Skip to main content

Synthesis of Polyesters II: Hydrolase as Catalyst for Ring-Opening Polymerization

  • Chapter
  • First Online:

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

This chapter reviews enzymatic lipase-catalyzed ring-opening polymerizations (ROPs) to polyesters. A variety of cyclic esters are subjected to lipase- catalyzed ROP. Lipase catalysis shows unique polymerization behaviors of lactones with different ring sizes. ROP mechanism of lactones by lipase catalyst is mentioned, which applies to preparation of terminal functional polyesters. Lipase catalysis induces enantio-, regio-, and chemoselective ROPs, which can hardly be achieved by conventional chemical catalysts. ROP of cyclic esters in a variety of media is mentioned for green synthesis of polyesters. ROP of lactones is combined with living radical polymerizations, yielding designed block copolymers. ROP of other cyclic monomers, mainly cyclic carbonate, is also mentioned in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kobayashi S, Makino A (2009) Enzymatic polymer synthesis: an opportunity for green polymer chemistry. Chem Rev 109:5288–5353

    Article  CAS  PubMed  Google Scholar 

  2. Uyama H, Kobayash S (1999) Enzymatic polymerization yields useful polyphenols. ChemTech 29:22–28

    CAS  Google Scholar 

  3. Kadokawa J, Kobayashi S (2010) Polymer synthesis by enzymatic catalysis. Curr Opin Chem Biol 14:145–153

    Article  CAS  PubMed  Google Scholar 

  4. Uyama H (2007) Artificial polymeric flavonoids: synthesis and applications. Macromol Biosci 7:410–422

    Article  CAS  PubMed  Google Scholar 

  5. Uyama H, Kobayashi S (2003) Enzymatic synthesis of polyphenols. Curr Org Chem 7:1387–1397

    Article  CAS  Google Scholar 

  6. Uyama H, Kobayashi S (2006) Enzymatic synthesis and properties of polymers from polyphenols. Adv Polym Sci 194:51–67

    Article  CAS  Google Scholar 

  7. Reihmann M, Ritter H (2006) Synthesis of phenol polymers using peroxidases. Adv Polym Sci 194:1–49

    Article  CAS  Google Scholar 

  8. Uyama H, Kobayashi S (1993) Enzymatic ring-opening polymerization of lactones catalyzed by lipase. Chem Lett:1149–1150

    Google Scholar 

  9. Knani D, Gutman AL, Kohn DH (1993) Enzymatic polyesterification in organic media – enzyme-catalyzed synthesis of linear polyesters. I. Condensation polymerization of linear Hydroxyesters. II. Ring-opening polymerization of ε-caprolactone. J Polym Sci Pol Chem 31:1221–1232

    Article  CAS  Google Scholar 

  10. Matsumura S, Beppu H, Nakamura K et al (1996) Preparation of poly(β-malic acid) by enzymatic ring-opening polymerization of benzyl β-malolactonate. Chem Lett 25:795–796

    Article  Google Scholar 

  11. Namekawa S, Uyama H, Kobayashi S (1996) Lipase-catalyzed ring-opening polymerization and copolymerization of β-propiolactone. Polym J 28:730–731

    Article  CAS  Google Scholar 

  12. Svirkin YY, Xu J, Gross RA et al (1996) Enzyme-catalyzed stereoelective ring-opening polymerization of α-methyl-β-propiolactone. Macromolecules 29:4591–4597

    Article  CAS  Google Scholar 

  13. Nobes GAR, Kazlauskas RJ, Marchessault RH (1996) Lipase-catalyzed ring-opening polymerization of lactones: a novel route to poly(hydroxyalkanoate)s. Macromolecules 29:4829–4833

    Article  CAS  Google Scholar 

  14. Xie WH, Li J, Chen DP et al (1997) Ring-opening polymerization of β-butyrolactone by thermophilic lipases. Macromolecules 30:6997–6998

    Article  CAS  Google Scholar 

  15. Matsumura S, Suzuki Y, Tsukada K et al (1998) Lipase-catalyzed ring-opening polymerization of β-butyrolactone to the cyclic and linear poly(3-hydroxybutyrate). Macromolecules 31:6444–6449

    Article  CAS  Google Scholar 

  16. Osanai Y, Toshima K, Matsumura S (2000) Lipase-catalyzed reaction of molecularly pure linear and cyclic poly(3-hydroxybutanoate)s: evidence of cyclic polymer formation. Chem Lett 29:576–577

    Article  Google Scholar 

  17. Panova AA, Taktak S, Randriamahefa S et al (2003) Polymerization of propyl malolactonate in the presence of Candida rugosa lipase. Biomacromolecules 4:19–27

    Article  CAS  PubMed  Google Scholar 

  18. Dong H, Wang HD, Cao SG et al (1998) Lipase-catalyzed polymerization of lactones and linear hydroxyesters. Biotechnol Lett 20:905–908

    Article  CAS  Google Scholar 

  19. Nishida H, Yamashita M, Nagashima M et al (2000) Synthesis of metal-free poly(1,4- dioxan- 2-one) by enzyme-catalyzed ring-opening polymerization. J Polym Sci Pol Chem 38:1560–1567

    Google Scholar 

  20. Uyama H, Suda S, Kikuchi H et al (1997) Extremely efficient catalysis of immobilized lipase in ring-opening polymerization of lactones. Chem Lett:1109–1110

    Google Scholar 

  21. MacDonald RT, Pulapura SK, Svirkin YY et al (1995) Enzyme-catalyzed ε-caprolactone ring-opening polymerization. Macromolecules 28:73–78

    Article  CAS  Google Scholar 

  22. Li Q, Li G, Yu S et al (2011) Ring-opening polymerization of ε-caprolactone catalyzed by a novel thermophilic lipase from Fervidobacterium nodosum. Process Biochem (Amsterdam, Neth) 46:253–257

    Article  CAS  Google Scholar 

  23. Barrera-Rivera KA, Peponi L, Marcos-Fernandez A et al (2014) Synthesis, characterization and hydrolytic degradation of polyester-urethanes obtained by lipase biocatalysis. Polym Degrad Stab 108:188–194

    Article  CAS  Google Scholar 

  24. Kobayashi S, Takeya K, Suda S et al (1998) Lipase-catalyzed ring-opening polymerization of medium-size lactones to polyesters. Macromol Chem Phys 199:1729–1736

    Article  CAS  Google Scholar 

  25. Ebata H, Toshima K, Matsumura S (2000) Lipase-catalyzed transformation of poly(ε- caprolactone) into cyclic dicaprolactone. Biomacromolecules 1:511–514

    Google Scholar 

  26. Montanier CY, Chabot N, Emond S et al (2017) Engineering of Candida antarctica lipase B for poly(ε-caprolactone) synthesis. Eur Polym J 95:809–819

    Article  CAS  Google Scholar 

  27. Küllmer K, Kikuchi H, Uyama H et al (1998) Lipase-catalyzed ring-opening polymerization of α-methyl-δ-valerolactone and α-methyl-ε-caprolactone. Macromol Rapid Commun 19:127–130

    Article  Google Scholar 

  28. Kobayashi S, Uyama H, Namekawa S et al (1998) Enzymatic ring-opening polymerization and copolymerization of 8-octanolide by lipase catalyst. Macromolecules 31:5655–5659

    Article  CAS  Google Scholar 

  29. Kumar A, Kalra B, Dekhterman A et al (2000) Efficient ring-opening polymerization and copolymerization of ε-caprolactone and ω-pentadecalactone catalyzed by Candida antartica lipase B. Macromolecules 33:6303–6309

    Article  CAS  Google Scholar 

  30. Uyama H, Takeya K, Kobayashi S (1995) Enzymatic ring-opening polymerization of lactones to polyesters by lipase catalyst. -unusually high reactivity of macrolides. Bull Chem Soc Jpn 68:56–61

    Article  CAS  Google Scholar 

  31. Uyama H, Takeya K, Hoshi N et al (1995) Lipase-catalyzed ring-opening polymerization of 12-dodecanolide. Macromolecules 28:7046–7050

    Article  CAS  Google Scholar 

  32. Uyama H, Kikuchi H, Takeya K et al (1996) Lipase-catalyzed ring-opening polymerization and copolymerization of 15-pentadecanolide. Acta Polym 47:357–360

    Article  CAS  Google Scholar 

  33. Bisht KS, Henderson LA, Gross RA et al (1997) Enzyme-catalyzed ring-opening polymerization of ω-pentadecalactone. Macromolecules 30:2705–2711

    Article  CAS  Google Scholar 

  34. Namekawa S, Uyama H, Kobayashi S (1998) Lipase-catalyzed ring-opening polymerization of 16-hexadecanolide. Proc Jpn Acad Ser B-Phys Biol Sci 74:65–68

    Article  Google Scholar 

  35. Witt T, Haussler M, Mecking S (2017) No strain, no gain? Enzymatic ring-opening polymerization of strainless aliphatic macrolactones. Macromol Rapid Commun 38(4)

    Google Scholar 

  36. Hut YM, Ju LK (2003) Lipase-mediated deacetylation and oligomerization of lactonic sophorolipids. Biotechnol Prog 19:303–311

    Article  CAS  Google Scholar 

  37. Gao W, Hagver R, Shah V et al (2007) Glycolipid polymer synthesized from natural lactonic sophorolipids by ring-opening metathesis polymerization. Macromolecules 40:145–147

    Article  CAS  Google Scholar 

  38. Zini E, Gazzano M, Scandola M et al (2008) Glycolipid biomaterials: solid-state properties of a poly(sophorolipid). Macromolecules 41:7463–7468

    Article  CAS  Google Scholar 

  39. Strandman S, Tsai IH, Lortie R et al (2013) Ring-opening polymerization of bile acid macrocycles by Candida antarctica lipase B. Polym Chem-Uk 4:4312–4316

    Article  CAS  Google Scholar 

  40. Morales-Huerta JC, Ciulik CB, de Ilarduya AM et al (2017) Fully bio-based aromatic–aliphatic copolyesters: poly(butylene furandicarboxylate-co-succinate)s obtained by ring opening polymerization. Polym Chem-Uk 8:748–760

    Article  CAS  Google Scholar 

  41. Mueller S, Uyama H, Kobayashi S (1999) Lipase-catalyzed ring-opening polymerization of cyclic diesters. Chem Lett 28:1317–1318

    Article  Google Scholar 

  42. Matsumura S, Ebata H, Toshima K (2000) A new strategy for sustainable polymer recycling using an enzyme: poly(ε-caprolactone). Macromol Rapid Commun 21:860–863

    Article  CAS  Google Scholar 

  43. Okajima S, Kondo R, Toshima K et al (2003) Lipase-catalyzed transformation of poly(butylene adipate) and poly(butylene succinate) into Repolymerizable cyclic oligomers. Biomacromolecules 4:1514–1519

    Article  CAS  PubMed  Google Scholar 

  44. Soeda Y, Toshima K, Matsumura S (2005) Synthesis and chemical recycling of novel poly(ester-urethane)s using an enzyme. Macromol Biosci 5:277–288

    Article  CAS  PubMed  Google Scholar 

  45. Sugihara S, Toshima K, Matsumura S (2006) New strategy for enzymatic synthesis of high- molecular- weight poly(butylene succinate) via cyclic oligomers. Macromol Rapid Commun 27:203–207

    Google Scholar 

  46. Morales-Huerta JC, de Ilarduya AM, Muñoz-Guerra S (2017) A green strategy for the synthesis of poly(ethylene succinate) and its copolyesters via enzymatic ring opening polymerization. Eur Polym J 95:514–519

    Article  CAS  Google Scholar 

  47. Matsumura S, Mabuchi K, Toshima K (1997) Lipase-catalyzed ring-opening polymerization of lactide. Macromol Rapid Commun 18:477–482

    Article  CAS  Google Scholar 

  48. Hans M, Keul H, Moeller M (2009) Ring-opening polymerization of DD-lactide catalyzed by novozyme 435. Macromol Biosci 9:239–247

    Article  CAS  PubMed  Google Scholar 

  49. Takwa M, Larsen MW, Hult K et al (2011) Rational redesign of Candida antarctica lipase B for the ring opening polymerization of D,D-lactide. Chem Commun (Camb) 47:7392–7394

    Article  CAS  Google Scholar 

  50. Omay D, Guvenilir Y (2013) Synthesis and characterization of poly(D,L-lactic acid) via enzymatic ring opening polymerization by using free and immobilized lipase. Biocatal Biotransformation 31:132–140

    Article  CAS  Google Scholar 

  51. Srivastava RK, Albertsson AC (2005) High-molecular-weight poly(1,5-dioxepan-2-one) via enzyme-catalyzed ring-opening polymerization. J Polym Sci Pol Chem 43:4206–4216

    Article  CAS  Google Scholar 

  52. Srivastava RK, Kumar K, Varma IK et al (2007) Chemo-enzymatic synthesis of comb polymers. Eur Polym J 43:808–817

    Article  CAS  Google Scholar 

  53. van der Mee L, Antens A, van de Kruijs B et al (2006) Oxo-crown-ethers as comonomers for tuning polyester properties. J Polym Sci Pol Chem 44:2166–2176

    Article  CAS  Google Scholar 

  54. Gross RA, Kumar A, Kalra B (2001) Polymer synthesis by in vitro enzyme catalysis. Chem Rev 101:2097–2124

    Article  CAS  PubMed  Google Scholar 

  55. Kobayashi S, Uyama H, Kimura S (2001) Enzymatic polymerization. Chem Rev 101:3793–3818

    Article  CAS  PubMed  Google Scholar 

  56. Cordova A, Iversen T, Martinelle M (1998) Lipase-catalysed formation of macrocycles by ring-opening polymerisation of ε-caprolactone. Polymer 39:6519–6524

    Article  CAS  Google Scholar 

  57. Berkane C, Mezoul G, Lalot T et al (1997) Lipase-catalyzed polyester synthesis in organic medium. Study of ring-chain equilibrium. Macromolecules 30:7729–7734

    Article  CAS  Google Scholar 

  58. Duda A, Kowalski A, Penczek S et al (2002) Kinetics of the ring-opening polymerization of 6-, 7-, 9-, 12-, 13-, 16-, and 17-membered lactones. Comparison of chemical and enzymatic polymerizations. Macromolecules 35:4266–4270

    Article  CAS  Google Scholar 

  59. Uppenberg J, Hansen MT, Patkar S et al (1994) Sequence, crystal-structure determination and refinement of 2 crystal forms of lipase B from Candida antarctica. Structure 2:293–308

    Article  CAS  PubMed  Google Scholar 

  60. Polloni AE, Chiaradia V, Figura EM et al (2018) Polyesters from macrolactones using commercial lipase NS 88011 and novozym 435 as biocatalysts. Appl Biochem Biotechnol 184:659–672

    Article  CAS  PubMed  Google Scholar 

  61. van der Mee L, Helmich F, de Bruijn R et al (2006) Investigation of lipase-catalyzed ring- opening polymerizations of lactones with various ring sizes: kinetic evaluation. Macromolecules 39:5021–5027

    Google Scholar 

  62. Kobayashi S, Uyama H, Namekawa S (1998) In vitro biosynthesis of polyesters with isolated enzymes in aqueous systems and organic solvents. Polym Degrad Stab 59:195–201

    Article  CAS  Google Scholar 

  63. Kobayashi S, Uyama H (1999) Precision enzymatic polymerization to polyesters with lipase catalysts. Macromol Symp 144:237–246

    Article  CAS  Google Scholar 

  64. Namekawa S, Suda S, Uyama H et al (1999) Lipase-catalyzed ring-opening polymerization of lactones to polyesters and its mechanistic aspects. Int J Biol Macromol 25:145–151

    Article  CAS  PubMed  Google Scholar 

  65. Huisgen R, Ott H (1959) Die konfiguration der carbonestergruppe und die Sondereigenschaften der lactone. Tetrahedron 6:253–267

    Article  CAS  Google Scholar 

  66. Veld MAJ, Fransson L, Palmans ARA et al (2009) Lactone size dependent reactivity in Candida antarctica lipase B: a molecular dynamics and docking study. Chembiochem: Eur J Chem Biol 10:1330–1334

    Article  CAS  Google Scholar 

  67. Hunsen M, Abul A, Xie WC et al (2008) Humicola insolens cutinase-catalyzed lactone ring- opening polymerizations: kinetic and mechanistic studies. Biomacromolecules 9:518–522

    Google Scholar 

  68. Miletic N, Vukovic Z, Nastasovic A et al (2009) Macroporous poly(glycidyl methacrylate-co- ethylene glycol dimethacrylate) resins-versatile immobilization supports for biocatalysts. J Mol Catal B Enzym 56:196–201

    Google Scholar 

  69. Poojari Y, Beemat JS, Clarson SJ (2013) Enzymatic synthesis of poly(ε-caprolactone): thermal properties, recovery, and reuse of lipase B from Candida antarctica immobilized on macroporous acrylic resin particles. Polym Bull (Heidelberg, Ger) 70:1543–1552

    CAS  Google Scholar 

  70. Omay D (2014) Immobilization of lipase onto a photo-crosslinked polymer network: characterization and polymerization applications. Biocatal Biotransformation 32:132–140

    Article  CAS  Google Scholar 

  71. Ozturk Duskunkorur H, Pollet E, Phalip V et al (2014) Lipase catalyzed synthesis of polycaprolactone and clay-based nanohybrids. Polymer 55:1648–1655

    Article  CAS  Google Scholar 

  72. Kobayashi S (ed) (1997) Catalysis in precision polymerization. Wiley, Chichester

    Google Scholar 

  73. Engel S, Höck H, Bocola M et al (2016) CaLB catalyzed conversion of ε-caprolactone in aqueous medium. Part 1: immobilization of CaLB to microgels. Polymers 8:372

    Article  PubMed Central  CAS  Google Scholar 

  74. Hans M, Gasteier P, Keul H et al (2006) Ring-opening polymerization of ε-caprolactone by means of mono- and multifunctional initiators: comparison of chemical and enzymatic catalysis. Macromolecules 39:3184–3193

    Article  CAS  Google Scholar 

  75. Skaria S, Smet M, Frey H (2002) Enzyme-catalyzed synthesis of hyperbranched aliphatic polyesters. Macromol Rapid Commun 23:292–296

    Article  CAS  Google Scholar 

  76. Kerep P, Ritter H (2006) Influence of microwave irradiation on the lipase-catalyzed ring- opening polymerization of ε-caprolactone. Macromol Rapid Commun 27:707–710

    Google Scholar 

  77. Matos TD, King N, Simmons L et al (2011) Microwave assisted lipase catalyzed solvent-free poly-ε-caprolactone synthesis. Green Chem Lett Rev 4:73–79

    Article  CAS  Google Scholar 

  78. Scherkus C, Schmidt S, Bornscheuer UT et al (2016) A fed-batch synthetic strategy for a three-step enzymatic synthesis of poly-ϵ-caprolactone. ChemCatChem 8:3446–3452

    Article  CAS  Google Scholar 

  79. Uyama H, Takeya K, Kobayashi S (1993) Synthesis of polyesters by enzymatic ring-opening copolymerization using lipase catalyst. Proc Jpn Acad Ser B-Phys Biol Sci 69:203–207

    Article  CAS  Google Scholar 

  80. Namekawa S, Uyama H, Kobayashi S (2001) Lipase-catalyzed ring-opening polymerization of lactones in the presence of aliphatic polyesters to Ester copolymers. Macromol Chem Phys 202:801–806

    Article  CAS  Google Scholar 

  81. Jiang ZZ, Azim H, Gross RA et al (2007) Lipase-catalyzed copolymerization of ω-pentadecalactone with p-dioxanone and characterization of copolymer thermal and crystalline properties. Biomacromolecules 8:2262–2269

    Article  CAS  PubMed  Google Scholar 

  82. Wahlberg J, Persson PV, Olsson T et al (2003) Structural characterization of a lipase- catalyzed copolymerization of ε-caprolactone and d,l-lactide. Biomacromolecules 4:1068–1071

    Google Scholar 

  83. Huijser S, Staal BBP, Huang J et al (2006) Topology characterization by MALDI-TOF-MS of enzymatically synthesized poly(lactide-co-glycolide). Biomacromolecules 7:2465–2469

    Article  CAS  PubMed  Google Scholar 

  84. Numata K, Srivastava RK, Finne-Wistrand A et al (2007) Branched poly(lactide) synthesized by enzymatic polymerization: effects of molecular branches and stereochemistry on enzymatic degradation and alkaline hydrolysis. Biomacromolecules 8:3115–3125

    Article  CAS  PubMed  Google Scholar 

  85. Namekawa S, Uyama H, Kobayashi S (2000) Enzymatic synthesis of polyesters from lactones, dicarboxylic acid divinyl esters, and glycols through combination of ring-opening polymerization and polycondensation. Biomacromolecules 1:335–338

    Article  CAS  PubMed  Google Scholar 

  86. Kikuchi H, Uyama H, Kobayashi S (2000) Lipase-catalyzed enantioselective copolymerization of substituted lactones to optically active polyesters. Macromolecules 33:8971–8975

    Article  CAS  Google Scholar 

  87. Al-Azemi TF, Kondaveti L, Bisht KS (2002) Solventless enantioelective ring-opening polymerization of substituted ε-caprolactones by enzymatic catalysis. Macromolecules 35:3380–3386

    Article  CAS  Google Scholar 

  88. Peeters JW, van Leeuwen O, Palmans ARA et al (2005) Lipase-catalyzed ring-opening polymerizations of 4-substituted ε-caprolactones: mechanistic considerations. Macromolecules 38:5587–5592

    Article  CAS  Google Scholar 

  89. van As BAC, van Buijtenen J, Heise A et al (2005) Chiral oligomers by iterative tandem catalysis. J Am Chem Soc 127:9964–9965

    Article  PubMed  CAS  Google Scholar 

  90. van Buijtenen J, van As BAC, Meuldijk J et al (2006) Chiral polymers by iterative tandem catalysis. Chem Commun:3169–3171

    Google Scholar 

  91. Zhou JX, Wang WX, Thurecht KJ et al (2006) Simultaneous dynamic kinetic resolution in combination with enzymatic ring-opening polymerization. Macromolecules 39:7302–7305

    Article  CAS  Google Scholar 

  92. Uyama H, Kobayashi S, Morita M et al (2001) Chemoselective ring-opening polymerization of a lactone having exo-methylene group with lipase catalysis. Macromolecules 34:6554–6556

    Article  CAS  Google Scholar 

  93. Habaue S, Asai M, Morita M et al (2003) Chemospecific ring-opening polymerization of α-methylenemacrolides. Polymer 44:5195–5200

    Article  CAS  Google Scholar 

  94. Uyama H, Suda S, Kobayashi S (1999) Enzymatic synthesis of terminal-functionalized polyesters by initiator method. Acta Polym 49:700–703

    Article  Google Scholar 

  95. Castano M, Zheng J, Puskas JE et al (2014) Enzyme-catalyzed ring-opening polymerization of ε-caprolactone using alkyne functionalized initiators. Polym Chem 5:1891–1896

    Article  CAS  Google Scholar 

  96. Srivastava RK, Albertsson AC (2006) Enzyme-catalyzed ring-opening polymerization of seven-membered ring lactones leading to terminal-functionalized and triblock polyesters. Macromolecules 39:46–54

    Article  CAS  Google Scholar 

  97. Kalra B, Kumar A, Gross RA et al (2004) Chemoenzymatic synthesis of new brush copolymers comprising poly(ω-pentadecalactone) with unusual thermal and crystalline properties. Macromolecules 37:1243–1250

    Article  CAS  Google Scholar 

  98. Zhu N, Zhang Z-L, He W et al (2014) Highly chemoselective lipase from Candida sp. 99-125 catalyzed ring-opening polymerization for direct synthesis of thiol-terminated poly(ε- caprolactone). Chin Chem Lett 26:361–364

    Google Scholar 

  99. Korzhikov VA, Gusevskaya KV, Litvinchuk EN et al (2013) Enzyme-mediated ring-opening polymerization of pentadecalactone to obtain biodegradable polymer for fabrication of scaffolds for bone tissue engineering. Int J Polym Sci 2013:476748

    Article  CAS  Google Scholar 

  100. Bisht KS, Deng F, Gross RA et al (1998) Ethyl glucoside as a multifunctional initiator for enzyme-catalyzed regioselective lactone ring-opening polymerization. J Am Chem Soc 120:1363–1367

    Article  CAS  Google Scholar 

  101. Cordova A, Iversen T, Hult K (1998) Lipase-catalyzed synthesis of methyl 6-O-poly(ε- caprolactone)glycopyranosides. Macromolecules 31:1040–1045

    Google Scholar 

  102. Cordova A, Hult A, Hult K et al (1998) Synthesis of a poly(ε-caprolactone) monosubstituted first generation dendrimer by lipase catalysis. J Am Chem Soc 120:13521–13522

    Article  CAS  Google Scholar 

  103. Qian X, Wang J, Li Y et al (2014) Two enzyme cooperatively catalyzed tandem polymerization for the synthesis of polyester containing chiral (R)- or (S)-ibuprofen pendants. Macromol Rapid Commun 35:1788–1794

    Article  CAS  Google Scholar 

  104. Gustavsson MT, Persson PV, Iversen T et al (2004) Polyester coating of cellulose fiber surfaces catalyzed by a cellulose-binding module-Candida antarctica lipase B fusion protein. Biomacromolecules 5:106–112

    Article  CAS  PubMed  Google Scholar 

  105. de Geus M, Peters R, Koning CE et al (2008) Insights into the initiation process of enzymatic ring-opening polymerization from monofunctional alcohols using liquid chromatography under critical conditions. Biomacromolecules 9:752–757

    Article  PubMed  CAS  Google Scholar 

  106. Takwa M, Xiao Y, Simpson N et al (2008) Lipase catalyzed HEMA initiated ring-opening polymerization: in situ formation of mixed polyester methacrylates by transesterification. Biomacromolecules 9:704–710

    Article  CAS  PubMed  Google Scholar 

  107. Xiao Y, Takwa M, Hult K et al (2009) Systematic comparison of HEA and HEMA as initiators in enzymatic ring-opening polymerizations. Macromol Biosci 9:713–720

    Article  CAS  PubMed  Google Scholar 

  108. Hedfors C, Ostmark E, Malmstrom E et al (2005) Thiol end-functionalization of poly(ε- caprolactone), catalyzed by Candida antarctica lipase B. Macromolecules 38:647–649

    Google Scholar 

  109. Yoon KR, Lee KB, Chi YS et al (2003) Surface-initiated, enzymatic polymerization of biodegradable polyesters. Adv Mater 15:2063–2066

    Article  CAS  Google Scholar 

  110. Kim YR, Paik HJ, Ober CK et al (2004) Enzymatic surface-initiated polymerization: a novel approach for the in situ solid-phase synthesis of biocompatible polymer poly(3- hydroxybutyrate). Biomacromolecules 5:889–894

    Google Scholar 

  111. Hans M, Keul H, Moeller M (2008) Poly(ether-ester) conjugates with enhanced degradation. Biomacromolecules 9:2954–2962

    Article  CAS  PubMed  Google Scholar 

  112. Uyama H, Kikuchi H, Kobayashi S (1995) One-shot synthesis of polyester macromonomer by enzymatic ring-opening polymerization of lactone in the presence of vinyl Ester. Chem Lett:1047–1048

    Google Scholar 

  113. Uyama H, Kikuchi H, Kobayashi S (1997) Single-step acylation of polyester terminals by enzymatic ring-opening polymerization of 12-dodecanolide in the presence of acyclic vinyl esters. Bull Chem Soc Jpn 70:1691–1695

    Article  CAS  Google Scholar 

  114. Takwa M, Simpson N, Malmstrom E et al (2006) One-pot difunctionalization of poly(ω- pentadecalactone) with thiol-thiol or thiol-acrylate groups, catalyzed by Candida antarctica lipase B. Macromol Rapid Commun 27:1932–1936

    Google Scholar 

  115. Simpson N, Takwa M, Hult K et al (2008) Thiol-functionalized poly(ω-pentadecalactone) telechelics for semicrystalline polymer networks. Macromolecules 41:3613–3619

    Article  CAS  Google Scholar 

  116. Cordova A (2001) Synthesis of amphiphilic poly(ε-caprolactone) macromonomers by lipase catalysis. Biomacromolecules 2:1347–1351

    Article  CAS  PubMed  Google Scholar 

  117. Li J, Xie WH, Cheng HN et al (1999) Polycaprolactone-modified hydroxyethylcellulose films prepared by lipase-catalyzed ring-opening polymerization. Macromolecules 32:2789–2792

    Article  CAS  Google Scholar 

  118. Kumar R, Gross RA (2002) Biocatalytic route to well-defined macromers built around a sugar core. J Am Chem Soc 124:1850–1851

    Article  CAS  PubMed  Google Scholar 

  119. Kumar A, Gross RA (2000) Candida antartica lipase B catalyzed polycaprolactone synthesis: effects of organic media and temperature. Biomacromolecules 1:133–138

    Article  CAS  PubMed  Google Scholar 

  120. Polloni AE, Rebelatto EA, Veneral JG et al (2017) Enzymatic ring opening polymerization of ω-pentadecalactone in different solvents in a variable-volume view reactor. J Polym Sci A Polym Chem 55:1219–1227

    Article  CAS  Google Scholar 

  121. Namekawa S, Uyama H, Kobayashi S (1998) Lipase-catalyzed ring-opening polymerization of lactones in water. Polym J 30:269–271

    Article  CAS  Google Scholar 

  122. Panlawan P, Luangthongkam P, Wiemann LO et al (2013) Lipase-catalyzed interfacial polymerization of ω-pentadecalactone in aqueous biphasic medium: a mechanistic study. J Mol Catal B Enzym 88:69–76

    Article  CAS  Google Scholar 

  123. Inprakhon P, Panlawan P, Pongtharankul T et al (2014) Toward one-oot lipase-catalyzed synthesis of poly(ε-caprolactone) particles in aqueous dispersion. Colloids Surf B Biointerfaces 113:254–260

    Article  CAS  PubMed  Google Scholar 

  124. Taden A, Antonietti M, Landfester K (2003) Enzymatic polymerization towards biodegradable polyester nanoparticles. Macromol Rapid Commun 24:512–516

    Article  CAS  Google Scholar 

  125. Malberg S, Finne-Wistrand A, Albertsson A-C (2010) The environmental influence in enzymatic polymerization of aliphatic polyesters in bulk and aqueous mini-emulsion. Polymer 51:5318–5322

    Article  CAS  Google Scholar 

  126. Sharma E, Samanta A, Pal J et al (2016) High internal phase emulsion ring-opening polymerization of pentadecanolide: strategy to obtain porous scaffolds in a single step. Macromol Chem Phys 217:1752–1758

    Article  CAS  Google Scholar 

  127. Nallani M, de Hoog HPM, Cornelissen J et al (2007) Polymersome nanoreactors for enzymatic ring-opening polymerization. Biomacromolecules 8:3723–3728

    Article  CAS  PubMed  Google Scholar 

  128. Takamoto T, Uyama H, Kobayashi S (2001) Lipase-catalyzed synthesis of aliphatic polyesters in supercritical carbon dioxide. e-polymers 4:1–6

    Google Scholar 

  129. Loeker FC, Duxbury CJ, Kumar R et al (2004) Enzyme-catalyzed ring-opening polymerization of ε-caprolactone in supercritical carbon dioxide. Macromolecules 37:2450–2453

    Article  CAS  Google Scholar 

  130. Thurecht KJ, Heise A, deGeus M et al (2006) Kinetics of enzymatic ring-opening polymerization of ε-caprolactone in supercritical carbon dioxide. Macromolecules 39:7967–7972

    Article  CAS  Google Scholar 

  131. Polloni AE, Veneral JG, Rebelatto EA et al (2017) Enzymatic ring opening polymerization of ω-pentadecalactone using supercritical carbon dioxide. J Supercrit Fluids 119:221–228

    Article  CAS  Google Scholar 

  132. Takamoto T, Uyama H, Kobayashi S (2001) Lipase-catalyzed degradation of polyester in supercritical carbon dioxide. Macromol Biosci 1:215–218

    Article  CAS  Google Scholar 

  133. Matsumura S, Ebata H, Kondo R et al (2001) Organic solvent-free enzymatic transformation of poly (ε-caprolactone) into repolymerizable oligomers in supercritical carbon dioxide. Macromol Rapid Commun 22:1326–1329

    Google Scholar 

  134. Duxbury CJ, Wang WX, de Geus M et al (2005) Can block copolymers be synthesized by a single-step chemoenzymatic route in supercritical carbon dioxide. J Am Chem Soc 127:2384–2385

    Article  CAS  PubMed  Google Scholar 

  135. Villarroya S, Zhou JX, Duxbury CJ et al (2006) Synthesis of semifluorinated block copolymers containing, poly(ε-caprolactone) by the combination of ATRP and enzymatic ROP in ScCO2. Macromolecules 39:633–640

    Article  CAS  Google Scholar 

  136. Zhou JX, Villarroya S, Wang WX et al (2006) One-step chemoenzymatic synthesis of poly(ε-caprolactone-block-methyl methacrylate) in supercritical CO2. Macromolecules 39:5352–5358

    Article  CAS  Google Scholar 

  137. Lopez-Luna A, Gallegos JL, Gimeno M et al (2010) Lipase-catalyzed syntheses of linear and hyperbranched polyesters using compressed fluids as solvent media. J Mol Catal B Enzym 67:143–149

    Article  CAS  Google Scholar 

  138. Kubisa P (2005) Ionic liquids in the synthesis and modification of polymers. J Polym Sci Pol Chem 43:4675–4683

    Article  CAS  Google Scholar 

  139. Uyama H, Takamoto T, Kobayashi S (2002) Enzymatic synthesis of polyesters in ionic liquids. Polym J 34:94–96

    Article  CAS  Google Scholar 

  140. Marcilla R, de Geus M, Mecerreyes D et al (2006) Enzymatic polyester synthesis in ionic liquids. Eur Polym J 42:1215–1221

    Article  CAS  Google Scholar 

  141. Yoshizawa-Fujita M, Saito C, Takeoka Y et al (2008) Lipase-catalyzed polymerization of L-lactide in ionic liquids. Polym Adv Technol 19:1396–1400

    Article  CAS  Google Scholar 

  142. Mena M, Lopez-Luna A, Shirai K et al (2013) Lipase-catalyzed synthesis of hyperbranched poly-L-lactide in an ionic liquid. Bioprocess Biosyst Eng 36:383–387

    Article  CAS  PubMed  Google Scholar 

  143. Barrera-Rivera KA, Marcos-Fernandez A, Vera-Graziano R et al (2009) Enzymatic ring- opening polymerization of ε-caprolactone by Yarrowia lipolytica lipase in ionic liquids. J Polym Sci Part A: Polym Chem 47:5792–5805

    Google Scholar 

  144. Wu C, Zhang Z, He F et al (2013) Enzymatic synthesis of poly(ε-caprolactone) in monocationic and dicationic ionic liquids. Biotechnol Lett 35:879–885

    Article  CAS  PubMed  Google Scholar 

  145. Wu C, Zhang Z, Chen C et al (2013) Synthesis of poly(ε-caprolactone) by an immobilized lipase coated with ionic liquids in a solvent-free condition. Biotechnol Lett 35:1623–1630

    Article  CAS  PubMed  Google Scholar 

  146. Zhao H, Nathaniel GA, Merenini PC (2017) Enzymatic ring-opening polymerization (ROP) of lactides and lactone in ionic liquids and organic solvents: digging the controlling factors. RSC Adv 7:48639–48648

    Article  CAS  Google Scholar 

  147. Piotrowska U, Sobczak M, Oledzka E (2017) Characterization of aliphatic polyesters synthesized via enzymatic ring-opening polymerization in ionic liquids. Molecules 22

    Google Scholar 

  148. Gumel AM, Annuar MSM, Chisti Y et al (2012) Ultrasound assisted lipase catalyzed synthesis of poly-6-hydroxyhexanoate. Ultrason Sonochem 19:659–667

    Article  CAS  PubMed  Google Scholar 

  149. Kundu S, Bhangale AS, Wallace WE et al (2011) Continuous flow enzyme-catalyzed polymerization in a microreactor. J Am Chem Soc 133:6006–6011

    Article  CAS  PubMed  Google Scholar 

  150. Bhangale AS, Beers KL, Gross RA (2012) Enzyme-catalyzed polymerization of end- functionalized polymers in a microreactor. Macromolecules (Washington, DC, U S) 45:7000–7008

    Google Scholar 

  151. Deng F, Bisht KS, Gross RA et al (1999) Chemoenzymatic synthesis of a multiarm poly(lactide-co-ε-caprolactone). Macromolecules 32:5159–5161

    Article  CAS  Google Scholar 

  152. Meyer U, Palmans ARA, Loontjens T et al (2002) Enzymatic ring-opening polymerization and atom transfer radical polymerization from a bifunctional initiator. Macromolecules 35:2873–2875

    Article  CAS  Google Scholar 

  153. Matyjaszewski K, Xia JH (2001) Atom transfer radical polymerization. Chem Rev 101:2921–2990

    Article  CAS  PubMed  Google Scholar 

  154. Peeters J, Palmans ARA, Veld M et al (2004) Cascade synthesis of chiral block copolymers combining lipase catalyzed ring opening polymerization and atom transfer radical polymerization. Biomacromolecules 5:1862–1868

    Article  CAS  PubMed  Google Scholar 

  155. de Geus M, Peeters J, Wolffs M et al (2005) Investigation of factors influencing the chemoenzymatic synthesis of block copolymers. Macromolecules 38:4220–4225

    Article  CAS  Google Scholar 

  156. Peeters JW, Palmans ARA, Meijer EW et al (2005) Chemoenzymatic synthesis of branched polymers. Macromol Rapid Commun 26:684–689

    Article  CAS  Google Scholar 

  157. van As BAC, Thomassen P, Kalra B et al (2004) One-pot chemoenzymatic cascade polymerization under kinetic resolution conditions. Macromolecules 37:8973–8977

    Article  CAS  Google Scholar 

  158. de Geus M, Schormans L, Palmans AA et al (2006) Block copolymers by chemoenzymatic cascade polymerization: a comparison of consecutive and simultaneous reactions. J Polym Sci Pol Chem 44:4290–4297

    Article  CAS  Google Scholar 

  159. Pflughaupt RL, Hopkins SA, Wright PM et al (2016) Synthesis of poly(ω-pentadecalactone)-b-poly(acrylate) diblock copolymers via a combination of enzymatic ring-opening and RAFT polymerization techniques. J Polym Sci A Polym Chem 54:3326–3335

    Article  CAS  Google Scholar 

  160. Sha K, Li DS, Wang SW et al (2005) Synthesis and characterization of diblock copolymer by enzymatic ring-opening polymerization and ATRP from a novel bifunctional initiator. Polym Bull 55:349–355

    Article  CAS  Google Scholar 

  161. Sha K, Li DS, Li YP et al (2007) Synthesis, characterization, and micellization of an epoxy- based amphiphilic diblock copolymer of ε-caprolactone and glycidyl methacrylate by enzymatic ring-opening polymerization and atom transfer radical polymerization. J Polym Sci Pol Chem 45:5037–5049

    Google Scholar 

  162. Sha K, Li DS, Li YP et al (2006) Chemoenzymatic synthesis of an AB-type diblock copolymer combining enzymatic self-condensation polymerization and atom transfer radical polymerization. J Polym Sci Pol Chem 44:3393–3399

    Article  CAS  Google Scholar 

  163. Hans M, Keul H, Heise A et al (2007) Chemoenzymatic approach toward heterografted molecular bottle brushes. Macromolecules 40:8872–8880

    Article  CAS  Google Scholar 

  164. Hao XJ, Albertin L, Foster LJR et al (2003) A new chemo-enzymatic route to side-chain liquid- crystalline polymers: the synthesis and polymerization of 6-(4-methoxybiphenyl- 4’-oxy)hexyl vinyl hexanedioate. Macromol Biosci 3:675–683

    Google Scholar 

  165. Popescu D, Keul H, Moeller M (2009) Highly functional poly(meth)acrylates via cascade reaction. Macromol Chem Phys 210:123–139

    CAS  Google Scholar 

  166. Dai SY, Li Z (2008) Enzymatic preparation of novel thermoplastic di-block copolyesters containing poly[(R)-3-hydroxybutyrate] and poly(ε-caprolactone) blocks via ring-opening polymerization. Biomacromolecules 9:1883–1893

    Article  CAS  PubMed  Google Scholar 

  167. Bonduelle C, Martin-Vaca B, Bourissou D (2009) Lipase-catalyzed ring-opening polymerization of the O-carboxylic anhydride derived from lactic acid. Biomacromolecules 10:3069–3073

    Article  CAS  PubMed  Google Scholar 

  168. Kobayashi S, Kikuchi H, Uyama H (1997) Lipase-catalyzed ring-opening polymerization of 1,3-dioxan-2-one. Macromol Rapid Commun 18:575–579

    Article  CAS  Google Scholar 

  169. Bisht KS, Svirkin YY, Henderson LA et al (1997) Lipase-catalyzed ring-opening polymerization of trimethylene carbonate. Macromolecules 30:7735–7742

    Article  CAS  Google Scholar 

  170. Chen R-Y, Zhang Y-R, Wang Y-Z (2009) Synthesis of poly(1,4-dioxan-2-one) catalyzed by immobilized lipase CA. J Mol Catal B Enzym 57:224–228

    Article  CAS  Google Scholar 

  171. Matsumura S, Tsukada K, Toshima K (1997) Enzyme-catalyzed ring-opening polymerization of 1,3-dioxan-2-one to poly(trimethylene carbonate). Macromolecules 30:3122–3124

    Article  CAS  Google Scholar 

  172. Yamamoto Y, Kaihara S, Toshima K et al (2009) High-molecular-weight polycarbonates synthesized by enzymatic ROP of a cyclic carbonate as a green process. Macromol Biosci 9:968–978

    Article  CAS  PubMed  Google Scholar 

  173. Wang H-F, Su W, Zhang C et al (2010) Biocatalytic fabrication of fast-degradable, water- soluble polycarbonate functionalized with tertiary amine groups in backbone. Biomacromolecules 11:2550–2557

    Google Scholar 

  174. Feng J, Wang H-F, Zhang X-Z et al (2009) Investigation on lipase-catalyzed solution polymerization of cyclic carbonate. Eur Polym J 45:523–529

    Article  CAS  Google Scholar 

  175. Wu R, Al-Azemi TF, Bisht KS (2008) Functionalized polycarbonate derived from tartaric acid: enzymatic ring-opening polymerization of a seven-membered cyclic carbonate. Biomacromolecules 9:2921–2928

    Article  CAS  PubMed  Google Scholar 

  176. Namekawa S, Uyama H, Kobayashi S et al (2000) Lipase-catalyzed ring-opening polymerization and copolymerization of cyclic dicarbonates. Macromol Chem Phys 201:261–264

    Article  CAS  Google Scholar 

  177. He F, Jia HL, Liu G et al (2006) Enzymatic synthesis and characterization of novel biodegradable copolymers of 5-benzyloxy-trimethylene carbonate with 1,4-dioxan-2-one. Biomacromolecules 7:2269–2273

    Article  CAS  PubMed  Google Scholar 

  178. Al-Azemi TF, Harmon JP, Bisht KS (2000) Enzyme-catalyzed ring-opening copolymerization of 5-methyl-5-benzyloxycarbonyl-1,3-dioxan-2-one (MBC) with trimethylene carbonate (TMC): synthesis and characterization. Biomacromolecules 1:493–500

    Article  CAS  PubMed  Google Scholar 

  179. Kaihara S, Fisher JP, Matsumura S (2009) Chemo-enzymatic synthesis of degradable PTMC- b- PECA-b-PTMC triblock copolymers and their micelle formation for pH-dependent controlled release. Macromol Biosci 9:613–621

    Google Scholar 

  180. Feng YK, Knufermann J, Klee D et al (1999) Enzyme-catalyzed ring-opening polymerization of 3(S)-isopropylmorpholine-2,5-dione. Macromol Rapid Commun 20:88–90

    Article  CAS  Google Scholar 

  181. Feng YK, Klee D, Keul H et al (2000) Lipase-catalyzed ring-opening polymerization of morpholine- 2,5-dione derivatives: a novel route to the synthesis of poly(ester amide)s. Macromol Chem Phys 201:2670–2675

    Google Scholar 

  182. Feng Y, Klee D, Höcker H (2004) Lipase catalyzed copolymerization of 3(S)-isopropylmorpholine-2,5-dione and D,L-lactide. Macromol Biosci 4:587–590

    Article  CAS  PubMed  Google Scholar 

  183. Feng YK, Klee D, Höcker H (2005) Lipase-catalyzed ring-opening polymerization of 6(S)-methyl-morpholine-2,5-dione. J Polym Sci Pol Chem 43:3030–3039

    Article  CAS  Google Scholar 

  184. Wen J, Zhuo RX (1998) Enzyme-catalyzed ring-opening polymerization of ethylene isopropyl phosphate. Macromol Rapid Commun 19:641–642

    Article  CAS  Google Scholar 

  185. He F, Zhuo RX, Liu LJ et al (2001) Immobilized lipase on porous silica beads: preparation and application for enzymatic ring-opening polymerization of cyclic phosphate. React Funct Polym 47:153–158

    Article  CAS  Google Scholar 

  186. Iwata S, Toshima K, Matsumura S (2003) Enzyme-catalyzed preparation of aliphatic polyesters containing thioester linkages. Macromol Rapid Commun 24:467–471

    Article  CAS  Google Scholar 

  187. Kato M, Toshima K, Matsumura S (2005) Preparation of aliphatic poly(thioester) by the lipase- catalyzed direct polycondensation of 11-mercaptoundecanoic acid. Biomacromolecules 6:2275–2280

    Google Scholar 

  188. Kato M, Toshima K, Matsumura S (2007) Enzymatic synthesis of Polythioester by the ring- opening polymerization of cyclic Thioester. Biomacromolecules 8:3590–3596

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Uyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Uyama, H., Kobayashi, S. (2019). Synthesis of Polyesters II: Hydrolase as Catalyst for Ring-Opening Polymerization. In: Kobayashi, S., Uyama, H., Kadokawa, Ji. (eds) Enzymatic Polymerization towards Green Polymer Chemistry. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3813-7_6

Download citation

Publish with us

Policies and ethics