C (eds) (2017) Advances in PGPR. CABI, Wallingford

    Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism plant signalling. FEMS Microbiol Rev 31:425–448

    Article  CAS  Google Scholar 

  • Tak HI, Ahmad F, Babalola OO (2013) Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology. Springer, New York, pp 33–52

    Google Scholar 

  • Tendulkar SR, Saikuman YK, Patel V, Raghotama S, Munshi TK, Balaram P, Chattoo BB (2007) Isolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnaporthe grisea. J Appl Microbiol 103:2331–2339

    Article  CAS  Google Scholar 

  • Tudzynski B (2005) Gibberellin biosynthesis in fungi: genes, enzymes, evolution, and impact on biotechnology. Appl Microbiol Biotechnol 66:597–611

    Article  CAS  Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dye F, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:1–19

    Article  Google Scholar 

  • Van Loon LC, Glick BR (2004) Increased plant fitness by rhizobacteria. In: Sandermann H (ed) Molecular ecotoxicology of plants. Springer, Berlin, pp 177–205

    Chapter  Google Scholar 

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Boyce AN (2016) Role of plant growth promoting Rhizobacteria in agricultural sustainability-a review. Molecules 21:573

    Article  Google Scholar 

  • Verma JP, Yadav J, Tiwari KN, Singh L, Singh V (2010) Impact of plant growth promoting Rhizobacteria on crop production. Int J Agric Res 11:954–983

    Google Scholar 

  • Wulff EG, Mguni CM, Mansfeld-Giese K, Fels J, Lu¨beck M, Hockenhull J (2002) Biochemical and molecular characterization of Bacillus amyloliquefaciens, B. subtilis and B. pumilus isolates with distinct antagonistic potential against Xanthomonas campestris pv. campestris. Plant Pathol 51:574–584

    Article  CAS  Google Scholar 

  • Younesi O, Moradi A (2014) Effects of plant growth-promoting rhizobacterium (PGPR) and arbuscular mycorrhizal fungus (AMF) on antioxidant enzyme activities in salt-stressed bean (Phaseolus vulgaris L.). Agriculture (Polnohospodarstvo) 60:10–21

    CAS  Google Scholar 

  • Yu GY, Sinclair JB, Hartman GL, Bertagnolli BL (2002) Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol Biochem 34:955–963

    Article  CAS  Google Scholar 

  • Živković S, Stojanović S, Ivanović Ž, Gavrilović V, Popović T, Balaž J (2010) Screening of antagonistic activity of microorganisms against Colletotrichum acutatum and Colletotrichum gloeosporioides. Arch Biol Sci Belgrade 62:611–623

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sansinenea, E. (2019). Bacillus spp.: As Plant Growth-Promoting Bacteria. In: Singh, H., Keswani, C., Reddy, M., Sansinenea, E., García-Estrada, C. (eds) Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms. Springer, Singapore. https://doi.org/10.1007/978-981-13-5862-3_11

Download citation

Publish with us

Policies and ethics