Skip to main content

Wear of Tires

  • Chapter
  • First Online:
Advanced Tire Mechanics

Abstract

Wear is phenomenologically characterized by not only physical factors, such as fracture, but also chemical factors, such as oxidization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Problem 14.1.

  2. 2.

    See Footnote 1.

  3. 3.

    Same as Eq. (11.4).

  4. 4.

    Same as Eq. (11.5).

  5. 5.

    Note 14.1.

  6. 6.

    See Footnote 5.

  7. 7.

    Note 14.2.

  8. 8.

    See Footnote 7.

  9. 9.

    Note 14.3.

  10. 10.

    Note 14.4.

  11. 11.

    Note 14.5.

  12. 12.

    Note 14.6.

  13. 13.

    Note 14.7.

  14. 14.

    See Footnote 13.

  15. 15.

    See Footnote 13.

  16. 16.

    See Footnote 13.

  17. 17.

    Note 14.8.

  18. 18.

    Note 14.9.

  19. 19.

    Same as Eq. (11.72).

  20. 20.

    Note 14.10.

  21. 21.

    Note 14.11.

  22. 22.

    Note 14.12.

  23. 23.

    See Footnote 22.

  24. 24.

    Note 14.13.

References

  1. Bridgestone (ed.), Fundamentals and Application of Vehicle Tires (in Japanese) (Tokyo Denki University Press, 2008)

    Google Scholar 

  2. A. Schallamach, Friction and abrasion of rubber. Wear 1, 384–417 (1957–1958)

    Google Scholar 

  3. A. Schallamach, Recent advances in knowledge of rubber friction and tire wear. Rubber Chem. Technol. 41, 209–244 (1968)

    Article  Google Scholar 

  4. Y. Uchiyama, Development of the rubber friction and wear (in Japanese). Nippon Gomu Kyokaishi 80(4), 120–127 (2007)

    Article  Google Scholar 

  5. S. Yamazaki et al., Indoor test procedures for evaluation of tire tread wear and influence of suspension alignment. Tire Sci. Technol. 17(4), 236–273 (1989)

    Article  Google Scholar 

  6. S. Yamazaki, Influence of drum curvature on tire tread wear in indoor tire wear testing (in Japanese). JARI Res. J. 19(4) (1997)

    Google Scholar 

  7. H. Sakai, Study on wear of tire tread—friction and wear at large slip speed (in Japanese). Nippon Gomu Kyokaishi 68, 251–257 (1995)

    Article  Google Scholar 

  8. O.L. Maitre, et al., Evaluation of Tire Wear Performance, SAE Paper, No. 980256 (1998)

    Google Scholar 

  9. A. Schallamach, D.M. Turner, Wear of slipping wheels. Wear 3, 1–25 (1960)

    Article  Google Scholar 

  10. A.G. Veith, The Driving Severity Number (DSN)—a step toward quantifying treadwear test conditions. Tire Sci. Technol. 14(3), 139–159 (1986)

    Article  Google Scholar 

  11. P.S. Pillai, Friction and wear of tires, in Friction, Lubrication, and Wear Technology, ed. By P.J. Blau (ASM Handbook, 1992), vol. 18, pp. 578–581

    Google Scholar 

  12. H. Sakai, Study on wear of tire tread—friction and wear at small slip angle (in Japanese). Nippon Gomu Kyokaishi 68, 39–46 (1995)

    Article  Google Scholar 

  13. A.G. Veith, Accelerated tire wear under controlled conditions-II, Some factors that influence tire wear. Rubber Chem. Technol. 46, 821–842 (1973)

    Article  Google Scholar 

  14. A. Schallamach, The role of hysteresis in tire wear and laboratory abrasion. Rubber Chem. Technol. 33, 857–867 (1960)

    Article  Google Scholar 

  15. T. Mashita, Recent study on tire wear (in Japanese), in Symposium of Vehicle Dynamics and Tire, JSAE (1983)

    Google Scholar 

  16. M. Togashi, H. Mouri, Evaluation and technology for improvement on tire wear and irregular wear (in Japanese). Nippon Gomu Kyokaishi 69, 739–748 (1996)

    Article  Google Scholar 

  17. V.E. Gough, Stiffness of cord and rubber constructions. Rubber Chem. Technol. 41, 988–1021 (1968)

    Article  Google Scholar 

  18. S.K. Clark (ed.), Mechanics of Pneumatic Tire (U.S. Government Printing Office, 1981)

    Google Scholar 

  19. B.K. Daniels, A note on Gough stiffness and tread life. Tire Sci. Technol. 5(4), 226–231 (1977)

    Article  Google Scholar 

  20. H. Sakai, Tire Engineering (in Japanese) (Guranpuri-Shuppan, 1987)

    Google Scholar 

  21. T. Fujikawa, S. Ymamazaki, Tire tread slip at actual vehicle speed. Trans. JSAE 26(3), 97–102 (1995)

    Google Scholar 

  22. J.J. Lazeration, An investigation of the slip of a tire tread. Tire Sci. Technol. 25(2), 78–95 (1997)

    Article  Google Scholar 

  23. T. Fujikawa et al., Tire model to predict treadwear. Tire Sci. Technol. 27(2), 106–125 (1999)

    Article  Google Scholar 

  24. Fujikoshi Corporation, in Technology seminar: Introduction to tribology, Machi-Business News, vol 7 (2005)

    Google Scholar 

  25. T. Hanzaka, Y. Nakajima, Physical Wear Model on Wear Progress of Irregular Wear of Tires (Case of River Wear of Truck & Bus Tires) (FISITA World Automotive Congress, Busan, 2016)

    Google Scholar 

  26. S. Yamazaki et al., Indoor test procedures for evaluation of tire treadwear and influence of suspension alignment. Tire Sci. Technol. 17(4), 236–273 (1989)

    Article  Google Scholar 

  27. S. Yamazaki et al., Influences of toe and camber angie on tire wear (in Japanese). JARI Res. J. 9(12), 473–476 (1987)

    Google Scholar 

  28. S. Kohmura et al., in Estimation Method of Tire Tread Wear on a Vehicle, SAE Paper, No. 910168 (1991)

    Google Scholar 

  29. W.K. Shepherd, Diagonal wear predicted by a simple wear model, in The Tire Pavement Interface, ed. by M.G. Pottinger, T.J. Yager, ASTM STP 929, American Society for Testing and Materials (1986), pp. 159–179

    Google Scholar 

  30. A. Sueoka et al., Polygonal wear of automobile tires (in Japanese). Trans. JSME (C) 62(600), 3145–3152 (1996)

    Article  Google Scholar 

  31. A. Sueoka et al., Polygonal wear of automobile tires. JSME Int. J. (C) 40(2), 209–217 (1997)

    Article  Google Scholar 

  32. H. Sakai, Friction and wear of tire tread rubber. Tire Sci. Technol. 24(3), 252–275 (1996)

    Article  Google Scholar 

  33. C. Wright et al., Laboratory tire wear simulation derived from computer modeling of suspension dynamics. Tire Sci. Technol. 19(3), 122–141 (1991)

    Article  Google Scholar 

  34. S. Yamazaki, Evaluation method of friction and wear, and points to consider (in Japanese). Nippon Gomu Kyokaishi 74(1), 12–17 (2001)

    Article  Google Scholar 

  35. D.O. Stalnaker et al., Indoor simulation of tire wear: some case studies. Tire Sci. Technol. 24(2), 94–118 (1996)

    Article  Google Scholar 

  36. D.O. Stalnaker, J.L. Turner, Vehicle and course characterization process for indoor tire wear simulation. Tire Sci. Technol. 30(2), 100–121 (2002)

    Article  Google Scholar 

  37. E.F. Knuth et al., Advances in Indoor Tire Tread Wear Simulation, SAE Paper, No. 2006-01-1447 (2006)

    Google Scholar 

  38. R. Loh, F. Nohl, in Multiaxial Wheel Transducer, Application and Results, VDI Berichte, No. 741 (1989)

    Google Scholar 

  39. H. Lupker et al., Numerical prediction of car tire wear. Tire Sci. Technol. 32(3), 164–186 (2004)

    Article  Google Scholar 

  40. H. Kobayashi et al., Estimation method of tread wear life (in Japanese). Toyota Tech. Rev. 50(1), 50–55 (2000)

    Google Scholar 

  41. D. Zheng, Prediction of tire tread wear with FEM steady state rolling contact simulation. Tire Sci. Technol. 31(3), 189–202 (2003)

    Article  Google Scholar 

  42. J.C. Cho, B.C. Jung, Prediction of tread pattern wear by an explicit finite element model. Tire Sci. Technol. 35(4), 276–299 (2007)

    Article  Google Scholar 

  43. S. Yamazaki, Evaluation procedures and properties of tire treadwear (in Japanese). Jidosha Kenkyu 13(4), 116–126 (1991)

    Google Scholar 

  44. T. Fujikawa, S. Yamazaki, Tire tread slip at actual vehicle speed (in Japanese). Jidosha Kenkyu 16(5), 178–181 (1994)

    Google Scholar 

  45. S. Knisley, A correlation between rolling tire contact friction energy and indoor tread wear. Tire Sci. Technol. 30(2), 83–99 (2002)

    Article  MathSciNet  Google Scholar 

  46. http://autoc-one.jp/special/1204863/photo/0003.html. Accessed 27 April 2018

  47. A.A. Goldstein, Finite element analysis of a quasi-static rolling tire model for determination of truck tire forces and moments. Tire Sci. Technol. 24(4), 278–293 (1996)

    Article  Google Scholar 

  48. R. Gall et al., Some notes on the finite element analysis of tires. Tire Sci. Technol. 23(3), 175–188 (1995)

    Article  Google Scholar 

  49. Y. Kaji, in Improvements in Tire Wear Based on 3D Finite Element Analysis, Tire Technology EXPO (2003)

    Google Scholar 

  50. G. Meschke et al., 3D simulations of automobile tires: material modeling, mesh generation and solution strategies. Tire Sci. Technol. 25(3), 154–176 (1997)

    Article  Google Scholar 

  51. E. Seta et al., Hydroplaning analysis by FEM and FVM: effect of tire rolling and tire pattern on hydroplaning. Tire Sci. Technol. 28(3), 140–156 (2000)

    Article  Google Scholar 

  52. A. Becker, B. Seifert, Simulation of wear with a FE tyre model using a steady state rolling formulation. Contact Mechanics III (1997), pp. 119–128

    Google Scholar 

  53. K.R. Smith et al., Prediction of tire profile wear by steady-state FEM. Tire Sci. Technol. 36(4), 290–303 (2008)

    Article  Google Scholar 

  54. J. Qi et al., Validation of a steady-state transport analysis for rolling treaded tires. Tire Sci. Technol. 35(3), 183–208 (2007)

    Article  Google Scholar 

  55. J. Padovan, I. Zeid, On the development of traveling load finite elements. Comput. Struct. 12, 77–83 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  56. I. Zeid, J. Padovan, Finite element modeling of rolling contact. Comput. Struct. 14, 163–170 (1981)

    Article  Google Scholar 

  57. J. Padovan, O. Paramadilok, Transient and steady state viscoelastic rolling contact. Comput. Struct. 20(1–3), 545–553 (1985)

    Article  MATH  Google Scholar 

  58. R. Kennedy, J. Padovan, Finite element analysis of a steady-state rotating tire subjected to a point load or ground contact. Tire Sci. Technol. 15(4), 243–260 (1987)

    Article  Google Scholar 

  59. J.T. Oden, T.L. Lin, On the general rolling contact problem for finite deformations of a viscoelastic cylinder. Comput. Meth. Appl. Mech. Eng. 57, 297–376 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  60. U. Nackenhorst, On the finite element analysis of steady state rolling contact, in Contact Mechanics-Computational Techniques, ed. by M.H. Aliabadi, C.A. Brebbia (Computational Mechanics Publication, Southampton, Boston, 1993), pp. 53–60

    Google Scholar 

  61. U. Nackenhorst, The ALE-formulation of bodies in rolling contact—theoretical foundations and finite element approach. Comput. Meth. Appl. Mech. Eng. 193, 4299–4432 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  62. M. Shiraishi et al., Simulation of dynamically rolling tire. Tire Sci. Technol. 28(4), 264–276 (2000)

    Article  Google Scholar 

  63. M. Koishi, Z. Shida, Multi-objective design problem of tire wear and visualization of its pareto solutions. Tire Sci. Technol. 34(3), 170–194 (2006)

    Article  Google Scholar 

  64. J.R. Cho et al., Abrasive wear amount estimate for 3D patterned tire utilizing frictional dynamic rolling analysis. Tribo. Int. 44, 850–858 (2011)

    Article  Google Scholar 

  65. A.R. Savkoor, On the friction of rubber. Wear 8, 222–237 (1965)

    Article  Google Scholar 

  66. K. Hofstetter et al., Sliding behaviour of simplified tire tread patterns investigated by means of FEM. Comp. Struct. 84, 1151–1163 (2006)

    Article  Google Scholar 

  67. A.G. Veith, A review of important factors affecting treadwear. Rubber Chem. Technol. 65, 601–659 (1992)

    Article  Google Scholar 

  68. A.G. Veith, Tire treadwear—the joint influence of compound properties and environmental factors. Tire Sci. Technol. 23(4), 212–237 (1995)

    Article  Google Scholar 

  69. T. Fujikawa, Tire tread wear prediction by rubber pad wear test (in Japanese). Nippon Gomu Kyokaishi 71, 154–160 (1998)

    Article  Google Scholar 

  70. T. Fujikawa et al., Tire wear caused by mild tread slip. Rubber Chem. Technol. 70, 573–583 (1997)

    Article  Google Scholar 

  71. K.A. Grosch, Correlation between road wear of tires and computer road wear simulation using laboratory abrasion data. Rubber Chem. Technol. 77, 791–814 (2002)

    Article  Google Scholar 

  72. A. Tomita, Technology for improvement on tire irregular wear (in Japanese). Nippon Gomu Kyokaishi 76, 52–57 (2003)

    Article  Google Scholar 

  73. K. Kato, K. Kadota, On development of the super-single drive (GMD) tyre, in 7th International Symposium Heavy Vehicle Weights & Dimensions, Delft, Netherlands, 2002

    Google Scholar 

  74. N. Wada et al., Effect of filled fibers and their orientations on the wear of short fiber reinforced rubber composites. Nippon Gomu Kyokaishi 66(8), 572–584 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukio Nakajima .

Notes

Notes

Note 14.1 Eqs. (14.34) and (14.35)

  1. (i)

    In the case that lh > l/2,

    $$\begin{array}{*{20}l} {S_{y} = 0\quad 0 \le x < l_{h} } \hfill \\ {S_{y} = x\tan \alpha - S_{h} \quad l_{h} \le x < x_{h} } \hfill \\ {S_{y} = x\tan \alpha - \mu q_{z} (x)/C_{y}^{\text{down}} \quad x_{h} \le x < l}. \hfill \\ \end{array}$$
    (14.190)

The force equilibrium at the sliding point gives

$$C_{y}^{\text{up}} \tan \alpha \cdot l_{h} = \mu q_{z} (l_{h} ) = 4\mu p_{m} \frac{{l_{h} }}{l}(1 - \frac{{l_{h} }}{l}).$$
(14.191)

We introduce a new parameter:

$$\zeta_{y} = C_{y}^{\text{up}} l\tan \alpha /(4\mu p_{m} ).$$
(14.192)

lh is expressed by

$$\begin{array}{*{20}l} {l_{h} = l\left( {1 - \zeta_{y} } \right)\quad 0 \le \zeta_{y} \le 1} \hfill \\ {l_{h} = 0\quad 1 < \zeta_{y} }. \hfill \\ \end{array}$$
(14.193)

xh is expressed by

$$S_{h} = \tan \alpha \cdot l_{h} = \mu q_{z} (l_{h} )/C_{y}^{\text{up}} = \mu q_{z} (x_{h} )/C_{y}^{\text{down}} .$$
(14.194)

It follows that

$$q_{z} (x_{h} ) = C_{y}^{\text{down}} /C_{y}^{\text{up}} \cdot q_{z} (l_{h} ) = \rho q_{z} (l_{h} ),$$
(14.195)

where

$$\rho = C_{y}^{\text{down}} /C_{y}^{\text{up}} \le 1.$$
(14.196)

Wear energy \(E_{y}^{\text{w}}\) is given by

$$\begin{aligned} E_{y}^{\text{w}} & = \int\limits_{0}^{2\pi r} {\mu q_{z} (x){\text{d}}y} = \int\limits_{{l_{h} }}^{l} {\mu q_{z} (x)\frac{{{\text{d}}y}}{{{\text{d}}x}}{\text{d}}x} = \int\limits_{{l_{h} }}^{{x_{h} }} {\mu q_{z} (x)\tan \alpha {\text{d}}x} \\ & \quad + \int\limits_{{x_{h} }}^{l} {\mu q_{z} (x)\left( {\tan \alpha - \frac{{\mu q_{z}^{\prime } (x)}}{{C_{y}^{\text{down}} }}} \right){\text{d}}x} \\ & = \mu \tan \alpha \int\limits_{{l_{h} }}^{l} {q_{z} (x){\text{d}}x} - \frac{1}{2}\frac{{\mu^{2} }}{{C_{y}^{\text{down}} }}\int\limits_{{x_{h} }}^{l} {\frac{{{\text{d}}q_{z}^{2} (x)}}{{{\text{d}}x}}{\text{d}}x} \\ & = \mu \tan \alpha \int\limits_{{l_{h} }}^{l} {q_{z} (x){\text{d}}x} + \frac{1}{2}\frac{{\mu^{2} }}{{C_{y}^{\text{down}} }}q_{z}^{2} (x_{h} ). \\ \end{aligned}$$
(14.197)

The substitution of Eq. (14.195) into Eq. (14.197) yields

$$\begin{array}{*{20}l} {E_{y}^{\text{w}} = \mu \tan \alpha \int\limits_{{l_{h} }}^{l} {q_{z} (x){\text{d}}x} + \frac{1}{2}\frac{{\mu^{2} }}{{C_{y}^{\text{up}} }}q_{z}^{2} (l_{h} ) - \frac{1}{2}\frac{{\mu^{2} }}{{C_{y}^{\text{up}} }}q_{z}^{2} (l_{h} ) + \frac{1}{2}\rho \frac{{\mu^{2} }}{{C_{y}^{\text{up}} }}q_{z}^{2} (l_{h} )} \hfill \\ { = \left\{ {\mu \tan \alpha \int\limits_{{l_{h} }}^{l} {q_{z} (x){\text{d}}x} + \frac{1}{2}\frac{{\mu^{2} }}{{C_{y}^{\text{up}} }}q_{z}^{2} (l_{h} )} \right\} - \left\{ {\frac{1}{2}\frac{{\mu^{2} }}{{C_{y}^{\text{up}} }}q_{z}^{2} (l_{h} )(1 - \rho )} \right\}}. \hfill \\ \end{array}$$
(14.198)

The first term of Eq. (14.198) is the wear energy without hysteresis loss while the second term is the wear energy due to hysteresis loss. Because (1 − ρ) ≥ 0 is satisfied, the wear energy is reduced by hysteresis loss.

  1. (ii)

    In the case that lh ≤ l/2,

    $$\begin{array}{*{20}l} {S_{y} = 0\quad 0 \le x < l_{h} } \hfill \\ {S_{y} = x\tan \alpha - \mu q_{z} (x)/C_{y}^{\text{up}} \quad l_{h} \le x < l/2} \hfill \\ {S_{y} = x\tan \alpha - S_{l/2} \quad l/2 \le x < x_{h} } \hfill \\ {S_{y} = x\tan \alpha - \mu q_{z} (x)/C_{y}^{\text{down}} \quad x_{h} \le x < l}, \hfill \\ \end{array}$$
    (14.199)

    where lh is given by Eq. (14.191) and xh is given by

    $$S_{l/2} = \mu p_{m} /C_{y}^{\text{up}} = \mu q_{z} (l/2)/C_{y}^{\text{up}} = \mu q_{z} (x_{h} )/C_{y}^{\text{down}} .$$
    (14.200)

It follows that

$$q_{z} (x_{h} ) = C_{y}^{\text{down}} /C_{y}^{\text{up}} \cdot q_{z} (l/2) = \rho q_{z} (l/2).$$
(14.201)

The wear energy \(E_{y}^{\text{w}}\) is given by

$$\begin{aligned} E_{y}^{\text{w}} & = \int\limits_{{l_{h} }}^{l} {\mu q_{z} (x)\frac{{{\text{d}}y}}{{{\text{d}}x}}{\text{d}}x} = \int\limits_{{l_{h} }}^{l/2} {\mu q_{z} (x))\left( {\tan \alpha - \frac{{\mu q_{z}^{\prime } (x)}}{{C_{y}^{\text{up}} }}} \right){\text{d}}x} + \int\limits_{l/2}^{{x_{h} }} {\mu q_{z} (x)\tan \alpha {\text{d}}x} \\ & \quad + \int\limits_{{x_{h} }}^{l} {\mu q_{z} (x)\left( {\tan \alpha - \frac{{\mu q_{z}^{\prime } (x)}}{{C_{y}^{\text{down}} }}} \right){\text{d}}x} = \mu \tan \alpha \int\limits_{{l_{h} }}^{l} {q_{z} (x){\text{d}}x} - \frac{1}{2}\frac{{\mu^{2} }}{{C_{y}^{\text{up}} }}\int\limits_{{l_{h} }}^{l/2} {\frac{{{\text{d}}q_{z}^{2} (x)}}{{{\text{d}}x}}{\text{d}}x} \\ & \quad - \frac{1}{2}\frac{{\mu^{2} }}{{C_{y}^{\text{down}} }}\int\limits_{{x_{h} }}^{l} {\frac{{{\text{d}}q_{z}^{2} (x)}}{{{\text{d}}x}}{\text{d}}x} \\ & = \mu \tan \alpha \int\limits_{{l_{h} }}^{l} {q_{z} (x){\text{d}}x} - \frac{1}{2}\frac{{\mu^{2} }}{{C_{y}^{\text{up}} }}\left\{ {q_{z}^{2} (l/2) - q_{z}^{2} (l_{h} )} \right\} + \frac{1}{2}\frac{{\mu^{2} }}{{C_{y}^{\text{down}} }}\left\{ {q_{z}^{2} (x_{h} )} \right\} \\ & = \mu \tan \alpha \int\limits_{{l_{h} }}^{l} {q_{z} (x){\text{d}}x} + \frac{1}{2}\frac{{\mu^{2} q_{z}^{2} (l_{h} )}}{{C_{y}^{\text{up}} }} - \frac{1}{2}\frac{{\mu^{2} }}{{C_{y}^{\text{up}} }}q_{z}^{2} (l/2) + \frac{1}{2}\frac{{\mu^{2} }}{{C_{y}^{\text{down}} }}\left\{ {q_{z}^{2} (x_{h} )} \right\}. \\ \end{aligned}$$
(14.202)

The substitution of Eq. (14.201) into Eq. (14.202) yields

$$E_{y}^{\text{w}} = \left\{ {\mu \tan \alpha \int\limits_{{l_{h} }}^{l} {q_{z} (x){\text{d}}x} + \frac{1}{2}\frac{{\mu^{2} }}{{C_{y}^{\text{up}} }}q_{z}^{2} (l_{h} )} \right\} - \left\{ {\frac{1}{2}\frac{{\mu^{2} }}{{C_{y}^{\text{up}} }}q_{z}^{2} (l/2)(1 - \rho )} \right\}.$$
(14.203)

The first term of Eq. (14.203) is the wear energy without hysteresis loss, and the second term is the wear energy due to hysteresis loss. Because (1 − ρ) ≥ 0 is satisfied, the wear energy is reduced by hysteresis loss.

Note 14.2 Eqs. (14.45) and (14.46)

Equation (14.45)

Referring to Fig. 14.92, Fy is given as

$$F_{y} = G\gamma S = G \cdot y/H \cdot ab = \left( {G/H \cdot ab} \right)y,$$

where G and γ are the shear modulus and shear strain of rubber and y is shear displacement. Considering that Cy is the shear spring rate per unit area of the tread rubber, we obtain Cy = G/H. Cy cannot be expressed by the shear modulus of rubber when the tread pattern is considered. The block rigidity discussed in Sect. 7.1 is therefore used.

Fig. 14.92
figure 92

Shear deformation of the tread pattern

Equation (14.46)

From Eq. (11.53), we obtain

$$C_{F\alpha } = \frac{{bl^{2} C_{y} }}{{2\left( {1 + \frac{{b\lambda^{3} l^{3} }}{{12k_{s} }}C_{y} } \right)}} = \frac{1}{{\frac{2}{{bl^{2} C_{y} }} + \frac{{b\lambda^{3} l^{3} }}{{6bl^{2} C_{y} k_{s} }}C_{y} }} = \frac{1}{{\frac{2H}{{bl^{2} G_{y} }} + \frac{{\lambda^{3} l}}{{6k_{s} }}}}.$$

Substituting the relation \({\lambda} = \root 4 \of {{{k_{s} /\left( {4EI_{z} } \right)}}}\) into the above equation, we obtain

$$C_{F\alpha } = \frac{1}{{\frac{2H}{{bl^{2} G_{y} }} + \root 4 \of {{{\frac{{k_{s}^{3} }}{{4^{3} \left( {EI_{z} } \right)^{3} }}}}\frac{l}{{6k_{s} }}}}} = \frac{1}{{\frac{2H}{{bl^{2} G_{y} }} + \frac{l}{{12\sqrt 2 \root 4 \of {{{\left( {EI_{z} } \right)^{3} k_{s} }}}}}}}.$$

Note 14.3 Eq. (14.50)

Referring to Fig. 14.93, we have d2 = PL3/(48EI) from formulae of the mechanics of materials. Using the relation τ =  and noting that the in-plane bending problem of contact patch is approximated by the bending problem of cantilever beam with length L/2 and load P/2, we obtain

$$\frac{P/2}{A} = G\frac{{d_{1} }}{L/2} \to d_{1} = \frac{PL}{4AG}.$$
Fig. 14.93
figure 93

Bending and shear deformations of the tread block

Note 14.4 Eq. (14.58)

The reason for the value of 2 in the third term is that when the variable of integration is changed from L to α, the integral is taken twice in the integration region from α0 − αm to α0 + αm.

Note 14.5 Eq. (14.64)

$$\begin{aligned} \frac{1}{\pi }\int\limits_{0}^{{\alpha_{0} + \alpha_{m} }} {\frac{{\alpha^{2} }}{{\sqrt {\alpha_{m}^{2} - \left( {\alpha - \alpha_{0} } \right)^{2} } }}{\text{d}}\alpha } & = \frac{3}{2\pi }\alpha_{m} \alpha_{0} \sqrt {1 - \left( {\frac{{\alpha_{0} }}{{\alpha_{m} }}} \right)^{2} } + \frac{1}{2}\left( {\frac{{\alpha_{m}^{2} }}{2} + \alpha_{0}^{2} } \right) \\ & \quad + \frac{1}{\pi }\left( {\frac{{\alpha_{m}^{2} }}{2} + \alpha_{0}^{2} } \right)\sin^{ - 1} \left( {\frac{{\alpha_{0} }}{{\alpha_{m} }}} \right) \\ \frac{1}{\pi }\int\limits_{{\alpha_{0} - \alpha_{m} }}^{0} {\frac{{\alpha^{2} }}{{\sqrt {\alpha_{m}^{2} - \left( {\alpha - \alpha_{0} } \right)^{2} } }}{\text{d}}\alpha } & = \frac{1}{\pi }\int\limits_{0}^{{ - \alpha_{0} + \alpha_{m} }} {\frac{{\alpha^{2} }}{{\sqrt {\alpha_{m}^{2} - \left( {\alpha + \alpha_{0} } \right)^{2} } }}{\text{d}}\alpha } \\ \end{aligned}$$

Using the above relation, 〈Ew〉 is obtained as

$$\begin{array}{*{20}l} { \left\langle E^{\text{w}} \right\rangle = \frac{1}{\pi }\int\limits_{{\alpha_{0} - \alpha_{m} }}^{0} {a^{ - } \frac{{\alpha^{2} }}{{\sqrt {\alpha_{m}^{2} - \left( {\alpha - \alpha_{0} } \right)^{2} } }}{\text{d}}\alpha } + \frac{1}{\pi }\int\limits_{0}^{{\alpha_{0} + \alpha_{m} }} {a^{ + } \frac{{\alpha^{2} }}{{\sqrt {\alpha_{m}^{2} - \left( {\alpha - \alpha_{0} } \right)^{2} } }}{\text{d}}\alpha } } \hfill \\ {\quad = \left( {\frac{{\alpha_{m}^{2} }}{2} + \alpha_{0}^{2} } \right)a_{0} + \frac{2}{\pi }\left\{ {\left( {\frac{{\alpha_{m}^{2} }}{2} + \alpha_{0}^{2} } \right)\sin^{ - 1} \left( {\frac{{\alpha_{0} }}{{\alpha_{m} }}} \right) + \frac{3}{2}\alpha_{m} \alpha_{0} \sqrt {1 - \left( {\frac{{\alpha_{0} }}{{\alpha_{m} }}} \right)^{2} } } \right\}b \cdot y} . \hfill \\ \end{array}$$

When lateral forces on left and right sides have similar amplitudes, \(\alpha_{m} \gg \alpha_{0}\) is satisfied. Applying Taylor series expansion to the above equation, we obtain

$$\left\langle E^{\text{w}} \right\rangle \cong \left( {\frac{{\alpha_{m}^{2} }}{2} + \alpha_{0}^{2} } \right)a_{0} + \frac{4}{\pi }\alpha_{m} \alpha_{0} b \cdot y.$$

Note 14.6 Eq. (14.66)

$$\begin{aligned} & \int\limits_{0}^{{\alpha_{0} + \alpha_{m} }} {\frac{{\alpha^{2} }}{{\sqrt {2\pi } \sigma }}{\text{e}}^{{ - \frac{{\left( {\alpha - \alpha_{0} } \right)^{2} }}{{2\sigma^{2} }}}} {\text{d}}\alpha } \cong \int\limits_{0}^{\infty } {\frac{{\alpha^{2} }}{{\sqrt {2\pi } \sigma }}{\text{e}}^{{ - \frac{{\left( {\alpha - \alpha_{0} } \right)^{2} }}{{2\sigma^{2} }}}} {\text{d}}\alpha = \frac{1}{{\sqrt {2\pi } \sigma }}\int\limits_{{ - \alpha_{0} }}^{\infty } {x^{2} {\text{e}}^{{ - \frac{{x^{2} }}{{2\sigma^{2} }}}} {\text{d}}x} } \\ & + \frac{{2\alpha_{0} }}{{\sqrt {2\pi } \sigma }}\int\limits_{{ - \alpha_{0} }}^{\infty } {x{\text{e}}^{{ - \frac{{x^{2} }}{{2\sigma^{2} }}}} {\text{d}}x} + \frac{{\alpha_{0}^{2} }}{{\sqrt {2\pi } \sigma }}\int\limits_{{ - \alpha_{0} }}^{\infty } {\frac{{x^{2} }}{{\sqrt {2\pi } \sigma }}{\text{e}}^{{ - \frac{{x^{2} }}{{2\sigma^{2} }}}} {\text{d}}x} \\ & = - \frac{{\sigma \alpha_{0} }}{{\sqrt {2\pi } }}{\text{e}}^{{ - \frac{{\alpha_{0}^{2} }}{{2\sigma^{2} }}}} + \frac{{\sigma^{2} }}{2}erfc\left( { - \frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right) + \frac{{2\sigma \alpha_{0} }}{{\sqrt {2\pi } }}{\text{e}}^{{ - \frac{{\alpha_{0}^{2} }}{{2\sigma^{2} }}}} + \frac{{\alpha_{0}^{2} }}{2}erfc\left( { - \frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right) \\ & = \frac{{\sigma \alpha_{0} }}{{\sqrt {2\pi } }}{\text{e}}^{{ - \frac{{\alpha_{0}^{2} }}{{2\sigma^{2} }}}} + \frac{{\sigma^{2} + \alpha_{0}^{2} }}{2}erfc\left( { - \frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right), \\ \end{aligned}$$

where

$$\begin{array}{*{20}l} {erfc\left( x \right) = 1 - erf(x)} \hfill \\ {erf(x) = \frac{2}{\sqrt \pi }\int\limits_{0}^{x} {{\text{e}}^{{ - t^{2} }} } {\text{d}}t = \frac{2}{\sqrt \pi }\left( {x - \frac{{x^{3} }}{3} + \cdots } \right)} \hfill \\ {erf(x) = - erf( - x)} \hfill \\ \end{array} ,$$
$$\begin{aligned} & \int\limits_{{\alpha_{0} - \alpha_{m} }}^{0} {\frac{{\alpha^{2} }}{{\sqrt {2\pi } \sigma }}{\text{e}}^{{ - \frac{{\left( {\alpha - \alpha_{0} } \right)^{2} }}{{2\sigma^{2} }}}} {\text{d}}\alpha \cong } \int\limits_{ - \infty }^{0} {\frac{{\alpha^{2} }}{{\sqrt {2\pi } \sigma }}{\text{e}}^{{ - \frac{{\left( {\alpha - \alpha_{0} } \right)^{2} }}{{2\sigma^{2} }}}} {\text{d}}\alpha } \\ & = \frac{1}{{\sqrt {2\pi } \sigma }}\int\limits_{{\alpha_{0} }}^{\infty } {x^{2} {\text{e}}^{{ - \frac{{x^{2} }}{{2\sigma^{2} }}}} {\text{d}}x} - \frac{{2\alpha_{0} }}{{\sqrt {2\pi } \sigma }}\int\limits_{{\alpha_{0} }}^{\infty } {x{\text{e}}^{{ - \frac{{x^{2} }}{{2\sigma^{2} }}}} {\text{d}}x} + \frac{{\alpha_{0}^{2} }}{{\sqrt {2\pi } \sigma }}\int\limits_{{\alpha_{0} }}^{\infty } {\frac{{x^{2} }}{{\sqrt {2\pi } \sigma }}{\text{e}}^{{ - \frac{{x^{2} }}{{2\sigma^{2} }}}} {\text{d}}x} \\ & = - \frac{{\sigma \alpha_{0} }}{{\sqrt {2\pi } }}{\text{e}}^{{ - \frac{{\alpha_{0}^{2} }}{{2\sigma^{2} }}}} + \frac{{\sigma^{2} + \alpha_{0}^{2} }}{2}erfc\left( {\frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right), \\ \end{aligned}$$
$$\begin{aligned} \left\langle {E^{\text{w}} } \right\rangle & = \frac{1}{{L_{0} }}\int\limits_{{\alpha_{0} - \alpha_{m} }}^{{\alpha_{0} + \alpha_{m} }} {a(y)\frac{{\alpha^{2} }}{{\sqrt {2\pi } \sigma }}{\text{e}}^{{ - \frac{{\left( {\alpha - \alpha_{0} } \right)^{2} }}{{2\sigma^{2} }}}} {\text{d}}\alpha } \\ & = \frac{{\sigma^{2} + \alpha_{0}^{2} }}{2}\left\{ {erfc\left( {\frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right) + erfc\left( { - \frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right)} \right\}a_{0} \\ & \quad + \left[ {\frac{{2\sigma \alpha_{0} }}{{\sqrt {2\pi } }}{\text{e}}^{{ - \frac{{\alpha_{0}^{2} }}{{2\sigma^{2} }}}} + \frac{{\sigma^{2} + \alpha_{0}^{2} }}{2}\left\{ { - erfc\left( {\frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right) + erfc\left( { - \frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right)} \right\}} \right]b \cdot y \\ \end{aligned}$$

Using the relation

$$\begin{aligned} erfc\left( {\frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right) + erfc\left( { - \frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right) & = 2 - erf\left( {\frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right) - erf\left( { - \frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right) \\ & = 2 - erf\left( {\frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right) + erf\left( {\frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right) = 2 \\ \left\{ { - erfc\left( {\frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right) + erfc\left( { - \frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right)} \right\} & = erf\left( {\frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right) - erf\left( { - \frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right) \\ & = 2erf\left( {\frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right) \\ \end{aligned}$$

the above equation for 〈Ew〉 can be simplified as

$$\left\langle E^{\text{w}} \right\rangle = \left( {\sigma^{2} + \alpha_{0}^{2} } \right)a_{0} + \left[ {\frac{{\sqrt 2 \sigma \alpha_{0} }}{\sqrt \pi }{\text{e}}^{{ - \frac{{\alpha_{0}^{2} }}{{2\sigma^{2} }}}} + \left( {\sigma^{2} + \alpha_{0}^{2} } \right)erf\left( {\frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right)} \right]b \cdot y.$$

Assuming \(\sigma \gg \alpha_{0}\) and applying Taylor series expansion to the second term of the above equation, we obtain

$$\frac{{\sqrt 2 \sigma \alpha_{0} }}{\sqrt \pi }{\text{e}}^{{ - \frac{{\alpha_{0}^{2} }}{{2\sigma^{2} }}}} + \left( {\sigma^{2} + \alpha_{0}^{2} } \right)erf\left( {\frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right) = \frac{{\sqrt 2 \sigma \alpha_{0} }}{\sqrt \pi } + \left( {\sigma^{2} + \alpha_{0}^{2} } \right)\frac{2}{\sqrt \pi }\frac{{\alpha_{0} }}{\sqrt 2 \sigma } \cong 2\sqrt {\frac{2}{\pi }} \sigma \alpha_{0} .$$

Note 14.7 Eqs. (14.77), (14.78), (14.81) and (14.82)

  1. (i)

    The case that 0 ≤ lh ≤ l:

In braking (s > 0),

$$\begin{aligned} E^{{{\text{w}}({\text{braking}})}} & = \int\limits_{{l_{h} }}^{l} {\mu_{d} q_{z} (x)\frac{{{\text{d}}y}}{{{\text{d}}x}}{\text{d}}x} \\ & = \int\limits_{{l_{h} }}^{l} {\mu_{d} q_{z} (x)\left( {\frac{{\sqrt {C_{x}^{2} s^{2} \cos^{2} \alpha + C_{y}^{2} \sin^{2} \alpha } }}{C} - \frac{{\mu_{d} q_{z}^{\prime } (x)}}{C}} \right){\text{d}}x} \\ & = \mu_{d} \frac{{\sqrt {C_{x}^{2} s^{2} \cos^{2} \alpha + C_{y}^{2} \sin^{2} \alpha } }}{C}\int\limits_{{l_{h} }}^{l} {q_{z} (x)dx} - \frac{1}{2}\frac{{\mu_{d}^{2} }}{C}\int\limits_{{l_{h} }}^{l} {\frac{{{\text{d}}q_{z}^{2} (x)}}{{{\text{d}}x}}{\text{d}}x} \\ & = \mu_{d} \frac{{\sqrt {C_{x}^{2} s^{2} \cos^{2} \alpha + C_{y}^{2} \sin^{2} \alpha } }}{C}\int\limits_{{l_{h} }}^{l} {q_{z} dx} - \left. {\frac{1}{2}\frac{{\mu_{d}^{2} }}{C}q_{z}^{2} (x)} \right|_{{l_{h} }}^{l} \\ & = \mu_{d} \frac{{\sqrt {C_{x}^{2} s^{2} \cos^{2} \alpha + C_{y}^{2} \sin^{2} \alpha } }}{C}\int\limits_{{l_{h} }}^{l} {q_{z} dx} + \frac{1}{2}\frac{{\mu_{d}^{2} }}{C}q_{z}^{2} (l_{h} ) \\ & = \frac{{2\mu_{d} p_{m} l}}{3C}\sqrt {C_{x}^{2} s^{2} \cos^{2} \alpha + C_{y}^{2} \sin^{2} \alpha } \left\{ {1 - 3\left( {\frac{{l_{h} }}{l}} \right)^{2} + 2\left( {\frac{{l_{h} }}{l}} \right)^{3} } \right\} \\ & \quad + \frac{{8\mu_{d}^{2} p_{m}^{2} }}{C}\left( {\frac{{l_{h} }}{l}} \right)^{2} \left( {1 - \frac{{l_{h} }}{l}} \right)^{2}. \\ \end{aligned}$$

In driving (s < 0),

$$\begin{aligned} E^{{\text{w}}({\text{driving}})} & = \frac{{2\mu_{d} p_{m} l}}{3C}\sqrt {C_{x}^{2} s^{2} + C_{y}^{2} (1 + s)^{2} \tan^{2} \alpha } \left\{ {1 - 3\left( {\frac{{l_{h} }}{l}} \right)^{2} + 2\left( {\frac{{l_{h} }}{l}} \right)^{3} } \right\} \\ & \quad + \frac{{8\mu_{d}^{2} p_{m}^{2} }}{C}\left( {\frac{{l_{h} }}{l}} \right)^{2} \left( {1 - \frac{{l_{h} }}{l}} \right)^{2} . \\ \end{aligned}$$

For simplicity, assuming Cx = Cy = C and considering the relation pm = 3Fz/(2lb), we obtain

$$\begin{array}{*{20}l} \begin{aligned} E^{{{\text{w}}({\text{braking}})}} & = \frac{{\mu_{d} F_{z} }}{b}\sqrt {s^{2} \cos^{2} \alpha + \sin^{2} \alpha } \left\{ {1 - 3\left( {\frac{{l_{h} }}{l}} \right)^{2} + 2\left( {\frac{{l_{h} }}{l}} \right)^{3} } \right\} \\ & \quad + \frac{{18\mu_{d}^{2} F_{z}^{2} }}{{Cl^{2} b^{2} }}\left( {\frac{{l_{h} }}{l}} \right)^{2} \left( {1 - \frac{{l_{h} }}{l}} \right)^{2} \\ \end{aligned} \hfill \\ \begin{aligned} E^{{{\text{w}}({\text{driving}})}} & = \frac{{\mu_{d} F_{z} }}{b}\sqrt {s^{2} + (1 + s)^{2} \tan^{2} \alpha } \left\{ {1 - 3\left( {\frac{{l_{h} }}{l}} \right)^{2} + 2\left( {\frac{{l_{h} }}{l}} \right)^{3} } \right\} \\ & \quad + \frac{{18\mu_{d}^{2} F_{z}^{2} }}{{Cl^{2} b^{2} }}\left( {\frac{{l_{h} }}{l}} \right)^{2} \left( {1 - \frac{{l_{h} }}{l}} \right)^{2} \\ \end{aligned} \hfill \\ \end{array}$$
  1. (ii)

    In the case that lh < 0:

In braking (s > 0),

$$\begin{aligned} E^{{{\text{w}}({\text{braking}})}} & = \int\limits_{0}^{l} {\mu_{d} q_{z} (x)\frac{{{\text{d}}S_{y} }}{{{\text{d}}x}}{\text{d}}x} = \frac{{2\mu_{d} p_{m} l}}{3C}\sqrt {C_{x}^{2} s^{2} \cos^{2} \alpha + C_{y}^{2} \sin^{2} \alpha } \\ & = \frac{{\mu_{d} F_{z} }}{bC}\sqrt {C_{x}^{2} s^{2} \cos^{2} \alpha + C_{y}^{2} \sin^{2} \alpha } . \\ \end{aligned}$$

In driving (s < 0),

$$\begin{aligned} E^{{{\text{w}}({\text{driving}})}} & = \frac{{2\mu_{d} p_{m} l}}{3C}\sqrt {C_{x}^{2} s^{2} + C_{y}^{2} (1 + s)^{2} \tan^{2} \alpha } \\ & = \frac{{\mu_{d} F_{z} }}{bC}\sqrt {C_{x}^{2} s^{2} + C_{y}^{2} (1 + s)^{2} \tan^{2} \alpha } . \\ \end{aligned}$$

Assuming the relation Cx = Cy = C, we obtain

$$\begin{array}{*{20}l} {E^{{{\text{w}}({\text{braking}})}} = \frac{{\mu_{d} F_{z} }}{b}\sqrt {s^{2} \cos^{2} \alpha + \sin^{2} \alpha } } \hfill \\ {E^{{{\text{w}}({\text{driving}})}} = \frac{{\mu_{d} F_{z} }}{b}\sqrt {s^{2} + (1 + s)^{2} \tan^{2} \alpha } } \hfill \\ \end{array} .$$

Note 14.8 Eq. (14.92)

The substitution of Eq. (14.85) into Eq. (14.89) yields

$$\eta \dot{y} + k_{\text{tread}}\, y = \mu \left( {AVt + B} \right).$$

The solution to the above differential equation is

$$y = \xi {\text{e}}^{{ - \frac{{k_{\text{tread}} }}{\eta }t}} + \frac{\mu }{{k_{\text{tread}} }}\left\{ {AV\left( {t - \frac{\eta }{{k_{\text{tread}} }}} \right) + B} \right\}.$$

Considering initial conditions, we obtain

$$\begin{aligned} & V_{y} t_{c} = \xi {\text{e}}^{{ - \frac{{k_{\text{tread}} }}{\eta }t_{c} }} + \frac{\mu }{{k_{\text{tread}} }}\left\{ {AV\left( {t_{c} - \frac{\eta }{{k_{\text{tread}} }}} \right) + B} \right\}, \\ & \xi = - \left[ {\frac{\mu }{{k_{\text{tread}} }}\left\{ {AV\left( {t_{c} - \frac{\eta }{{k_{\text{tread}} }}} \right) + B} \right\} - V_{y} t_{c} } \right]{\text{e}}^{{\frac{{k_{\text{tread}} }}{\eta }t_{c} }} . \\ \end{aligned}$$

Using Eqs. (14.85) and (14.86), at t = tc, Eq. (14.89) can be rewritten as

$$\eta V\sin \alpha + k_{\text{tread}} Vt_{c} \sin \alpha = \mu \left( {AVt_{c} + B} \right).$$

The above equation can be rewritten as

$$\mu A - k_{\text{tread}} \sin \alpha = \left( {\eta V\sin \alpha - \mu B} \right)/(Vt_{c} ).$$

The substitution of the above equation into equation for ξ yields

$$\xi = - \left[ {\frac{\mu }{{k_{\text{tread}} }}\left( { - \frac{\eta }{{k_{\text{tread}} }}AV + B} \right) + \frac{1}{{k_{\text{tread}} }}\left( { - \mu B + \eta V\sin \alpha } \right)} \right]{\text{e}}^{{\frac{{k_{\text{tread}} }}{\eta }t_{c} }} = \frac{\eta V}{{k_{\text{tread}} }}\left( {\frac{\mu A}{{k_{\text{tread}} }} - \sin \alpha } \right){\text{e}}^{{\frac{{k_{\text{tread}} }}{\eta }t_{c} }} .$$

The substitution of ξ and t = T + tc into equation for y yields

$$y = \frac{\mu }{{k_{\text{tread}} }}\left\{ {AV\left( {T + t_{c} - \frac{\eta }{{k_{\text{tread}} }}} \right) + B} \right\} + \frac{\eta V}{{k_{\text{tread}} }}\left( {\frac{\mu }{{k_{\text{tread}} }}A - \sin \alpha } \right){\text{e}}^{{ - \frac{{k_{\text{tread}} }}{\eta }T}} .$$

Note 14.9 Shear Spring Rate Between Adjacent Blocks

Fujikawa et al. [23] estimated the intra-shear stiffness of a block. As shown Fig. 14.94, the shear strain γ at longitudinal position x and vertical position z is expressed by

$$\gamma (x,z) = \frac{z}{h}\left\{ {\frac{{\delta_{y} (x + l_{E} ) - \delta_{y} (x)}}{{l_{E} }}} \right\},$$

where lE is the distance between adjacent elements. The shear force f(x) acting between the tread elements is therefore expressed by

$$f(x) = bG\int\limits_{0}^{h} {\gamma (x,z){\text{d}}z} = \frac{bhG}{2}\left\{ {\frac{{\delta_{y} (x + l_{E} ) - \delta_{y} (x)}}{{l_{E} }}} \right\} = \frac{bhG}{{2l_{E} }}{\Delta }\delta_{y} .$$
Fig. 14.94
figure 94

Local slip model and shear deformation of tread (reproduced from Ref. [21] with the permission of JSAE)

From the above equation, the intra-shear stiffness k2 is obtained as k2 = bhG/(2lE), where b is the width of the block. Meanwhile, the shear stiffness of a block element \(t_{\text{tread}}^{\prime }\) is expressed as \(t_{\text{tread}}^{\prime } = bl_{E} G/h\). For a block with dimensions of 20 mm (length) × 20 mm (width) × 8 mm (height), considering that h = 8 mm, lE = 20/3 mm and b = 20 mm, the relation between the intra-shear stiffness and shear stiffness of a block element is \(k_{2} = 0.72t_{\text{tread}}^{\prime }\). Therefore, Fujikawa’s assumption of \(k_{2} = 2t_{\text{tread}}^{\prime }\) may not be appropriate for this block.

Note 14.10 Eq. (14.141)

Using Eqs. (14.136), (14.139) and (14.140), we obtain

$$\delta = \left( {1 + K_{r} /K_{f} } \right)\beta - \left( {C_{Pf} + C_{\Pr } } \right)/K_{f} .$$

Using Eqs. (14.138), (14.139) and the above equation, we obtain the equation for the side slip angle of the vehicle β.

Note 14.11 Time-Delay System

When there is a time delay in the spring term for the equation of motion with one degree of freedom, the governing equation is \(m\ddot{x}(t) + c\dot{x}(t) + kx(t - \tau ) = 0\). When the time delay is small, using the relation \(x(t - \tau ) = x(t) - \tau \dot{x}(t)\), the above equation can be rewritten as \(m\ddot{x}(t) + (c - k\tau )\dot{x}(t) + kx = 0\). Unstable vibration occurs when the relation c −  < 0 is satisfied. If the time delay is not small, by applying the Laplace transform to the original equation, we obtain the characteristic equation ms2 + cs + ke−τs = 0. Because this characteristic equation contains the term eτs, the number of solutions is infinite. This is because the relation \({\text{e}}^{ - j(\theta + 2n\pi )} = {\text{e}}^{j\theta } (j = \sqrt { - 1} )\) is satisfied for an arbitrary n. This is a feature of a time-delay system.

Note 14.12 Eqs. (14.160) and (14.162)

Equation (14.160)

From the relations W1(t) = 0 and W2(t) = 0, we obtain X0(t) = V0(t) = U0(t  T). Using Eq. (14.157), we obtain

$$U_{0} (t) = U_{0} (t - T) + \bar{k}\beta^{n} P_{0}^{n}$$

From the relation \(\ddot{X}(t) = 0\) and the initial condition X0(0) = 0, we obtain X0(t) = At, where A is a constant. From the relation X0(t) = U0(t  T), U0(t) is found to be a linear function with respect to t. Using the above equation, U0(t) and U0(t − T) are given as

$$\begin{array}{*{20}l} {U_{0} (t) = \bar{k}\beta^{n} P_{0}^{n} (t + T)/T} \hfill \\ {U_{0} (t - T) = \bar{k}\beta^{n} P_{0}^{n} t/T}. \hfill \\ \end{array}$$

Equation (14.162)

From Eq. (14.152), we obtain

$$P(t) = P_{0} + p(t),$$

where

$$p(t) = \eta_{T} \dot{W}_{2} (t) + K_{T} W_{2} (t).$$

The substitution of Eqs. (14.152) and (14.161) into Eq. (14.157) yields

$$\begin{array}{*{20}l} {U_{0} (t) + u(t) = U_{0} (t - T) + u(t - T) + \bar{k}\beta^{n} \left\{ {P_{0} + p(t)} \right\}^{n} } \hfill \\ { \cong U_{0} (t - T) + u(t - T) + \bar{k}\beta^{n} P_{0}^{n} (t) + \bar{k}\beta^{n} nP_{0}^{n - 1} (t)p(t)} \hfill \\ { = U_{0} (t - T) + u(t - T) + \bar{k}\beta^{n} P_{0}^{n} (t) + \bar{k}\beta^{n} nP_{0}^{n - 1} (t)\left\{ {\eta_{T} \dot{W}_{2} (t) + K_{T} W_{2} (t)} \right\}}, \hfill \\ \end{array}$$

where

$$\begin{array}{*{20}l} {U_{0} (t) = U(t - T) + W(t) = U_{0} (t - T) + \bar{k}\beta^{n} P_{0}^{n} (t)} \hfill \\ {W_{2} (t) = X_{0} (t) + x(t) - U_{0} (t - T) - u(t - T) = x(t) - u(t - T)}. \hfill \\ \end{array}$$

From the above equation, we obtain

$$u(t) = u(t - T) + \bar{k}\beta^{n} P_{0}^{n - 1} n\left[ {\eta_{T} \left\{ {\dot{x}(t) - \dot{u}(t - T)} \right\} + K_{T} \left\{ {x(t) - u(t - T)} \right\}} \right].$$

Note 14.13

Schallamach’s equation, given as Eq. (14.30), corresponds to n = 2.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nakajima, Y. (2019). Wear of Tires. In: Advanced Tire Mechanics. Springer, Singapore. https://doi.org/10.1007/978-981-13-5799-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-5799-2_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-5798-5

  • Online ISBN: 978-981-13-5799-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics