Skip to main content

Catenary Optical Fields and Dispersion for Perfect Absorption of Light

  • Chapter
  • First Online:
  • 661 Accesses

Abstract

Besides the localized manipulation of phase and polarization, catenary optical fields can be used to realize perfect absorption of light. First, the catenary coupling occurring at structured holes or gaps may help to couple light into the subwavelength structures. Second, the localized resonance strongly increases the localized intensity as well as the absorption probability of incident photons. Third, the catenary fields may change the dispersion of electromagnetic modes, thus broadband absorption becomes possible. We also noted that the counter-propagating waves in a thin lossy slab would form catenary-shaped intensity profile, which means that the catenary is a universal characteristic for the absorption of light in structured materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010)

    Article  CAS  Google Scholar 

  2. X. Luo, Subwavelength artificial structures: opening a new era for engineering optics. Adv. Mater. 1804680 (2018)

    Google Scholar 

  3. R.W. Wood, On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proc. R. Soc. Lond. 18, 269 (1902)

    Google Scholar 

  4. D. Maystre, Theory of wood’s anomalies, ed. by S. Enoch, N. Bonod. Plasmonics (Springer Series in Optical Sciences No. 167, Springer, 2012)

    Google Scholar 

  5. M.C. Hutley, D. Maystre, The total absorption of light by a diffraction grating. Opt. Commun. 19, 431–436 (1976)

    Article  Google Scholar 

  6. C. Hu, Z. Zhao, X. Chen, X. Luo, Realizing near-perfect absorption at visible frequencies. Opt. Express 17, 11039–11044 (2009)

    Article  CAS  Google Scholar 

  7. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998)

    Article  CAS  Google Scholar 

  8. H. Liu, P. Lalanne, Microscopic theory of the extraordinary optical transmission. Nature 452, 728–731 (2008)

    Article  CAS  Google Scholar 

  9. C. Hu, L. Liu, Z. Zhao, X. Chen, X. Luo, Mixed plasmons coupling for expanding the bandwidth of near-perfect absorption at visible frequencies. Opt. Express 17, 16745–16749 (2009)

    Article  CAS  Google Scholar 

  10. C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, X. Luo, Deep sub-wavelength imaging lithography by a reflective plasmonic slab. Opt. Express 21, 20683–20691 (2013)

    Article  Google Scholar 

  11. P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, X. Luo, Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens. Appl. Phys. Lett. 106, 093110 (2015)

    Article  Google Scholar 

  12. T.V. Teperik, F.J. García de Abajo, A.G. Borisov, M. Abdelsalam, P.N. Bartlett, Y. Sugawara, J.J. Baumberg, Omnidirectional absorption in nanostructured metal surfaces. Nat. Photonics 2, 299–301 (2008)

    Article  CAS  Google Scholar 

  13. S.A. Tretyakov, S.I. Maslovski, Thin absorbing structure for all incidence angles based on the use of a high-impedance surface. Microw. Opt. Technol. Lett. 38, 175–178 (2003)

    Article  Google Scholar 

  14. M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, X. Luo, Design principles for infrared wide-angle perfect absorber based on plasmonic structure. Opt. Express 19, 17413–17420 (2011)

    Article  CAS  Google Scholar 

  15. T.D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, T. Nagao, Infrared perfect absorbers fabricated by colloidal mask etching of Al–Al2O3–Al trilayers. ACS Photonics 2, 964–970 (2015)

    Article  CAS  Google Scholar 

  16. E.D. Palik, Handbook of Optical Constants of Solids (Academic press, 1985)

    Google Scholar 

  17. M. Pu, X. Ma, X. Li, Y. Guo, X. Luo, Merging plasmonics and metamaterials by two-dimensional subwavelength structures. J. Mater. Chem. C 5, 4361 (2017)

    Article  CAS  Google Scholar 

  18. M. Choi, S.H. Lee, Y. Kim, S.B. Kang, J. Shin, M.H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, B. Min, A terahertz metamaterial with unnaturally high refractive index. Nature 470, 369–373 (2011)

    Article  CAS  Google Scholar 

  19. M. Pu, C. Hu, C. Huang, C. Wang, Z. Zhao, Y. Wang, X. Luo, Investigation of Fano resonance in planar metamaterial with perturbed periodicity. Opt. Express 21, 992–1001 (2013)

    Article  Google Scholar 

  20. G. Dolling, C. Enkrich, M. Wegener, J.F. Zhou, C.M. Soukoulis, S. Linden, Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials. Opt. Lett. 30, 3198–3200 (2005)

    Article  CAS  Google Scholar 

  21. M. Pu, Y. Guo, X. Li, X. Ma, X. Luo, Revisitation of extraordinary Young’s interference: from catenary optical fields to spin-orbit interaction in metasurfaces. ACS Photonics 5, 3198–3204 (2018)

    Article  Google Scholar 

  22. N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, H. Giessen, Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater. 8, 758–762 (2009)

    Article  CAS  Google Scholar 

  23. A. Epstein, G.V. Eleftheriades, Huygens’ metasurfaces via the equivalence principle: design and applications. J. Opt. Soc. Am. B 33, A31–A50 (2016)

    Article  CAS  Google Scholar 

  24. V.A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D.P. Tsai, N.I. Zheludev, Spectral collapse in ensembles of metamolecules. Phys. Rev. Lett. 104, 223901 (2010)

    Article  CAS  Google Scholar 

  25. J. Grant, Y. Ma, S. Saha, A. Khalid, D.R.S. Cumming, Polarization insensitive, broadband terahertz metamaterial absorber. Opt. Lett. 36, 3476–3478 (2011)

    Article  CAS  Google Scholar 

  26. C. Long, S. Yin, W. Wang, W. Li, J. Zhu, J. Guan, Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode. Sci. Rep. 6, 21431 (2016)

    Article  CAS  Google Scholar 

  27. Y. Guo, L. Yan, W. Pan, B. Luo, X. Luo, Ultra-broadband terahertz absorbers based on 4 × 4 cascaded metal-dielectric pairs. Plasmonics 9, 951–957 (2014)

    Article  CAS  Google Scholar 

  28. Q. Feng, M. Pu, C. Hu, X. Luo, Engineering the dispersion of metamaterial surface for broadband infrared absorption. Opt. Lett. 37, 2133–2135 (2012)

    Article  CAS  Google Scholar 

  29. X. Luo, Principles of electromagnetic waves in metasurfaces. Sci. China-Phys. Mech. Astron. 58, 594201 (2015)

    Article  Google Scholar 

  30. G. Biener, A. Niv, V. Kleiner, E. Hasman, Metallic subwavelength structures for a broadband infrared absorption control. Opt. Lett. 32, 994–996 (2007)

    Article  CAS  Google Scholar 

  31. M. Pu, X. Ma, Y. Guo, X. Li, X. Luo, Theory of microscopic meta-surface waves based on catenary optical fields and dispersion. Opt. Express 26, 19555–19562 (2018)

    Article  CAS  Google Scholar 

  32. Y. Huang, J. Luo, M. Pu, Y. Guo, Z. Zhao, X. Ma, X. Li, X. Luo, Catenary electromagnetics for ultrabroadband lightweight absorbers and large-scale flat antennas. Adv. Sci. 1801691 (2019)

    Google Scholar 

  33. R.J. Langley, E.A. Parker, Equivalent circuit model for arrays of square loops. Electron. Lett. 18, 294–296 (1982)

    Article  Google Scholar 

  34. Y. Wang, X. Ma, X. Li, M. Pu, X. Luo. Perfect electromagnetic and sound absorption via subwavelength holes array. Opto-Electron. Adv. 1, 180013 (2018)

    Article  Google Scholar 

  35. K.N. Rozanov, Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Trans. Antennas Propag. 48, 1230–1234 (2000)

    Article  Google Scholar 

  36. M. Zhang, F. Zhang, Y. Ou, J. Cai, H. Yu, Broadband terahertz absorber based on dispersion-engineered catenary coupling in dual metasurface. Nanophotonics 8, 117–125 (2019)

    Article  Google Scholar 

  37. M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, X. Luo, Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation. Appl. Phys. Lett. 102, 131906 (2013)

    Article  Google Scholar 

  38. Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, X. Luo, Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion. Sci. Rep. 5, 8434 (2015)

    Article  CAS  Google Scholar 

  39. Y.D. Chong, L. Ge, H. Cao, A.D. Stone, Coherent perfect absorbers: time-reversed lasers. Phys. Rev. Lett. 105, 053901 (2010)

    Article  CAS  Google Scholar 

  40. W. Wan, Y. Chong, L. Ge, H. Noh, A.D. Stone, H. Cao, Time-reversed lasing and interferometric control of absorption. Science 331, 889–892 (2011)

    Article  CAS  Google Scholar 

  41. D.G. Baranov, A.E. Krasnok, T. Shegai, A. Alù, Y.D. Chong, Coherent perfect absorbers: linear control of light with light. Nat. Rev. Mater. 2, 17064 (2017)

    Article  CAS  Google Scholar 

  42. C. Yan, M. Pu, J. Luo, Y. Huang, X. Li, X. Ma, X. Luo, Coherent perfect absorption of electromagnetic wave in subwavelength structures. Opt. Laser Technol. 101, 499–506 (2018)

    Article  CAS  Google Scholar 

  43. B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics, 2 edn. (Wiley, 2007)

    Google Scholar 

  44. M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, X. Luo, Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. Opt. Express 20, 2246–2254 (2012)

    Article  CAS  Google Scholar 

  45. M. Pu, Q. Feng, C. Hu, X. Luo, Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film. Plasmonics 7, 733–738 (2012)

    Article  CAS  Google Scholar 

  46. W. Woltersdorff, Über die optischen Konstanten dünner Metallschichten im langwelligen Ultrarot. Z. Für Phys. Hadrons Nucl. 91, 230–252 (1934)

    Article  CAS  Google Scholar 

  47. S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z.H. Hang, Y. Lai, B. Hou, M. Shen, C. Wang, Broadband perfect absorption of ultrathin conductive films with coherent illumination: superabsorption of microwave radiation. Phys. Rev. B 91, 220301(R) (2015)

    Article  Google Scholar 

  48. S. Li, Q. Duan, S. Li, Q. Yin, W. Lu, L. Li, B. Gu, B. Hou, W. Wen, Perfect electromagnetic absorption at one-atom-thick scale. Appl. Phys. Lett. 107, 181112 (2015)

    Article  Google Scholar 

  49. M.-G. Kang, T. Xu, H.J. Park, X. Luo, L.J. Guo, Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes. Adv. Mater. 22, 4378 (2010)

    Article  CAS  Google Scholar 

  50. T. Kawawaki, Y. Takahashi, T. Tatsuma, Enhancement of dye-sensitized photocurrents by gold nanoparticles: effects of plasmon coupling. J. Phys. Chem. C 117, 5901–5907 (2013)

    Article  CAS  Google Scholar 

  51. X. Ma, Y. Guo, M. Pu, X. Li, X. Luo, Refined model for plasmon ruler based on catenary shaped optical fields. Plasmonics (2019)

    Google Scholar 

  52. J. Khurgin, W.-Y. Tsai, D.P. Tsai, G. Sun, Landau damping and limit to field confinement and enhancement in plasmonic dimers. ACS Photonics 4, 2871–2880 (2017)

    Article  CAS  Google Scholar 

  53. S.S. Aćimović, M.P. Kreuzer, M.U. González, R. Quidant, Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing. ACS Nano 3, 1231–1237 (2009)

    Article  Google Scholar 

  54. H. Aouani, M. Rahmani, M. Navarro-Cia, S.A. Maier, Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna. Nat. Nanotechnol. 9, 290–294 (2014)

    Article  CAS  Google Scholar 

  55. A.E. Miroshnichenko, S. Flach, Y.S. Kivshar, Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257–2298 (2010)

    Article  CAS  Google Scholar 

  56. M. Fleischhauer, A. Imamoglu, J.P. Marangos, Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangang Luo .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luo, X. (2019). Catenary Optical Fields and Dispersion for Perfect Absorption of Light. In: Catenary Optics. Springer, Singapore. https://doi.org/10.1007/978-981-13-4818-1_7

Download citation

Publish with us

Policies and ethics