Skip to main content

Sensing Mechanism and Evaluation Criteria of Semiconducting Metal Oxides Gas Sensors

  • Chapter
  • First Online:

Abstract

Analogue to other sensing system, semiconductor metal oxide (SMO) sensing systems have their own working principle or sensing mechanism evaluation criteria about sensing performance. In this chapter, for the single-component metal oxide gas sensing mechanism, including n-type semiconductors and p-type semiconductors, the effects of surface-adsorbed oxygen and depletion layer width on resistance change are discussed; for metal oxide complexes, including n–n junction, p–p junction and p–n junction, the transition of charge between different materials are analyzed; for heteroatom-doped metal oxides, the defects introduced by heteroatoms and its influence on the electronic structure of host materials are discussed; for catalyst-decorated metal oxide, electronic sensitization and chemical sensitization of catalyst are analyzed and illustrated. Finally, the effect of metal oxide grain size on gas sensing properties was summarized. Based on the metal oxide resistive gas sensing mechanism, the evaluation criteria of gas sensing performance are summarized, including sensitivity, operating temperature, selectivity, stability and response–recovery time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Yamazoe N (2005) Toward innovations of gas sensor technology. Sens Actuators B 108:2–14. https://doi.org/10.1016/j.snb.2004.12.075

    Article  CAS  Google Scholar 

  2. Kim H, Lee J (2014) Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens Actuators B 192:607–627. https://doi.org/10.1016/j.snb.2013.11.005

    Article  CAS  Google Scholar 

  3. Zhou X, Lee S, Xu Z, Yoon J (2015) Recent progress on the development of chemosensors for gases. Chem Rev 115:7944–8000. https://doi.org/10.1021/cr500567r

    Article  CAS  Google Scholar 

  4. Zhou X, Cheng X, Zhu Y, Elzatahry A, Alghamdi A, Deng Y, Zhao D (2018) Ordered porous metal oxide semiconductors for gas sensing. Chin Chem Lett 29:405–416. https://doi.org/10.1016/j.cclet.2017.06.021

    Article  CAS  Google Scholar 

  5. Miller D, Akbar S, Morris P (2014) Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens Actuators B 204:250–272. https://doi.org/10.1016/j.snb.2014.07.074

    Article  CAS  Google Scholar 

  6. Zhu Y, Zhao Y, Ma J, Cheng X, Xie J, Xu P, Liu H, Liu H, Zhang H, Wu M, Elzatahry A, Alghamdi A, Deng Y, Zhao D (2017) Mesoporous tungsten oxides with crystalline framework for highly sensitive and selective detection of foodborne pathogens. J Am Chem Soc 139:10365. https://doi.org/10.1021/jacs.7b04221

    Article  CAS  Google Scholar 

  7. Xiao X, Liu L, Ma J, Ren Y, Cheng X, Zhu Y, Zhao D, Elzatahry A, Alghamdi A, Deng Y (2018) Ordered mesoporous tin oxide semiconductors with large pores and crystallized wall for high-performance gas sensing. ACS Appl Mater Interfaces 10:1871–1880. https://doi.org/10.1021/acsami.7b18830

    Article  CAS  Google Scholar 

  8. Wang Z, Zhu Y, Luo W, Ren Y, Cheng X, Xu P, Li X, Deng Y, Zhao D (2016) Controlled synthesis of ordered mesoporous carbon-cobalt oxide nanocomposites with large mesopores and graphitic walls. Chem Mater 28:7773–7780. https://doi.org/10.1021/acs.chemmater.6b03035

    Article  CAS  Google Scholar 

  9. Han J, Wang T, Li T, Yu H, Yang Y, Dong X (2018) Enhanced NOx gas sensing properties of ordered mesoporous WO3/ZnO prepared by electroless plating. Adv Mater Interfaces 5:1701167. https://doi.org/10.1002/admi.201701167

    Article  CAS  Google Scholar 

  10. Gao J, Wang L, Kan K, Xu S, Jing L, Liu S, Shen P, Li L, Shi K (2014) One-step synthesis of mesoporous Al2O3–In2O3 nanofibres with remarkable gas-sensing performance to NOx at room temperature. J Mater Chem A 2:949. https://doi.org/10.1039/c3ta13943c

    Article  CAS  Google Scholar 

  11. Sun Y, Chen L, Wang Y, Zhao Z, Li P, Zhang W, Leprince-Wang Y, Hu J (2017) Synthesis of MoO3/WO3 composite nanostructures for highly sensitive ethanol and acetone detection. J Mater Sci 52:1561–1572. https://doi.org/10.1007/s10853-016-0450-2

    Article  CAS  Google Scholar 

  12. Tawfik Alali K, Lu Z, Zhang H, Liu J, Liu Q, Li R, Aljebawic K, Wang J (2017) p–p heterojunction CuO/CuCo2O4 nanotubes synthesized via electrospinning technology for detecting n-propanol gas at room temperature. Inorg Chem Front 4:1219. https://doi.org/10.1039/c7qi00192d

    Article  CAS  Google Scholar 

  13. Wang Y, Zhang H, Sun X (2016) Electrospun nanowebs of NiO/SnO2 p–n heterojunctions for enhanced gas sensing. Appl Surf Sci 389:514–520. https://doi.org/10.1016/j.apsusc.2016.07.073

    Article  CAS  Google Scholar 

  14. Kim H, Choi K, Kim K, Kim I, Cao G, Lee J (2010) Ultra-fast responding and recovering C2H5OH sensors using SnO2 hollow spheres prepared and activated by Ni templates. Chem Commun 46:5061–5063. https://doi.org/10.1039/c0cc00213e

    Article  CAS  Google Scholar 

  15. Gai L, Ma L, Jiang H, Ma Y, Tian Y, Liu H (2012) Nitrogen-doped In2O3 nanocrystals constituting hierarchical structures with enhanced gas-sensing properties. CrystEngComm 14:7479–7486. https://doi.org/10.1039/c2ce25789k

    Article  CAS  Google Scholar 

  16. Kim H, Choi K, Kim K, Na C, Lee J (2012) Highly sensitive C2H5OH sensors using Fe-doped NiO hollow spheres. Sens Actuators B 171:1029–1037. https://doi.org/10.1016/j.snb.2012.06.029

    Article  CAS  Google Scholar 

  17. Ma J, Ren Y, Zhou X, Liu L, Zhu Y, Cheng X, Xu P, Li X, Deng Y, Zhao D (2018) Pt nanoparticles sensitized ordered mesoporous WO3 semiconductor: gas sensing performance and mechanism study. Adv Funct Mater 1705268. https://doi.org/10.1002/adfm.201705268

    Article  Google Scholar 

  18. Zhang J, Song P, Li Z, Zhang S, Yang Z, Wang Q (2016) Enhanced trimethylamine sensing performance of single-crystal MoO3 nanobelts decorated with Au nanoparticles. J Alloys Compd 685:1024–1033. https://doi.org/10.1016/j.jallcom.2016.06.257

    Article  CAS  Google Scholar 

  19. Liu X, Chang Z, Luo L, Lei X, Liu J, Sun X (2012) Sea urchin-like Ag-α-Fe2O3 nanocomposite microspheres: synthesis and gas sensing applications. J Mater Chem 22:7232–7238. https://doi.org/10.1039/c2jm15742j

    Article  CAS  Google Scholar 

  20. Tiemann M (2007) Porous metal oxides as gas sensors. Chem Eur J 13:8376–8388. https://doi.org/10.1002/chem.200700927

    Article  CAS  Google Scholar 

  21. Wagner T, Haffer S, Weinberger C, Klaus D, Tiemann M (2013) Mesoporous materials as gas sensors. Chem Soc Rev 42:4036. https://doi.org/10.1039/c2cs35379b

    Article  CAS  Google Scholar 

  22. Rothschild A, Komem Y (2004) The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors. J Appl Phys 95:6374–6380. https://doi.org/10.1063/1.1728314

    Article  CAS  Google Scholar 

  23. Xu C, Tamaki J, Miura N, Yamazoe N (1991) Grain-size effects on gas sensitivity of porous SnO2-based elements. Sens Actuators B 3:147–155. https://doi.org/10.1016/0925-4005(91)80207-z

    Article  CAS  Google Scholar 

  24. Barsan N, Schweizer-Berberich M, Göpel W (1999) Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report. J Anal Chem 365:284–304. https://doi.org/10.1007/s002160051490

    Article  Google Scholar 

  25. Korotcenkov G, Cho BK (2012) The role of grain size on the thermal instability of nanostructured metal oxides used in gas sensor applications and approaches for grain-size stabilization. Prog Cryst Growth Charact Mater 58(4):167–208. https://doi.org/10.1016/j.pcrysgrow.2012.07.001

    Article  CAS  Google Scholar 

  26. Zhu Y, Zhao Y, Ma J, Cheng X, Xie J, Xu P, Liu H, Liu H, Zhang H, Wu M, Elzatahry AA, Alghamdi A, Deng Y, Zhao D (2017) Mesoporous tungsten oxides with crystalline framework for highly sensitive and selective detection of foodborne pathogens. J Am Chem Soc 139(30):10365–10373. https://doi.org/10.1021/jacs.7b04221

    Article  CAS  Google Scholar 

  27. Pulkkinen U, Rantala TT, Rantala TS, Lantto V (2001) Kinetic Monte Carlo simulation of oxygen exchange of SnO2 surface. J Mol Catal A Chem 166:15–21. https://doi.org/10.1016/S1381-1169(00)00466-0

    Article  CAS  Google Scholar 

  28. Wang Y, Cui X, Yang Q, Liu J, Gao Y, Sun P, Lu G (2016) Preparation of Ag-loaded mesoporous WO3 and its enhanced NO2 sensing performance. Sens Actuators B 225:544–552. https://doi.org/10.1016/j.snb.2015.11.065

    Article  CAS  Google Scholar 

  29. Arunkumar S, Hou T, Kim Y-B, Choi B, Park SH, Jung S, Lee D-W (2017) Au decorated ZnO hierarchical architectures: facile synthesis, tunable morphology and enhanced CO detection at room temperature. Sens Actuators B 243:990–1001. https://doi.org/10.1016/j.snb.2016.11.152

    Article  CAS  Google Scholar 

  30. Ma J, Ren Y, Zhou X, Liu L, Zhu Y, Cheng X, Xu P, Li X, Deng Y, Zhao D (2018) Pt nanoparticles sensitized ordered mesoporous WO3 semiconductor: gas sensing performance and mechanism study. Adv Funct Mater 28(6):1705268. https://doi.org/10.1002/adfm.201705268

    Article  CAS  Google Scholar 

  31. Jing Z, Zhan J (2008) Fabrication and gas-sensing properties of porous ZnO nanoplates. Adv Mater 20(23):4547–4551. https://doi.org/10.1002/adma.200800243

    Article  CAS  Google Scholar 

  32. Hoa ND, Duy NV, El-Safty SA, Hieu NV (2015) Meso-/nanoporous semiconducting metal oxides for gas sensor applications. J Nanomater 2015:1–14. https://doi.org/10.1155/2015/972025

    Article  CAS  Google Scholar 

  33. Korotcenkov G, Brinzari V, Ivanov M, Cerneavschi A, Rodriguez J, Cirera A, Cornet A, Morante J (2005) Structural stability of indium oxide films deposited by spray pyrolysis during thermal annealing. Thin Solid Films 479(1–2):38–51. https://doi.org/10.1016/j.tsf.2004.11.107

    Article  CAS  Google Scholar 

  34. Gong JW, Chen QF, Lian MR, Liu NC, Daoust C (2006) Temperature feedback control for improving the stability of a semiconductor-metal-oxide (SMO) gas sensor. IEEE Sens J 6(1):139–145. https://doi.org/10.1109/jsen.2005.844353

    Article  CAS  Google Scholar 

  35. Tiemann M (2007) Porous metal oxides as gas sensors. Chemistry 13(30):8376–8388. https://doi.org/10.1002/chem.200700927

    Article  CAS  Google Scholar 

  36. Liu J, Huang H, Zhao H, Yan X, Wu S, Li Y, Wu M, Chen L, Yang X, Su BL (2016) Enhanced gas sensitivity and selectivity on aperture-controllable 3D interconnected macro-mesoporous ZnO nanostructures. ACS Appl Mater Interfaces 8(13):8583–8590. https://doi.org/10.1021/acsami.5b12315

    Article  CAS  Google Scholar 

  37. Wagner T, Kohl C-D, Froba M, Tiemann M (2006) Gas sensing properties of ordered mesoporous SnO2. Sensors 6:318–323. https://doi.org/10.3390/s6040318

    Article  CAS  Google Scholar 

  38. Wagner T, Sauerwald T, Kohl CD, Waitz T, Weidmann C, Tiemann M (2009) Gas sensor based on ordered mesoporous In2O3. Thin Solid Films 517(22):6170–6175. https://doi.org/10.1016/j.tsf.2009.04.013

    Article  CAS  Google Scholar 

  39. Li Y, Luo W, Qin N, Dong J, Wei J, Li W, Feng S, Chen J, Xu J, Elzatahry AA, Es-Saheb MH, Deng Y, Zhao D (2014) Highly ordered mesoporous tungsten oxides with a large pore size and crystalline framework for H2S sensing. Angew Chem Int Ed 53(34):9035–9040. https://doi.org/10.1002/anie.201403817

    Article  CAS  Google Scholar 

  40. Wagner T, Haffer S, Weinberger C, Klaus D, Tiemann M (2013) Mesoporous materials as gas sensors. Chem Soc Rev 42(9):4036–4053. https://doi.org/10.1039/c2cs35379b

    Article  CAS  Google Scholar 

  41. Qin Y, Wang F, Shen W, Hu M (2012) Mesoporous three-dimensional network of crystalline WO3 nanowires for gas sensing application. J Alloys Comp 540:21–26. https://doi.org/10.1016/j.jallcom.2012.06.058

    Article  CAS  Google Scholar 

  42. Sun X, Hao H, Ji H, Li X, Cai S, Zheng C (2014) Nanocasting synthesis of In2O3 with appropriate mesostructured ordering and enhanced gas-sensing property. ACS Appl Mater Interfaces 6(1):401–409. https://doi.org/10.1021/am4044807

    Article  CAS  Google Scholar 

  43. Waitz T, Wagner T, Sauerwald T, Kohl C-D, Tiemann M (2009) Ordered mesoporous In2O3: synthesis by structure replication and application as a methane gas sensor. Adv Funct Mater 19(4):653–661. https://doi.org/10.1002/adfm.200801458

    Article  CAS  Google Scholar 

  44. Wagner T, Kohl CD, Morandi S, Malagu C, Donato N, Latino M, Neri G, Tiemann M (2012) Photoreduction of mesoporous In2O3: mechanistic model and utility in gas sensing. Chemistry 18(26):8216–8223. https://doi.org/10.1002/chem.201103905

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghui Deng .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deng, Y. (2019). Sensing Mechanism and Evaluation Criteria of Semiconducting Metal Oxides Gas Sensors. In: Semiconducting Metal Oxides for Gas Sensing. Springer, Singapore. https://doi.org/10.1007/978-981-13-5853-1_2

Download citation

Publish with us

Policies and ethics