Skip to main content

Semiconducting Metal Oxides: Morphology and Sensing Performance

  • Chapter
  • First Online:
Book cover Semiconducting Metal Oxides for Gas Sensing

Abstract

The morphology and crystallographic structure of sensing materials can change the gas-sensing characteristics of metal oxide sensors. This chapter discusses the parameters that influence the gas sensors’ performance such as film thickness, grain size, agglomeration, porosity, faceting, grain network, surface geometry, and film texture on the main analytical characteristics (e.g., absolute magnitude and selectivity of sensor response, response–recovery time, and temporal stability). For example, the decrease of thickness, grain size and degree of texture helps to decrease time constants of metal oxide sensors. However, it is impossible to give a universal decision for simultaneous optimization all gas-sensing characteristics. In addition, synthesis methods of metal oxides sensing materials are also summarized in this chapter including sol–gel synthesis, hydro- and solvothermal reaction, self-assembly method and chemical vapor deposition (CVD) method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Korotcenkov G (2007) Practical aspects in design of one-electrode semiconductor gas sensors: status report. Sens Actuators B Chem 121(2):664–678. https://doi.org/10.1016/j.snb.2006.04.092

    Article  CAS  Google Scholar 

  2. Korotcenkov G (2005) Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches. Sens Actuators B Chem 107(1):209–232. https://doi.org/10.1016/j.snb.2004.10.006

    Article  CAS  Google Scholar 

  3. Tsiulyanu D, Marian S, Liess H, Eisele I (2004) Effect of annealing and temperature on the NO2 sensing properties of tellurium based films. Sens Actuators B Chem 100(3):380–386. https://doi.org/10.1016/j.snb.2004.02.005

    Article  CAS  Google Scholar 

  4. Korotcenkov G, Brinzari V, Schwank J, DiBattista M, Vasiliev A (2001) Peculiarities of SnO2 thin film deposition by spray pyrolysis for gas sensor application. Sens Actuators B Chem 77:244–252. https://doi.org/10.1016/s0925-4005(01)00741-9

    Article  CAS  Google Scholar 

  5. Brinzari V, Korotcenkov G, Golovanov V (2001) Factors influencing the gas sensing characteristics of tin dioxide films deposited by spray pyrolysis: understanding and possibilities of control. Thin Solid Films 391:167–175. https://doi.org/10.1016/s0040-6090(01)00978-6

    Article  Google Scholar 

  6. Korotcenkov G (2008) The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater Sci Eng B 61:1–39. https://doi.org/10.1016/j.mser.2008.02.001

    Article  CAS  Google Scholar 

  7. Barsan N, Weimar U (2001) Conduction model of metal oxide gas sensors. J Electroceram 7:143–167. https://doi.org/10.1023/a:1014405811371

    Article  CAS  Google Scholar 

  8. Ogawa H, Nishikawa M, Abe A (1982) Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films. J Appl Phys 53(6):4448–4455. https://doi.org/10.1063/1.331230

    Article  CAS  Google Scholar 

  9. Rothschild A, Komem Y (2004) The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors. J Appl Phys 95(11):6374–6380. https://doi.org/10.1063/1.1728314

    Article  CAS  Google Scholar 

  10. Kawamura F, Takahashi T, Yasui I, Sunagawa I (2001) Impurity effect on <111> and <110> directions of growing SnO2 single crystals in SnO2–CU2O flux system. J Cryst Growth 233:259–268. https://doi.org/10.1016/s0040-6090(01)00978-6

    Article  CAS  Google Scholar 

  11. Barsan N, Schweizer-Berberich M, Göpel W (1999) Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report. Fresenius J Anal Chem 365:287–304. https://doi.org/10.1007/s002160051490

    Article  Google Scholar 

  12. Chen F, Zhao T, Fei YY, Lu H, Chen Z, Yang G, Zhu XD (2002) Surface segregation of bulk oxygen on oxidation of epitaxially grown Nb-doped SrTiO3 on SrTiO3(001). Appl Phys Lett 80(16):2889–2891. https://doi.org/10.1063/1.1473694

    Article  CAS  Google Scholar 

  13. Wang X, Sui Y, Yang Q, Cheng J, Qian Z, Liu Z, Su W (2007) Effect of doping Zn on the magnetoresistance of polycrystalline Sr2FeMoO6. J Alloy Compd 431(1–2):6–9. https://doi.org/10.1016/j.jallcom.2006.05.034

    Article  CAS  Google Scholar 

  14. Meier J, Schiøtz J, Liu P, Nørskov JK, Stimming U (2004) Nano-scale effects in electrochemistry. Chem Phys Lett 390:440–444. https://doi.org/10.1016/j.cplett.2004.03.149

    Article  CAS  Google Scholar 

  15. Castañeda L (2007) Effects of palladium coatings on oxygen sensors of titanium dioxide thin films. Mater Sci Eng B 139(2–3):149–154. https://doi.org/10.1016/j.mseb.2007.01.046

    Article  CAS  Google Scholar 

  16. Matko I, Gaidi M, Chenevier B, Charai A, Saikaly W, Labeau M (2002) Pt doping of SnO2 thin films. J Electrochem Soc 149(8):H153. https://doi.org/10.1149/1.1488919

    Article  CAS  Google Scholar 

  17. Alfredsson M, Richard C, Catlow A (2004) Predicting the metal growth mode and wetting of noble metals supported on c-ZrO2. Surf Sci 561(1):43–56. https://doi.org/10.1016/j.susc.2004.03.073

    Article  CAS  Google Scholar 

  18. Hyodo T, Abe S, Shimizu Y, Egashira M (2003) Gas-sensing properties of ordered mesoporous SnO2 and effects of coatings thereof. Sens Actuators B Chem 93(1–3):590–600. https://doi.org/10.1016/s0925-4005(03)00208-9

    Article  CAS  Google Scholar 

  19. Sberveglieri G, Groppelli S, Nelli P, Camanzi A (1991) A new technique for the preparation of highly sensitive hydrogen sensors based on SnO2 (Bi2O3) thin films. Sens Actuators B Chem 5:253–255. https://doi.org/10.1016/0925-4005(91)80258-l

    Article  Google Scholar 

  20. McAleer JF, Moseley PT, Norris JO, Williams DE (1987) Tin dioxide gas sensors. J Chem Soc Faraday Trans 1:1323–1346. https://doi.org/10.1039/f19878301323

    Article  CAS  Google Scholar 

  21. Korotcenkov G, Brinzari V, Stetter JR, Blinov I, Blaja V (2007) The nature of processes controlling the kinetics of indium oxide-based thin film gas sensor response. Sens Actuators B Chem 128(1):51–63. https://doi.org/10.1016/j.snb.2007.05.028

    Article  CAS  Google Scholar 

  22. Wang J, Gan M, Shi J (2007) Detection and characterization of penetrating pores in porous materials. Mater Charact 58(1):8–12. https://doi.org/10.1016/j.matchar.2006.02.016

    Article  CAS  Google Scholar 

  23. Rumyantseva MN, Gaskov AM, Rosman N, Pagnier T, Morante JR (2005) Raman surface vibration modes in nanocrystalline SnO2: correlation with gas sensor performances. Chem Mater 17:893–901. https://doi.org/10.1021/cm0490470

    Article  CAS  Google Scholar 

  24. Min B (2004) SnO2 thin film gas sensor fabricated by ion beam deposition. Sens Actuators B Chem 98(2–3):239–246. https://doi.org/10.1016/j.snb.2003.10.023

    Article  CAS  Google Scholar 

  25. Korotcenkov G, Ivanov M, Blinov I, Stetter JR (2007) Kinetics of indium oxide-based thin film gas sensor response: the role of “redox” and adsorption/desorption processes in gas sensing effects. Thin Solid Films 515(7–8):3987–3996. https://doi.org/10.1016/j.tsf.2006.09.044

    Article  CAS  Google Scholar 

  26. Williams DE, Pratt KF (2000) Microstructure effects on the response of gas-sensitive resistors based on semiconducting oxides. Sens Actuators B Chem 70:214–221. https://doi.org/10.1016/s0925-4005(00)00572-4

    Article  CAS  Google Scholar 

  27. Tan OK, Zhu W, Yan Q, Kong LB (2000) Size effect and gas sensing characteristics of nanocrystalline xSnO2-(1-x)a-Fe2O3 ethanol sensors. Sens Actuators B Chem 65:361–365. https://doi.org/10.1016/s0925-4005(99)00414-1

    Article  CAS  Google Scholar 

  28. Hench LL, West JK (1990) The sol-gel process. Chem Rev 90(33–72):33. https://doi.org/10.1021/cr00099a003

    Article  CAS  Google Scholar 

  29. Vioux A (1997) Nonhydrolytic sol–gel routes to oxides. Chem Mater 9:2292–2299. https://doi.org/10.1504/ijenm.2016.078967

    Article  CAS  Google Scholar 

  30. Trentler TJ, Denler TE, Bertone JF, Agrawal A, Colvin VL (1999) Synthesis of TiO2 nanocrystals by nonhydrolytic solution-based reactions. J Am Chem Soc 121:1613–1614. https://doi.org/10.1021/ja983361b

    Article  CAS  Google Scholar 

  31. Zhang Z, Zhong X, Liu S, Li D, Han M (2005) Aminolysis route to monodisperse titania nanorods with tunable aspect ratio. Angew Chem Int Ed Engl 44(22):3466–3470. https://doi.org/10.1002/anie.200500410

    Article  CAS  Google Scholar 

  32. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE(E=S, Se, Te) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715. https://doi.org/10.1021/ja00072a025

    Article  CAS  Google Scholar 

  33. Kumar S, Nann T (2006) Shape control of II-VI semiconductor nanomaterials. Small 2(3):316–329. https://doi.org/10.1002/smll.200500357

    Article  CAS  Google Scholar 

  34. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627. https://doi.org/10.1126/science.1114397

    Article  CAS  Google Scholar 

  35. Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946. https://doi.org/10.1021/cr030027b

    Article  CAS  Google Scholar 

  36. Cabanas A, Darr JA, Poliakoff M, Lester E (2000) A continuous and clean one-step synthesis of nano-particulate Ce1−xZrxO2 solid solutions in near-critical water. Chem Commun 11:901–902. https://doi.org/10.1039/b001424i

    Article  Google Scholar 

  37. Djerdj I, Arčon D, Jagličić Z, Niederberger M (2008) Nonaqueous synthesis of metal oxide nanoparticles: short review and doped titanium dioxide as case study for the preparation of transition metal-doped oxide nanoparticles. J Solid State Chem 181(7):1571–1581. https://doi.org/10.1016/j.jssc.2008.04.016

    Article  CAS  Google Scholar 

  38. Rao CNR, Cheetham AK, Thirumurugan A (2008) Hybrid inorganic–organic materials: a new family in condensed matter physics. J Phys Condens Matter 20(8):083202. https://doi.org/10.1088/0953-8984/20/8/083202

    Article  CAS  Google Scholar 

  39. Titirici MM, Antonietti M, Thomas A (2006) A generalized synthesis of metal oxide hollow spheres using a hydrothermal approach. Chem Mater 18:3808–3812. https://doi.org/10.1021/cm052768u

    Article  CAS  Google Scholar 

  40. Xiao H-M, Fu S-Y, Zhu L-P, Li Y-Q, Yang G (2007) Controlled synthesis and characterization of CuO nanostructures through a facile hydrothermal route in the presence of sodium citrate. Eur J Inorg Chem 14:1966–1971. https://doi.org/10.1002/ejic.200601029

    Article  CAS  Google Scholar 

  41. Jia CJ, Sun LD, Luo F, Han XD, Heyderman LJ et al (2008) Large-scale synthesis of single-crystalline iron oxide magnetic nanorings. J Am Chem Soc 130:16968–16977. https://doi.org/10.1021/ja805152t

    Article  CAS  Google Scholar 

  42. Wang SB, Min Y-L, Yu SH (2007) Synthesis and magnetic properties of uniform hematite nanocubes. J Phys Chem C 111:3551–3554. https://doi.org/10.1021/jp068647e

    Article  CAS  Google Scholar 

  43. Patzke GR, Michailovski A, Krumeich F, Nesper R, Grunwaldt JD, Baiker A (2004) One-step synthesis of submicrometer fibers of MoO3. Chem Mater 16:1126–1134. https://doi.org/10.1021/cm031057y

    Article  CAS  Google Scholar 

  44. Nagappa B, Chandrappa GT, Livage J (2005) Synthesis, characterization and applications of nanostructural/nanodimensional metal oxides. Pramana J Phys 65:917–213. https://doi.org/10.1007/bf02704092

    Article  CAS  Google Scholar 

  45. Uchiyama H, Ohgi H, Imai H (2006) Selective preparation of SnO2 and SnO crystals with controlled morphologies in an aqueous solution system. Cryst Growth Des 6:2186–2190. https://doi.org/10.1021/cg060328p

    Article  CAS  Google Scholar 

  46. Cheng B, Russell JM, Shi W, Zhang L, Samulski ET (2004) Large-scale, solution-phase growth of single-crystalline SnO2 nanorods. J Am Chem Soc 126:5972–5973. https://doi.org/10.1021/ja0493244

    Article  CAS  Google Scholar 

  47. Menzel R, Peiró AM, Durrant JR, Shaffer MS (2006) Impact of hydrothermal processing conditions on high aspect ratio titanate nanostructures. Chem Mater 18:6059–6068. https://doi.org/10.1021/cm061721l

    Article  CAS  Google Scholar 

  48. Reyes-Coronado D, Rodríguez-Gattorno G, Espinosa-Pesqueira ME, Cab C, de Coss R, Oskam G (2008) Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology 19(14):145605. https://doi.org/10.1088/0957-4484/19/14/145605

    Article  CAS  Google Scholar 

  49. Chandrappa GT, Steunou N, Cassaignon S, Bauvais C, Livage J (2003) Hydrothermal synthesis of vanadium oxide nanotubes from V2O5 gels. Catal Today 78(1–4):85–89. https://doi.org/10.1016/s0920-5861(02)00298-5

    Article  CAS  Google Scholar 

  50. Clavel G, Willinger MG, Zitoun D, Pinna N (2007) Solvent dependent shape and magnetic properties of doped ZnO nanostructures. Adv Func Mater 17(16):3159–3169. https://doi.org/10.1002/adfm.200601142

    Article  CAS  Google Scholar 

  51. Zhang L, Wang W, Zhou L, Xu H (2007) Bi2WO6 nano- and microstructures: shape control and associated visible-light-driven photocatalytic activities. Small 3(9):1618–1625. https://doi.org/10.1002/smll.200700043

    Article  CAS  Google Scholar 

  52. Zhou Y, Vuille K, Heel A, Patzke Greta R (2009) Studies on nanostructured Bi2WO6: convenient hydrothermal and TiO2-coating pathways. Z Anorg Allg Chem 635(12):1848–1855. https://doi.org/10.1002/zaac.200900187

    Article  CAS  Google Scholar 

  53. Sun L, Guo Q, Wu X, Luo S, Pan W, Huang K, Lu J, Ren L, Cao M, Hu C (2007) Synthesis and photoluminescent properties of strontium tungstate nanostructures. 111(2):532–537. https://doi.org/10.1021/jp064923d

    Article  CAS  Google Scholar 

  54. Kiebach R, Pienack N, Bensch W, Grunwaldt JD, Michailovski A, Baiker A, Fox T, Zhou Y, Patzke GR (2008) Hydrothermal formation of W/Mo-oxides: a multidisciplinary study of growth and shape. Chem Mater 2008:3022–3033. https://doi.org/10.1021/cm7028036

    Article  CAS  Google Scholar 

  55. Michailovski A, Wörle M, Sheptyakov D, Patzke GR (2011) Hydrothermal synthesis of anisotropic alkali and alkaline earth vanadates. J Mater Res 22(01):5–18. https://doi.org/10.1557/jmr.2007.0002

    Article  Google Scholar 

  56. Lee SH, Kim TW, Park DH, Choy JH, Hwang SJ (2007) Single-step synthesis, characterization, and application of nanostructured KxMn1−yCoyO2−a with controllable chemical compositions and crystal structures. Chem Mater 19:5010–5017. https://doi.org/10.1002/chin.200749017

  57. Hu Y, Gu H, Hu Z, Di W, Yuan Y, You J, Cao W, Wang Y, Chan HLW (2008) Controllable hydrothermal synthesis of KTa1−xNbxO3 nanostructures with various morphologies and their growth mechanisms. Cryst Growth Des 8:832–837. https://doi.org/10.1021/cg070230q

    Article  CAS  Google Scholar 

  58. Wei X, Xu G, Ren Z, Wang Y, Shen G, Han G (2008) Composition and shape control of single-crystalline Ba1−xSrxTiO3 (x = 0–1) nanocrystals via a solvothermal route. J Cryst Growth 310(18):4132–4137. https://doi.org/10.1016/j.jcrysgro.2008.04.039

    Article  CAS  Google Scholar 

  59. Prades M, Beltrán H, Masó N, Cordoncillo E, West AR (2008) Phase transition hysteresis and anomalous Curie-Weiss behavior of ferroelectric tetragonal tungsten bronzes Ba2RETi2Nb3O15:RE=Nd,Sm. J Appl Phys 104(10):104118. https://doi.org/10.1063/1.3021460

    Article  CAS  Google Scholar 

  60. Su Y, Li L, Li G (2008) Synthesis and optimum luminescence of CaWO4-based red phosphors with codoping of Eu3+ and Na+. Chem Mater 20:6060–6067. https://doi.org/10.1021/cm8014435

    Article  CAS  Google Scholar 

  61. Zhang L, Fu H, Zhang C, Zhu Y (2008) Effects of Ta5+ substitution on the structure and photocatalytic behavior of the Ca2Nb2O7 photocatalyst. J Phys Chem C 112:3126–3133. https://doi.org/10.1021/jp074092r

    Article  CAS  Google Scholar 

  62. Yucai H (2006) Hydrothermal synthesis of nano Ce–Zr–Y oxide solid solution for automotive three-way catalyst. J Am Ceram Soc 89(9):2949–2951. https://doi.org/10.1111/j.1551-2916.2006.01130.x

    Article  CAS  Google Scholar 

  63. Gözüak F, Köseoğlu Y, Baykal A, Kavas H (2009) Synthesis and characterization of CoxZn1−xFe2O4 magnetic nanoparticles via a PEG-assisted route. J Magn Magn Mater 321(14):2170–2177. https://doi.org/10.1016/j.jmmm.2009.01.008

    Article  CAS  Google Scholar 

  64. Zhang T, Jin CG, Qian T, Lu XL, Bai JM, Li XG (2004) Hydrothermal synthesis of single-crystalline La0.5Ca0.5MnO3 nanowires at low temperature. J Mater Chem 14(18):2787. https://doi.org/10.1039/b405288a

    Article  CAS  Google Scholar 

  65. Niu J, Deng J, Liu W, Zhang L, Wang G, Dai H, He H, Zi X (2007) Nanosized perovskite-type oxides La1−xSrxMO3−δ (M=Co, Mn; x=0, 0.4) for the catalytic removal of ethylacetate. Catal Today 126(3–4):420–429. https://doi.org/10.1016/j.cattod.2007.06.027

    Article  CAS  Google Scholar 

  66. Chen T-Y, Fung K-Z (2008) Synthesis of and densification of oxygen-conducting La0.8Sr0.2Ga0.8Mg0.2O2.8 nano powder prepared from a low temperature hydrothermal urea precipitation process. J Eur Ceram Soc 28(4):803–810. https://doi.org/10.1016/j.jeurceramsoc.2007.08.006

    Article  CAS  Google Scholar 

  67. Zhou L, Liang Y, Hu L, Han X, Yi Z, Sun J, Yang S (2008) Much improved capacity and cycling performance of LiVMoO6 cathode for lithium ion batteries. J Alloy Compd 457(1–2):389–393. https://doi.org/10.1016/j.jallcom.2007.02.126

    Article  CAS  Google Scholar 

  68. Zhang Q, Zhu M, Zhang Q, Li Y, Wang H (2009) Synthesis and characterization of carbon nanotubes decorated with manganese–zinc ferrite nanospheres. Mater Chem Phys 116(2–3):658–662. https://doi.org/10.1016/j.matchemphys.2009.05.029

    Article  CAS  Google Scholar 

  69. Celaya Sanfiz A, Hansen TW, Girgsdies F, Timpe O, Rödel E, Ressler T, Trunschke A, Schlögl R (2008) Preparation of phase-pure M1 MoVTeNb oxide catalysts by hydrothermal synthesis-influence of reaction parameters on structure and morphology. Top Catal 50(1–4):19–32. https://doi.org/10.1007/s11244-008-9106-z

    Article  CAS  Google Scholar 

  70. Min Y, Akbulut M, Kristiansen K, Golan Y, Israelachvili J (2008) The role of interparticle and external forces in nanoparticle assembly. Nat Mater 7:527–538. https://doi.org/10.1038/nmat2206

    Article  CAS  Google Scholar 

  71. Pinheiro AV, Han D, Shih WM, Yan H (2011) Challenges and opportunities for structural DNA nanotechnology. Nat Nanotechnol 6(12):763–772. https://doi.org/10.1038/nnano.2011.187

    Article  CAS  Google Scholar 

  72. Dill KA, MacCallum JL (2012) The protein-folding problem, 50 years on. Science 338:1042–1046. https://doi.org/10.1126/science.1219021

    Article  CAS  Google Scholar 

  73. Chen IA, Walde P (2010) From self-assembled vesicles to protocells. Cold Spring Harb Perspect Biol 2(7):1–13. https://doi.org/10.1101/cshperspect.a002170

    Article  CAS  Google Scholar 

  74. Bates FS, Hillmyer MA, Lodge TP, Bates CM, Delaney KT, Fredrickson GH (2012) Multiblock polymers: panacea or pandora’s box? Science 336:434–440. https://doi.org/10.1126/science.1215368

    Article  CAS  Google Scholar 

  75. Kim S-H, Lee SY, Yang S-M, Yi G-R (2011) Self-assembled colloidal structures for photonics. NPG Asia Mater 3(1):25–33. https://doi.org/10.1038/asiamat.2010.192

    Article  CAS  Google Scholar 

  76. Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992. https://doi.org/10.1126/science.287.5460.1989

    Article  CAS  Google Scholar 

  77. Murray CB, Kagan AC, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 30:545–610. https://doi.org/10.1146/annurev.matsci.30.1.545

    Article  CAS  Google Scholar 

  78. Claridge SA, Castleman AW, Khanna SN, Murray CB, Sen A, Weiss PS (2009) Cluster-assembled materials. ACS Nano 3:244–245. https://doi.org/10.1021/nn800820e

    Article  CAS  Google Scholar 

  79. Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96:1533–1554. https://doi.org/10.1021/cr9502357

    Article  CAS  Google Scholar 

  80. Vericat C, Vela ME, Benitez G, Carro P, Salvarezza RC (2010) Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system. Chem Soc Rev 39(5):1805. https://doi.org/10.1039/b907301a

    Article  CAS  Google Scholar 

  81. Batista CAS, Larson RG, Kotov NA (2015) Nonadditivity of nanoparticle interactions. Science 350:1242477–1242471–1242410. https://doi.org/10.1126/science.1242477

    Article  Google Scholar 

  82. Piner RD, Zhu J, Xu F, Hong S, Mirkin CA (1999) “Dip-Pen” nanolithography. Science 283:661–663. https://doi.org/10.1126/science.283.5402.661

    Article  CAS  Google Scholar 

  83. Lin XM, Jaeger HM, Sorensen CM, Klabunde KJ (2001) Formation of long-range-ordered nanocrystal superlattices on silicon nitride substrates. J Phys Chem B 105:3353–3357. https://doi.org/10.1021/jp0102062

    Article  CAS  Google Scholar 

  84. Talapin DV, Murray CB (2005) PbSe Nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 310:86–89. https://doi.org/10.1126/science.1116703

    Article  CAS  Google Scholar 

  85. Bigioni TP, Lin X-M, Nguyen TT, Corwin EI, Witten TA, Jaeger HM (2006) Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nat Mater 5(4):265–270. https://doi.org/10.1038/nmat1611

    Article  CAS  Google Scholar 

  86. Bodnarchuk MI, Kovalenko MV, Heiss W, Talapin DV (2010) Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: temperature as the structure-directing factor. J Am Chem Soc 132:11967–11977. https://doi.org/10.1021/ja103083q

    Article  CAS  Google Scholar 

  87. Dong A, Chen J, Vora PM, Kikkawa JM, Murray CB (2010) Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface. Nature 466(7305):474–477. https://doi.org/10.1038/nature09188

    Article  CAS  Google Scholar 

  88. Aleksandrovic V, Greshnykh D, Randjelovic I, Fromsdorf A, Kornowski A, Roth SV, Klinke C, Weller H (2008) Preparation and electrical properties of cobalt platinum nanoparticle monolayers deposited by the Langmuir Blodgett technique. ACS Nano 2:1123–1130. https://doi.org/10.1021/nn800147a

    Article  CAS  Google Scholar 

  89. Rupich SM, Shevchenko EV, Bodnarchuk MI, Lee B, Talapin DV (2010) Size-dependent multiple twinning in nanocrystal superlattices. J Am Chem Soc 132:289–296. https://doi.org/10.1021/ja9074425

    Article  CAS  Google Scholar 

  90. Chayen NE (2004) Turning protein crystallisation from an art into a science. Curr Opin Struct Biol 14:577–583. https://doi.org/10.1016/j.sbi.2004.08.002

    Article  CAS  Google Scholar 

  91. Yang P, Zhao D, Margolese DI, Chmelka BF, Stucky GD (1998) Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396:152–155. https://doi.org/10.1038/24132

    Article  CAS  Google Scholar 

  92. Zhu Y, Zhao Y, Ma J, Cheng X, Xie J, Xu P, Liu H, Liu H, Zhang H, Wu M, Elzatahry AA, Alghamdi A, Deng Y, Zhao D (2017) Mesoporous tungsten oxides with crystalline framework for highly sensitive and selective detection of foodborne pathogens. J Am Chem Soc 139(30):10365–10373. https://doi.org/10.1021/jacs.7b04221

    Article  CAS  Google Scholar 

  93. Deng Y, Wei J, Sun Z, Zhao D (2013) Large-pore ordered mesoporous materials templated from non-pluronic amphiphilic block copolymers. Chem Soc Rev 42(9):4054–4070. https://doi.org/10.1039/c2cs35426h

    Article  CAS  Google Scholar 

  94. Knapp CE, Carmalt CJ (2016) Solution based CVD of main group materials. Chem Soc Rev 45(4):1036–1064. https://doi.org/10.1039/c5cs00651a

    Article  CAS  Google Scholar 

  95. Marchand P, Hassan IA, Parkin IP, Carmalt CJ (2013) Aerosol-assisted delivery of precursors for chemical vapour deposition: expanding the scope of CVD for materials fabrication. Dalton Trans 42(26):9406–9422. https://doi.org/10.1039/c3dt50607j

    Article  CAS  Google Scholar 

  96. Condorelli GG, Malandrino G, Fragalà IL (2007) Engineering of molecular architectures of β-diketonate precursors toward new advanced materials. Coord Chem Rev 251:1931–1950. https://doi.org/10.1016/j.ccr.2007.04.016

    Article  CAS  Google Scholar 

  97. Bekermann D, Barreca D, Gasparotto A, Maccato C (2012) Multi-component oxide nanosystems by chemical vapor deposition and related routes: challenges and perspectives. CrystEngComm 14(20):6347. https://doi.org/10.1039/c2ce25624j

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghui Deng .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deng, Y. (2019). Semiconducting Metal Oxides: Morphology and Sensing Performance. In: Semiconducting Metal Oxides for Gas Sensing. Springer, Singapore. https://doi.org/10.1007/978-981-13-5853-1_3

Download citation

Publish with us

Policies and ethics