Skip to main content

Synthesis of Poly(aromatic)s II: Enzyme-Model Complexes as Catalyst

  • Chapter
  • First Online:
Enzymatic Polymerization towards Green Polymer Chemistry

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

This chapter deals with oxidative polymerization of aromatic monomers catalyzed by enzyme-model complexes to produce poly(aromatic)s. The enzyme-model complexes include Fe/porphyrin complexes and Fe/N,N′-bis(salicylidene)ethylenediamine complexes as Fe-containing peroxidase-models, Cu complexes having three nitrogen coordination atoms as Cu-containing monooxygenase models, and multinuclear Cu complexes as Cu-containing oxidase models. By using the enzyme-model complex catalysts, the aromatic monomers such as phenols, anilines, and pyrroles can be polymerized with H2O2 or O2 as oxidants at ordinary temperatures in environmentally benign manners. The obtained poly(aromatic)s like polyphenols, poly(phenylene oxide)s, polyanilines, and polypyrroles possess excellent characteristics in mechanical strength, heat-resistance, and electric property. Enzyme-model catalysts have the following advantages in comparison with enzyme catalysts: (1) lower cost that is important in practical use, (2) applicability in various reaction conditions and monomers, and (3) possibility to express unique functions that have not seen even in enzymes. Hence, oxidative polymerization of aromatic monomers by enzyme-model complex catalysts would be expected as one of the new synthetic methods for advanced materials in green polymer chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Higashimura H, Kobayashi S (2016) Oxidative polymerization. In: Encyclopedia of polymer science and technology, 4th edn. Wiley, New York, pp 1–37

    Google Scholar 

  2. Shoda S, Uyama H, Kadokawa J et al (2016) Enzymes as green catalysts for precision macromolecular synthesis. Chem Rev 116:2307–2413

    Article  CAS  Google Scholar 

  3. Huang X, Groves JT (2018) Oxygen activation and radical transformations in heme proteins and metalloporphyrins. Chem Rev 118:2491–2553

    Article  CAS  Google Scholar 

  4. Quist DA, Diaz DE, Liu JJ et al (2017) Activation of dioxygen by copper metalloproteins and insights from model complexes. J Biol Inorg Chem 22:253–288

    Article  CAS  Google Scholar 

  5. Kitajima N, Moro-oka Y (1994) Copper-dioxygen complexes. Inorganic and bioinorganic perspectives. Chem Rev 94:737–757

    Article  CAS  Google Scholar 

  6. Mirica LM, Vance M, Rudd DJ et al (2005) Tyrosinase reactivity in a model complex: an alternative hydroxylation mechanism. Science 308:1890–1892

    Article  CAS  Google Scholar 

  7. Akkara JA, Wang J, Yang D-P et al (2000) Hematin-catalyzed polymerization of phenol compounds. Macromolecules 33:2377–2382

    Article  CAS  Google Scholar 

  8. Kohri M, Fukushima H, Taniguchi T et al (2010) Synthesis of polyarbutin by oxidative polymerization using PEGylated hematin as a biomimetic catalyst. Polym J 42:952–955

    Article  CAS  Google Scholar 

  9. Wnag P, Martin BD, Paride S et al (1995) Multienzymic synthesis of poly(hydroquinone) for use as a redox polymer. J Am Chem Soc 117:12885–12886

    Article  Google Scholar 

  10. Liu W, Cholli AL, Nagarajan R et al (1999) The role of template in the enzymatic synthesis of conducting polyaniline. J Am Chem Soc 121:11345–11355

    Article  CAS  Google Scholar 

  11. Roy S, Nagarajan R, Bruno F et al (2001) A hinged iron porphyrin catalyst tailored for water soluble electroactive polymer synthesis. Proc ACS Div PMSE 85:202–203

    CAS  Google Scholar 

  12. Sahoo SK, Nagarajan R, Roy S et al (2004) An enzymatically synthesized polyaniline: a solid-state NMR study. Macromolecules 37:4130–4138

    Article  CAS  Google Scholar 

  13. Šmejkalová D, Piccolo A, Spiteller M (2006) Oligomerization of humic phenolic monomers by oxidative coupling under biomimetic catalysis. Environ Sci Technol 40:6955–6962

    Article  Google Scholar 

  14. Ravichandran S, Nagarajan S, Kokil A et al (2012) Micellar nanoreactors for hematin catalyzed synthesis of electrically conducting polypyrrole. Langmuir 28:13380–13386

    Article  CAS  Google Scholar 

  15. Terahara A, Higashimura H (2011) Manufacture of phenol polymers. Japanese Patent 3596038, 4 Aug 1994 for priority application

    Google Scholar 

  16. Uyama H, Kurioka H, Kaneko I et al (1994) Synthesis of a new family of phenol resin by enzymatic oxidative polymerization. Chem Lett 23:423–426

    Article  Google Scholar 

  17. Tonami H, Uyama H, Oguchi T et al (1999) Synthesis of a soluble polyphenol by oxidative polymerization of bisphenol-A using iron-salen complex as catalyst. Polym Bull 42:125–129

    Article  CAS  Google Scholar 

  18. Fukuoka T, Uyama H, Kobayashi S (2003) Synthesis of ultrahigh molecular weight polyphenols by oxidative coupling. Macromolecules 36:8213–8215

    Article  CAS  Google Scholar 

  19. Tonami H, Uyama H, Kobayashi S et al (1999) Oxidative polymerization of 2,6-disubstituted phenols catalyzed by iron-salen complex. J Macromol Sci Pure Appl Chem A36:719–730

    Article  CAS  Google Scholar 

  20. Ikeda R, Tanaka H, Uyama H et al (2000) Oxidative polymerization of 2,6-difluorophenol to crystalline poly(2,6-difluoro-1,4-phenylene oxide). Macromolecules 33:6648–6652

    Article  CAS  Google Scholar 

  21. Fukuoka T, Uyama H, Kobayashi S (2004) Polymerization of polyfunctional macromolecules: synthesis of a new class of high molecular weight poly(amino acid)s by oxidative coupling of phenol-containing precursor polymers. Biomacromolecules 5:977–983

    Article  CAS  Google Scholar 

  22. Tsujimoto T, Ikeda R, Uyama H et al (2001) Crosslinkable polyphenols from urushiol analogues. Macromol Chem Phys 202:3420–3425

    Article  CAS  Google Scholar 

  23. Tsujimoto T, Uyama H, Kobayashi S (2004) Synthesis and curing behaviors of cross-linkable polynaphthols from renewable resources: preparation of artificial urushi. Macromolecules 37:1777–1782

    Article  CAS  Google Scholar 

  24. Ikeda R, Tanaka H, Uyama H et al (2000) A new crosslinkable polyphenol from a renewable resource. Macromol Rapid Commun 21:496–499

    Article  CAS  Google Scholar 

  25. Ikeda R, Tanaka H, Uyama H et al (2002) Synthesis and curing behaviors of a crosslinkable polymer from cashew nut shell liquid. Polymer 43:3475–3481

    Article  CAS  Google Scholar 

  26. Otsuka T, Fujikawa S, Yamane H et al (2017) Green polymer chemistry: the biomimetic oxidative polymerization of cardanol for a synthetic approach to ‘artificial urushi’. Polym J 49:335–343

    Article  CAS  Google Scholar 

  27. Hay AS, Blanchard HS, Endres GF et al (1959) Polymerization by oxidative coupling. J Am Chem Soc 81:6335–6336

    Article  CAS  Google Scholar 

  28. Hay AS (1998) Polymerization by oxidative coupling: discovery and commercialization of PPO and Noryl resins. J Polym Sci A Polym Chem 36:505–517

    Article  CAS  Google Scholar 

  29. Davin LB, Wang HB, Crowell AL et al (1997) Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science 275:362–366

    Article  CAS  Google Scholar 

  30. Mahadevan V, Hou Z, Cole AP et al (1997) Irreversible reduction of dioxygen by simple peralkylated diamine-copper(I) complexes: characterization and thermal stability of a [Cu2(μ-O)2]2+ core. J Am Chem Soc 119:11996–11997

    Article  CAS  Google Scholar 

  31. Valoti M, Sipe HJ Jr, Sgaragli G et al (1989) Free radical intermediates during peroxidase oxidation of 2-t-butyl-4-methoxyphenol, 2,6-di-t-butyl-4-methylphenol, and related phenol compounds. Arch Biochem Biophys 269:423–432

    Article  CAS  Google Scholar 

  32. Kitajima N, Fujisawa K, Fujimoto C et al (1992) A new model for dioxygen binding in hemocyanin. Synthesis, characterization, and molecular structure of the μ-η22-peroxo dinuclear copper(II) complexes, [Cu(HB(3,5-R2pz)3)]2(O2) (R= iPr and Ph). J Am Chem Soc 114:1277–1291

    Article  CAS  Google Scholar 

  33. Hay AS, Endres GF (1965) Polymerization by oxidative coupling. VI. Oxidation of o-cresol. J Polym Sci B Polym Lett 3:887–889

    Article  Google Scholar 

  34. Higashimura H, Fujisawa K, Moro-oka Y et al (1998) Highly regioselective oxidative polymerization of 4-phenoxyphenol to poly(1,4-phenylene oxide) catalyzed by tyrosinase model complexes. J Am Chem Soc 120:8529–8530

    Article  CAS  Google Scholar 

  35. Higashimura H, Kubota M, Shiga A (2000) “Radical-controlled” oxidative polymerization of 4-phenoxyphenol by a tyrosinase model complex catalyst to poly(1,4-phenylene oxide). Macromolecules 33:1986–1995

    Article  CAS  Google Scholar 

  36. van Dort HM, Hoefs CAM, Magré EP et al (1968) Poly-p-phenylene oxide. Eur Polym J 4:275–287

    Article  Google Scholar 

  37. Mijs WJ, van Lohuizen OE, Bussink J et al (1967) The catalytic oxidation of 4-aryloxyphenols. Tetrahedron 23:2253–2264

    Article  CAS  Google Scholar 

  38. Fujisawa K, Iwata Y, Kitajima N et al (1999) Synthesis, structure and reactivity of phenoxo copper(II) complexes, Cu(OAr)(HB(3,5-Pri 2pz)3) (Ar= C6H4-4-F, 2,6-Me2C6H3, 2,6-But 2C6H3). Chem Lett 28:739–740

    Article  Google Scholar 

  39. Halfen JA, Mahapatra S, Wilkinson EC et al (1996) Reversible cleavage and formation of the dioxygen O-O bond within a dicopper complex. Science 271:1397–1400

    Article  CAS  Google Scholar 

  40. Mahapatra S, Halfen JA, Wilkinson EC et al (1994) Modeling copper-dioxygen reactivity in proteins: aliphatic C-H bond activation by a new dicopper(II)-peroxo complex. J Am Chem Soc 116:9785–9786

    Article  CAS  Google Scholar 

  41. Higashimura H, Fujisawa K, Kubota M et al (2005) “Radical-controlled” oxidative polymerization of phenol: comparison with that of 4-phenoxyphenol. J Polym Sci A Polym Chem 43:1955–1962

    Article  CAS  Google Scholar 

  42. Higashimura H, Fujisawa K, Namekawa S et al (2000) Coupling selectivity in the radical-controlled oxidative polymerization of 4-phenoxyphenol catalyzed by (1,4,7-triisopropyl-1,4,7-triazacyclononane)copper(II) complex. J Polym Sci A Polym Chem 38:4792–4804

    Article  CAS  Google Scholar 

  43. Higashimura H, Fujisawa K, Moro-oka Y et al (2000) “Radical-controlled” oxidative polymerization of phenols. Substituent effect of phenol monomers on the reaction rate. Polym Adv Tech 11:733–738

    Article  CAS  Google Scholar 

  44. Koch W, Risse W, Heitz W (1985) Radical ions as chain carriers in polymerization reactions. Makromol Chem Suppl 12:105–123

    Article  CAS  Google Scholar 

  45. Higashimura H, Fujisawa K, Moro-oka Y et al (2000) “Radical-controlled” oxidative polymerization of o-cresol catalyzed by μ-η22-peroxo dicopper(II) complex. Appl Catal A General 194–195:427–433

    Article  Google Scholar 

  46. Higashimura H, Fujisawa K, Moro-oka Y et al (2000) “Radical-controlled” oxidative polymerization of m-cresol catalyzed by μ-η22-peroxo dicopper(II) complex. J Mol Catal A Chem 155:201–207

    Article  CAS  Google Scholar 

  47. Higashimura H, Fujisawa K, Moro-oka Y et al (2000) New crystalline polymers: poly(2,5-dialkyl-1,4-phenylene oxide)s. Macromol Rapid Commun 21:1121–1124

    Article  CAS  Google Scholar 

  48. Cheng SZD, Wunderlich B (1987) Glass transition and melting behavior of poly(oxy-2,6-dimethyl-1,4-phenylene). Macromolecules 20:1630–1637

    Article  CAS  Google Scholar 

  49. Oyaizu K, Kumaki Y, Saito K et al (2000) First synthesis of high molecular weight poly(2,6-difluoro-1,4-phenylene oxide) by oxidative polymerization. Macromolecules 33:5766–5769

    Article  CAS  Google Scholar 

  50. Dias HVR, Wang X, Rajapakse RMG et al (2006) A mild copper catalyzed route to conducting polyaniline. Chem Commun 9:976–978

    Article  Google Scholar 

  51. Kodera M, Katayama K, Tachi Y et al (1999) Crystal structure and reversible O2-binding of a room temperature stable μ-η22-peroxodicopper(II) complex of a sterically hindered hexapyridine dinucleating ligand. J Am Chem Soc 121:11006–11007

    Article  CAS  Google Scholar 

  52. Higashimura H, Kubota M, Shiga A et al (2000) “Radical-controlled” oxidative polymerization of 4-phenoxyphenol catalyzed by a dicopper complex of a dinucleating ligand. J Mol Catal A Chem 161:233–237

    Article  CAS  Google Scholar 

  53. de Oliveira JAF, da Silva MP, de Souza B et al (2016) Dopamine polymerization promoted by a catecholase biomimetic CuII(μ-OH)CuII complex containing a triazine-based ligand. Dalton Trans 45:15294–15297

    Article  Google Scholar 

  54. Wu J, Hou H-W, Guo Y-X et al (2009) Construction of two discrete molecular high-nuclearity copper(II) complexes as heterogeneous catalysts for oxidative coupling polymerization of 2,6-dimethylphenol. Eur J Inorg Chem 2009(19):2796–2803

    Article  Google Scholar 

  55. Yamamoto K, Kawana Y, Tsuji M et al (2007) Additive-free synthesis of poly(phenylene oxide): aerobic oxidative polymerization in a base-condensed dendrimer capsule. J Am Chem Soc 129:9256–9257

    Article  CAS  Google Scholar 

  56. Gu C, Xiong K, Shentu B et al (2010) Catalytic Cu(II)-amine terminated poly(amidoamine) dendrimer complexes for aerobic oxidative polymerization to form poly(2,6-dimethyl-1,4-phenylene oxide) in water. Macromolecules 43:1695–1698

    Article  CAS  Google Scholar 

  57. Xiao B, Hou H, Fan Y (2007) Catalytic applications of CuII-containing MOFs based on N-heterocyclic ligand in the oxidative coupling of 2,6-dimethylphenol. J Org Chem 692:2014–2020

    Article  CAS  Google Scholar 

  58. Mu Y, Fu J, Song Y et al (2011) Hydrothermal syntheses of metal–organic frameworks constructed from aromatic polycarboxylate and 4,4′-bis(1,2,4-triazol-1-ylmethyl)biphenyl. Cryst Growth Des 11:2183–2193

    Article  CAS  Google Scholar 

  59. Kobayashi S, Higashimura H (2003) Oxidative polymerization of phenols revisited. Prog Polym Sci 28:1015–1048

    Article  CAS  Google Scholar 

  60. Saito K, Tago T, Masuyama T et al (2004) Oxidative polymerization of 2,6-dimethylphenol to form poly(2,6- dimethyl-1,4-phenylene oxide) in water. Angew Chem Int Ed 43:730–733

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyuki Higashimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Higashimura, H. (2019). Synthesis of Poly(aromatic)s II: Enzyme-Model Complexes as Catalyst. In: Kobayashi, S., Uyama, H., Kadokawa, Ji. (eds) Enzymatic Polymerization towards Green Polymer Chemistry. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3813-7_10

Download citation

Publish with us

Policies and ethics