Skip to main content

Semiconducting Metal Oxides: Composition and Sensing Performance

  • Chapter
  • First Online:
Book cover Semiconducting Metal Oxides for Gas Sensing

Abstract

The gas sensing performance of semiconducting metal oxide (SMO) is directly related to its composition for  specific  electronic structure and surface properties. Well-designed intergation of multicomposites is an effective way to improve its gas sensing performance. The combination of different metal oxides, modification of noble metal catalysts and doping of heteroatoms are three most common composition operating ways. The combination of different metal oxides can form different heterojunctions, leading to the change in electronic structure of materials , exhibiting properties that are distinct from those of a single composition of metal oxide. Precious metal modification usually catalyzes the surface chemical reaction, which in turn affects the gas sensing properties of the material. Heteroatom doping changes the gas sensing properties by affecting the overall defect of the material. Knowledge of the relationship between composition and gas sensing performance will help to design higher-performance metal oxide semiconductor gas sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang C, Yin L, Zhang L, Xiang D, Gao R (2010) Metal oxide gas sensors: sensitivity and influencing factors. Sens Basel 10(3):2088–2106. https://doi.org/10.3390/s100302088

    Article  CAS  Google Scholar 

  2. Miller DR, Akbar SA, Morris PA (2014) Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens Actuators B Chem 204:250–272. https://doi.org/10.1016/j.snb.2014.07.074

    Article  CAS  Google Scholar 

  3. Rai P, Majhi SM, Yu Y, Lee J (2015) Noble metal@metal oxide semiconductor core@shell nano-architectures as a new platform for gas sensor applications. RSC Adv 5(93):76229–76248. https://doi.org/10.1039/c5ra14322e

    Article  CAS  Google Scholar 

  4. Woo H, Na C, Lee J (2016) Design of highly selective gas sensors via physicochemical modification of oxide nanowires: overview. Sens Basel 16(9):1531. https://doi.org/10.3390/s16091531

    Article  CAS  Google Scholar 

  5. Luo Y, Zhang C, Zheng B, Geng X, Debliquy M (2017) Hydrogen sensors based on noble metal doped metal-oxide semiconductor: a review. Int J Hydrogen Energy 42(31):20386–20397. https://doi.org/10.1016/j.ijhydene.2017.06.066

    Article  CAS  Google Scholar 

  6. Ju D, Xu H, Xu Q, Gong H, Qiu Z, Guo J, Zhang J, Cao B (2015) High triethylamine-sensing properties of NiO/SnO2 hollow sphere P–N heterojunction sensors. Sens Actuators B Chem 215:39–44. https://doi.org/10.1016/j.snb.2015.03.015

    Article  CAS  Google Scholar 

  7. Na CW, Woo H, Kim I, Lee J (2011) Selective detection of NO2 and C2H5OH using a Co3O4-decorated ZnO nanowire network sensor. Chem Commun 47(18):5148–5150. https://doi.org/10.1039/c0cc05256f

    Article  CAS  Google Scholar 

  8. Shao F, Hoffmann MWG, Prades JD, Zamani R, Arbiol J, Morante JR, Varechkina E, Rumyantseva M, Gaskov A, Giebelhaus I, Fischer T, Mathur S, Hernández-Ramírez F (2013) Heterostructured p-CuO (nanoparticle)/n-SnO2 (nanowire) devices for selective H2S detection. Sens Actuators B 181:130–135. https://doi.org/10.1016/j.snb.2013.01.067

    Article  CAS  Google Scholar 

  9. Xie Y, Xing R, Li Q, Xu L, Song H (2015) Three-dimensional ordered ZnO–CuO inverse opals toward low concentration acetone detection for exhaled breath sensing. Sens Actuators B Chem 211:255–262. https://doi.org/10.1016/j.snb.2015.01.086

    Article  CAS  Google Scholar 

  10. Woo HS, Na CW, Kim ID, Lee JH (2012) Highly sensitive and selective trimethylamine sensor using one-dimensional ZnO–Cr2O3 hetero-nanostructures. Nanotechnology 23(24):245501. https://doi.org/10.1088/0957-4484/23/24/245501

    Article  CAS  Google Scholar 

  11. Mashock M, Yu K, Cui S, Mao S, Lu G, Chen J (2012) Modulating gas sensing properties of CuO nanowires through creation of discrete nanosized p–n junctions on their surfaces. ACS Appl Mater Interfaces 4(8):4192–4199. https://doi.org/10.1021/am300911z

    Article  CAS  Google Scholar 

  12. Jain K, Pant RP, Lakshmikumar ST (2006) Effect of Ni doping on thick film SnO2 gas sensor. Sens Actuators B Chem 113(2):823–829. https://doi.org/10.1016/j.snb.2005.03.104

    Article  CAS  Google Scholar 

  13. Zeng W, Liu T, Wang Z (2010) Sensitivity improvement of TiO2-doped SnO2 to volatile organic compounds. Physica E Low-dimensional Syst Nanostruct 43(2):633–638. https://doi.org/10.1016/j.physe.2010.10.010

    Article  CAS  Google Scholar 

  14. Sen S, Kanitkar P, Sharma A, Muthe KP, Rath A, Deshpande SK, Kaur M, Aiyer RC, Gupta SK, Yakhmi JV (2010) Growth of SnO2/W18O49 nanowire hierarchical heterostructure and their application as chemical sensor. Sens Actuators B Chem 147(2):453–460. https://doi.org/10.1016/j.snb.2010.04.016

    Article  CAS  Google Scholar 

  15. Suh JM, Sohn W, Shim Y, Cho J, Song YG, Kim TL, Jeon J, Kwon KC, Choi KS, Kang C, Byun H, Jang HW (2018) p–p heterojunction of nickel oxide-decorated cobalt oxide nanorods for enhanced sensitivity and selectivity toward volatile organic compounds. ACS Appl Mater Interfaces 10(1):1050–1058. https://doi.org/10.1021/acsami.7b14545

    Article  CAS  Google Scholar 

  16. Li C, Li L, Du Z, Yu H, Xiang Y, Li Y, Cai Y, Wang T (2008) Rapid and ultrahigh ethanol sensing based on Au-coated ZnO nanorods. Nanotechnology 19(3):35501. https://doi.org/10.1088/0957-4484/19/03/035501

    Article  CAS  Google Scholar 

  17. Yang X, Salles V, Kaneti YV, Liu M, Maillard M, Journet C, Jiang X, Brioude A (2015) Fabrication of highly sensitive gas sensor based on Au functionalized WO3 composite nanofibers by electrospinning. Sens Actuators B Chem 220:1112–1119. https://doi.org/10.1016/j.snb.2015.05.121

    Article  CAS  Google Scholar 

  18. Hosseini ZS, Mortezaali A, Iraji Zad A, Fardindoost S (2015) Sensitive and selective room temperature H2S gas sensor based on Au sensitized vertical ZnO nanorods with flower-like structures. J Alloy Compd 628:222–229. https://doi.org/10.1016/j.jallcom.2014.12.163

    Article  CAS  Google Scholar 

  19. Wang Y, Lin Y, Jiang D, Li F, Li C, Zhu L, Wen S, Ruan S (2015) Special nanostructure control of ethanol sensing characteristics based on Au@In2O3 sensor with good selectivity and rapid response. RSC Adv 5(13):9884–9989. https://doi.org/10.1039/c4ra14879g

    Article  CAS  Google Scholar 

  20. Vallejos S, Stoycheva T, Umek P, Navio C, Snyders R, Bittencourt C, Llobet E, Blackman C, Moniz S, Correig X (2011) Au nanoparticle-functionalised WO3 nanoneedles and their application in high sensitivity gas sensor devices. Chem Commun 47(1):565–567. https://doi.org/10.1039/C0CC02398A

    Article  CAS  Google Scholar 

  21. Ramgir NS, Kaur M, Sharma PK, Datta N, Kailasaganapathi S, Bhattacharya S, Debnath AK, Aswal DK, Gupta SK (2013) Ethanol sensing properties of pure and Au modified ZnO nanowires. Sens Actuators B Chem 187:313–318. https://doi.org/10.1016/j.snb.2012.11.079

    Article  CAS  Google Scholar 

  22. Kaneti YV, Moriceau J, Liu M, Yuan Y, Zakaria Q, Jiang X, Yu A (2015) Hydrothermal synthesis of ternary α-Fe2O3–ZnO–Au nanocomposites with high gas-sensing performance. Sens Actuators B Chem 209:889–897. https://doi.org/10.1016/j.snb.2014.12.065

    Article  CAS  Google Scholar 

  23. Chung F, Wu R, Cheng F (2014) Fabrication of a Au@SnO2 core–shell structure for gaseous formaldehyde sensing at room temperature. Sens Actuators B Chem 190:1–7. https://doi.org/10.1016/j.snb.2013.08.037

    Article  CAS  Google Scholar 

  24. Chung F, Zhu Z, Luo P, Wu R, Li W (2014) Au@ZnO core–shell structure for gaseous formaldehyde sensing at room temperature. Sens Actuators B Chem 199:314–319. https://doi.org/10.1016/j.snb.2014.04.004

    Article  CAS  Google Scholar 

  25. Ramgir NS, Sharma PK, Datta N, Kaur M, Debnath AK, Aswal DK, Gupta SK (2013) Room temperature H2S sensor based on Au modified ZnO nanowires. Sens Actuators B Chem 186:718–726. https://doi.org/10.1016/j.snb.2013.06.070

    Article  CAS  Google Scholar 

  26. D’Arienzo M, Armelao L, Cacciamani A, Mari CM, Polizzi S, Ruffo R, Scotti R, Testino A, Wahba L, Morazzoni F (2010) One-step preparation of SnO2 and Pt-doped SnO2 as inverse opal thin films for gas sensing. Chem Mater 22(13):4083–4089. https://doi.org/10.1021/cm100866g

    Article  Google Scholar 

  27. Shin J, Choi S, Lee I, Youn D, Park CO, Lee J, Tuller HL, Kim I (2013) Thin-wall assembled SnO2 fibers functionalized by catalytic Pt nanoparticles and their superior exhaled-breath-sensing properties for the diagnosis of diabetes. Adv Funct Mater 23(19):2357–2367. https://doi.org/10.1002/adfm.201202729

    Article  CAS  Google Scholar 

  28. Karmaoui M, Leonardi SG, Latino M, Tobaldi DM, Donato N, Pullar RC, Seabra MP, Labrincha JA, Neri G (2016) Pt-decorated In2O3 nanoparticles and their ability as a highly sensitive (<10 ppb) acetone sensor for biomedical applications. Sens Actuators B Chem 230:697–705. https://doi.org/10.1016/j.snb.2016.02.100

    Article  CAS  Google Scholar 

  29. Wang Y, Liu J, Cui X, Gao Y, Ma J, Sun Y, Sun P, Liu F, Liang X, Zhang T, Lu G (2017) NH3 gas sensing performance enhanced by Pt-loaded on mesoporous WO3. Sens Actuators B Chem 238:473–481. https://doi.org/10.1016/j.snb.2016.07.085

    Article  CAS  Google Scholar 

  30. Yu M, Wu R, Chavali M (2011) Effect of ‘Pt’ loading in ZnO–CuO hetero-junction material sensing carbon monoxide at room temperature. Sens Actuators B Chem 153(2):321–328. https://doi.org/10.1016/j.snb.2010.09.071

    Article  CAS  Google Scholar 

  31. Ma J, Ren Y, Zhou X, Liu L, Zhu Y, Cheng X, Xu P, Li X, Deng Y, Zhao D (2018) Pt nanoparticles sensitized ordered mesoporous WO3 semiconductor: gas sensing performance and mechanism study. Adv Funct Mater 28(6):1705268. https://doi.org/10.1002/adfm.201705268

    Article  CAS  Google Scholar 

  32. Wang K, Zhao T, Lian G, Yu Q, Luan C, Wang Q, Cui D (2013) Room temperature CO sensor fabricated from Pt-loaded SnO2 porous nanosolid. Sens Actuators B Chem 184:33–39. https://doi.org/10.1016/j.snb.2013.04.054

    Article  CAS  Google Scholar 

  33. Hwang I, Choi J, Woo H, Kim S, Jung S, Seong T, Kim I, Lee J (2011) Facile control of C2H5OH sensing characteristics by decorating discrete Ag nanoclusters on SnO2 nanowire networks. ACS Appl Mater Interfaces 3(8):3140–3145. https://doi.org/10.1021/am200647f

    Article  CAS  Google Scholar 

  34. Mirzaei A, Janghorban K, Hashemi B, Bonavita A, Bonyani M, Leonardi S, Neri G (2015) Synthesis, characterization and gas sensing properties of Ag@α-Fe2O3 core-shell nanocomposites. Nanomater Basel 5(2):737–749. https://doi.org/10.3390/nano5020737

    Article  CAS  Google Scholar 

  35. Wang Y, Cui X, Yang Q, Liu J, Gao Y, Sun P, Lu G (2016) Preparation of Ag-loaded mesoporous WO3 and its enhanced NO2 sensing performance. Sens Actuators B Chem 225:544–552. https://doi.org/10.1016/j.snb.2015.11.065

    Article  CAS  Google Scholar 

  36. Zhu G, Liu Y, Xu H, Chen Y, Shen X, Xu Z (2012) Photochemical deposition of Ag nanocrystals on hierarchical ZnO microspheres and their enhanced gas-sensing properties. CrystEngComm 14(2):719–725. https://doi.org/10.1039/C1CE06041D

    Article  CAS  Google Scholar 

  37. Kolmakov A, Klenov DO, Lilach Y, Stemmer S, Moskovits M (2005) Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett 5(4):667–673. https://doi.org/10.1021/nl050082v

    Article  CAS  Google Scholar 

  38. Adams BD, Ostrom CK, Chen S, Chen A (2010) High-performance Pd-based hydrogen spillover catalysts for hydrogen storage. J Phys Chem C 114(46):19875–19882. https://doi.org/10.1021/jp1085312

    Article  CAS  Google Scholar 

  39. Lou Z, Deng J, Wang L, Wang L, Fei T, Zhang T (2013) Toluene and ethanol sensing performances of pristine and PdO-decorated flower-like ZnO structures. Sens Actuators B Chem 176:323–329. https://doi.org/10.1016/j.snb.2012.09.027

    Article  CAS  Google Scholar 

  40. Kim S, Park S, Park S, Lee C (2015) Acetone sensing of Au and Pd-decorated WO3 nanorod sensors. Sens Actuators B Chem 209:180–185. https://doi.org/10.1016/j.snb.2014.11.106

    Article  CAS  Google Scholar 

  41. Tian S, Ding X, Zeng D, Wu J, Zhang S, Xie C (2013) A low temperature gas sensor based on Pd-functionalized mesoporous SnO2 fibers for detecting trace formaldehyde. RSC Adv 3(29):11823. https://doi.org/10.1039/c3ra40567b

    Article  CAS  Google Scholar 

  42. Hong YJ, Yoon J, Lee J, Kang YC (2014) One-pot synthesis of Pd-loaded SnO2 yolk-shell nanostructures for ultraselective methyl benzene sensors. Chem Eur J 20(10):2737–2741. https://doi.org/10.1002/chem.201304502

    Article  CAS  Google Scholar 

  43. Li W, Shen C, Wu G, Ma Y, Gao Z, Xia X, Du G (2011) New model for a Pd-doped SnO2-based CO gas sensor and catalyst studied by online in-situ X-ray photoelectron spectroscopy. J Phys Chem C 115(43):21258–21263. https://doi.org/10.1021/jp2068733

    Article  CAS  Google Scholar 

  44. Moon J, Park J, Lee S, Zyung T, Kim I (2010) Pd-doped TiO2 nanofiber networks for gas sensor applications. Sens Actuators B Chem 149(1):301–305. https://doi.org/10.1016/j.snb.2010.06.033

    Article  CAS  Google Scholar 

  45. Kim JC, Jun HK, Huh J, Lee DD (1997) Tin oxide-based methane gas sensor promoted by alumina-supported Pd catalyst. Sens Actuators B Chem 45(3):271–277. https://doi.org/10.1016/S0925-4005(97)00325-0

    Article  CAS  Google Scholar 

  46. Wang Z, Li Z, Jiang T, Xu X, Wang C (2013) Ultrasensitive hydrogen sensor based on Pd0-loaded SnO2 electrospun nanofibers at room temperature. ACS Appl Mater Interfaces 5(6):2013–2021. https://doi.org/10.1021/am3028553

    Article  CAS  Google Scholar 

  47. Liu B, Cai D, Liu Y, Li H, Weng C, Zeng G, Li Q, Wang T (2013) High-performance room-temperature hydrogen sensors based on combined effects of Pd decoration and Schottky barriers. Nanoscale 5(6):2505. https://doi.org/10.1039/c3nr33872j

    Article  CAS  Google Scholar 

  48. Kim S, Hwang I, Na CW, Kim I, Kang YC, Lee J (2011) Ultrasensitive and selective C2H5OH sensors using Rh-loaded In2O3 hollow spheres. J Mater Chem 21(46):18560–18567. https://doi.org/10.1039/c1jm14252f

    Article  CAS  Google Scholar 

  49. Kandoi S, Gokhale AA, Grabow LC, Dumesic JA, Mavrikakis M (2004) Why Au and Cu are more selective than Pt for preferential oxidation of CO at low temperature. Catal Lett 93(1/2):93–100. https://doi.org/10.1023/b:catl.0000016955.66476.44

    Article  CAS  Google Scholar 

  50. Schubert MM, Hackenberg S, van Veen AC, Muhler M, Plzak V, Behm RJ (2001) CO oxidation over supported gold catalysts—“Inert” and “Active” support materials and their role for the oxygen supply during reaction. J Catal 197(1):113–122. https://doi.org/10.1006/jcat.2000.3069

    Article  CAS  Google Scholar 

  51. Tien LC, Sadik PW, Norton DP, Voss LF, Pearton SJ, Wang HT, Kang BS, Ren F, Jun J, Lin J (2005) Hydrogen sensing at room temperature with Pt-coated ZnO thin films and nanorods. Appl Phys Lett 87(22):222106. https://doi.org/10.1063/1.2136070

    Article  CAS  Google Scholar 

  52. Li F, Guo S, Shen J, Shen L, Sun D, Wang B, Chen Y, Ruan S (2017) Xylene gas sensor based on Au-loaded WO3·H2O nanocubes with enhanced sensing performance. Sens Actuators B Chem 238:364–373. https://doi.org/10.1016/j.snb.2016.07.021

    Article  CAS  Google Scholar 

  53. Kim S, Choi S, Jang J, Kim N, Hakim M, Tuller HL, Kim I (2016) Mesoporous WO3 nanofibers with protein-templated nanoscale catalysts for detection of trace biomarkers in exhaled breath. ACS Nano 10(6):5891–5899. https://doi.org/10.1021/acsnano.6b01196

    Article  CAS  Google Scholar 

  54. Koo W, Choi S, Kim S, Jang J, Tuller HL, Kim I (2016) Heterogeneous sensitization of metal-organic framework driven metal@metal oxide complex catalysts on an oxide nanofiber scaffold toward superior gas sensors. J Am Chem Soc 138(40):13431–13437. https://doi.org/10.1021/jacs.6b09167

    Article  CAS  Google Scholar 

  55. Choi S, Kim S, Cho H, Jang J, Lin Y, Tuller HL, Rutledge GC, Kim I (2016) WO3 nanofiber-based biomarker detectors enabled by protein-encapsulated catalyst self-assembled on polystyrene colloid templates. Small 12(7):911–920. https://doi.org/10.1002/smll.201502905

    Article  CAS  Google Scholar 

  56. Liu B, Cai D, Liu Y, Wang D, Wang L, Wang Y, Li H, Li Q, Wang T (2014) Improved room-temperature hydrogen sensing performance of directly formed Pd/WO3 nanocomposite. Sens Actuators B Chem 193:28–34. https://doi.org/10.1016/j.snb.2013.11.057

    Article  CAS  Google Scholar 

  57. Tricoli A, Graf M, Pratsinis SE (2008) Optimal doping for enhanced SnO2 sensitivity and thermal stability. Adv Funct Mater 18(13):1969–1976. https://doi.org/10.1002/adfm.200700784

    Article  CAS  Google Scholar 

  58. Righettoni M, Tricoli A, Gass S, Schmid A, Amann A, Pratsinis SE (2012) Breath acetone monitoring by portable Si:WO3 gas sensors. Anal Chim Acta 738:69–75. https://doi.org/10.1016/j.aca.2012.06.002

    Article  CAS  Google Scholar 

  59. Righettoni M, Tricoli A, Pratsinis SE (2010) Si:WO3 sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis. Anal Chem 82(9):3581–3587. https://doi.org/10.1021/ac902695n

    Article  CAS  Google Scholar 

  60. Righettoni M, Tricoli A, Pratsinis SE (2010) Thermally stable, silica-doped ε-WO3 for sensing of acetone in the human breath. Chem Mater 22(10):3152–3157. https://doi.org/10.1021/cm1001576

    Article  CAS  Google Scholar 

  61. Xiao T, Wang X, Zhao Z, Li L, Zhang L, Yao H, Wang J, Li Z (2014) Highly sensitive and selective acetone sensor based on C-doped WO3 for potential diagnosis of diabetes mellitus. Sens Actuators B Chem 199:210–219. https://doi.org/10.1016/j.snb.2014.04.015

    Article  CAS  Google Scholar 

  62. Zhang Y, Yang Q, Yang X, Deng Y (2018) One-step synthesis of in-situ N-doped ordered mesoporous titania for enhanced gas sensing performance. Micropor Mesopor Mat 270:75–81. https://doi.org/10.1016/j.micromeso.2018.04.008

    Article  CAS  Google Scholar 

  63. Woo H, Kwak C, Kim I, Lee J (2014) Selective, sensitive, and reversible detection of H2S using Mo-doped ZnO nanowire network sensors. J Mater Chem A 2(18):6412–6418. https://doi.org/10.1039/c4ta00387j

    Article  CAS  Google Scholar 

  64. Zhao J, Yang T, Liu Y, Wang Z, Li X, Sun Y, Du Y, Li Y, Lu G (2014) Enhancement of NO2 gas sensing response based on ordered mesoporous Fe-doped In2O3. Sens Actuators B Chem 191:806–812. https://doi.org/10.1016/j.snb.2013.09.118

    Article  CAS  Google Scholar 

  65. Galatsis K, Cukrov L, Wlodarski W, McCormick P, Kalantar-zadeh K, Comini E, Sberveglieri G (2003) p- and n-type Fe-doped SnO2 gas sensors fabricated by the mechanochemical processing technique. Sens Actuators B Chem 93(1–3):562–565. https://doi.org/10.1016/S0925-4005(03)00233-8

    Article  CAS  Google Scholar 

  66. Yu A, Qian J, Pan H, Cui Y, Xu M, Tu L, Chai Q, Zhou X (2011) Micro-lotus constructed by Fe-doped ZnO hierarchically porous nanosheets: preparation, characterization and gas sensing property. Sens Actuators B Chem 158(1):9–16. https://doi.org/10.1016/j.snb.2011.03.052

    Article  CAS  Google Scholar 

  67. Yoon J, Kim H, Kim I, Lee J (2013) Electronic sensitization of the response to C2H5OH of p-type NiO nanofibers by Fe doping. Nanotechnology 24(44):444005

    Article  Google Scholar 

  68. Al-Hardan N, Abdullah MJ, Aziz AA (2011) Impedance spectroscopy of undoped and Cr-doped ZnO gas sensors under different oxygen concentrations. Appl Surf Sci 257(21):8993–8997. https://doi.org/10.1016/j.apsusc.2011.05.078

    Article  CAS  Google Scholar 

  69. Kim H, Yoon J, Choi K, Jang HW, Umar A, Lee J (2013) Ultraselective and sensitive detection of xylene and toluene for monitoring indoor air pollution using Cr-doped NiO hierarchical nanostructures. Nanoscale 5(15):7066. https://doi.org/10.1039/c3nr01281f

    Article  CAS  Google Scholar 

  70. Ruiz AM, Sakai G, Cornet A, Shimanoe K, Morante JR, Yamazoe N (2003) Cr-doped TiO2 gas sensor for exhaust NO2 monitoring. Sens Actuators B Chem 93(1–3):509–518. https://doi.org/10.1016/S0925-4005(03)00183-7

    Article  CAS  Google Scholar 

  71. Wang Y, Liu B, Xiao S, Wang X, Sun L, Li H, Xie W, Li Q, Zhang Q, Wang T (2016) Low-temperature H2S detection with hierarchical Cr-doped WO3 microspheres. ACS Appl Mater Interfaces 8(15):9674–9683. https://doi.org/10.1021/acsami.5b12857

    Article  CAS  Google Scholar 

  72. Kumar V, Sen S, Muthe KP, Gaur NK, Gupta SK, Yakhmi JV (2009) Copper doped SnO2 nanowires as highly sensitive H2S gas sensor. Sens Actuators B Chem 138(2):587–590. https://doi.org/10.1016/j.snb.2009.02.053

    Article  CAS  Google Scholar 

  73. Teleki A, Bjelobrk N, Pratsinis S (2008) Flame-made Nb- and Cu-doped TiO2 sensors for CO and ethanol. Sens Actuators B Chem 130(1):449–457. https://doi.org/10.1016/j.snb.2007.09.008

    Article  CAS  Google Scholar 

  74. Gong H, Hu JQ, Wang JH, Ong CH, Zhu FR (2006) Nano-crystalline Cu-doped ZnO thin film gas sensor for CO. Sens Actuators B Chem 115(1):247–251. https://doi.org/10.1016/j.snb.2005.09.008

    Article  CAS  Google Scholar 

  75. Parthibavarman M, Renganathan B, Sastikumar D (2013) Development of high sensitivity ethanol gas sensor based on Co-doped SnO2 nanoparticles by microwave irradiation technique. Curr Appl Phys 13(7):1537–1544. https://doi.org/10.1016/j.cap.2013.05.016

    Article  Google Scholar 

  76. Jing Z, Wu S (2006) Synthesis, characterization and gas sensing properties of undoped and Co-doped γ-Fe2O3-based gas sensors. Mater Lett 60(7):952–956. https://doi.org/10.1016/j.matlet.2005.10.051

    Article  CAS  Google Scholar 

  77. Liu L, Li S, Zhuang J, Wang L, Zhang J, Li H, Liu Z, Han Y, Jiang X, Zhang P (2011) Improved selective acetone sensing properties of Co-doped ZnO nanofibers by electrospinning. Sens Actuators B Chem 155(2):782–788. https://doi.org/10.1016/j.snb.2011.01.047

    Article  CAS  Google Scholar 

  78. Zheng K, Gu L, Sun D, Mo X, Chen G (2010) The properties of ethanol gas sensor based on Ti doped ZnO nanotetrapods. Mater Sci Eng B 166(1):104–107. https://doi.org/10.1016/j.mseb.2009.09.029

    Article  CAS  Google Scholar 

  79. Guo P, Pan H (2006) Selectivity of Ti-doped In2O3 ceramics as an ammonia sensor. Sens Actuators B Chem 114(2):762–767. https://doi.org/10.1016/j.snb.2005.07.040

    Article  CAS  Google Scholar 

  80. Song XC, Yang E, Liu G, Zhang Y, Liu ZS, Chen HF, Wang Y (2010) Preparation and photocatalytic activity of Mo-doped WO3 nanowires. J Nanopart Res 12(8):2813–2819. https://doi.org/10.1007/s11051-010-9859-8

    Article  CAS  Google Scholar 

  81. Mai LQ, Hu B, Hu T, Chen W, Gu ED (2006) Electrical property of Mo-doped VO2 nanowire array film by melting—quenching sol–gel method. J Phys Chem B 110(39):19083–19086. https://doi.org/10.1021/jp0642701

    Article  CAS  Google Scholar 

  82. Feng C, Wang C, Cheng P, Li X, Wang B, Guan Y, Ma J, Zhang H, Sun Y, Sun P, Zheng J, Lu G (2015) Facile synthesis and gas sensing properties of La2O3–WO3 nanofibers. Sens Actuators B Chem 221:434–442. https://doi.org/10.1016/j.snb.2015.06.114

    Article  CAS  Google Scholar 

  83. Mohanapriya P, Segawa H, Watanabe K, Watanabe K, Samitsu S, Natarajan TS, Jaya NV, Ohashi N (2013) Enhanced ethanol-gas sensing performance of Ce-doped SnO2 hollow nanofibers prepared by electrospinning. Sens Actuators B Chem 188:872–878. https://doi.org/10.1016/j.snb.2013.07.016

    Article  CAS  Google Scholar 

  84. Wei D, Huang Z, Wang L, Chuai X, Zhang S, Lu G (2018) Hydrothermal synthesis of Ce-doped hierarchical flower-like In2O3 microspheres and their excellent gas-sensing properties. Sens Actuators B Chem 255:1211–1219. https://doi.org/10.1016/j.snb.2017.07.162

    Article  CAS  Google Scholar 

  85. Li Z, Wang W, Zhao Z, Liu X, Song P (2017) One-step hydrothermal preparation of Ce-doped MoO3 nanobelts with enhanced gas sensing properties. RSC Adv 7(45):28366–28372. https://doi.org/10.1039/C7RA02893H

    Article  CAS  Google Scholar 

  86. Han D, Song P, Zhang S, Zhang H, Xu Q, Wang Q (2015) Enhanced methanol gas-sensing performance of Ce-doped In2O3 porous nanospheres prepared by hydrothermal method. Sens Actuators B Chem 216:488–496. https://doi.org/10.1016/j.snb.2015.04.083

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghui Deng .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deng, Y. (2019). Semiconducting Metal Oxides: Composition and Sensing Performance. In: Semiconducting Metal Oxides for Gas Sensing. Springer, Singapore. https://doi.org/10.1007/978-981-13-5853-1_4

Download citation

Publish with us

Policies and ethics