Skip to main content

Carob as Source for Sustainable Ingredients and Products

  • Chapter
  • First Online:
Plant Based “Green Chemistry 2.0”

Abstract

The carob is a dome-shaped evergreen tree that is a member of the pea family (Fabaceae). Its fruit has been used for human consumption and as animal feed in the Mediterranean countries for centuries and was also widely used as a herbal remedy in traditional folk’s medicine. In this paper, an in-depth literature review was conducted about this species discussing its history, origins, main current uses, components (both nutrient and bioactive), biological activities, and potential applications as the source of sustainable ingredients and products. Among the many bioactive compounds that were found in carob, the most well studied are polyphenols. The levels of these compounds were found to vary depending on many factors, such as the variety, plant part, geographic location, roasting and extraction conditions, and even analysis methods. In the light of these researches, it was recognized that carob offers several biological activities including antioxidant, anticancer, and anti-diabetic due to the presence of a high quantity of pinitol and antibacterial. Rich in sugars, proteins, and minerals, the carob has a vast range of industrial applications such as cacao substitute, sugars substitute, free from gluten making it cereal-derived foods for celiac people.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rejeb NM (1995) Le caroubier en Tunisie: situation et perspectives d’amélioration. Quel avenir pour l’amélioration des plantes? Ed. AUPELF-UREF. John Libbey Eurotext, pp 79–85

    Google Scholar 

  2. Battle I, Tous J (1997) Carob tree. Ceratonia siliqua L., promoting the conservation and use of under-utilised and neglected crops. Institute of Plant Genetics and Crop Plant Research and Gatersleben/International Plant Genetic Resource Institute

    Google Scholar 

  3. Oziyci HR, Tetik N, Turhan I, Yatmaz E, Ucgun K, Akgul H, Gubbuk H, Karhan M (2014) Mineral composition of pods and seeds of wild and grafted carob (Ceratonia siliqua L.) fruits. Sci Hortic 167:149–152

    Article  CAS  Google Scholar 

  4. Durazzo A, Turfani V, Narducci V, Azzini E, Maiani G, Carcea M (2014) Nutritional characterisation and bioactive components of commercial carobs flours. Food Chem 153:109–113

    Article  CAS  Google Scholar 

  5. Nasar-Abbas SM, Huma Z, Vu TH, Khan MK, Esbenshade H, Jayasena V (2016) Carob kibble: a bioactive-rich food ingredient. Compr Rev Food Sci Food Saf: 63–72

    Article  Google Scholar 

  6. Bengoechea C, Romero A, Villanueva A, Moreno G, Alaiz M, Millan F, Guerrero A, Puppo MC (2008) Composition and structure of carob (Ceratonia siliqua L.) germ proteins. Food Chem 107:675–683

    Article  CAS  Google Scholar 

  7. Youssef MKE, El-Manfaloty MM, Ali MH (2013) Assessment of proximate chemical composition, nutritional status, fatty acid composition and phenolic compounds of carob (Ceratonia siliqua L.). Food Public Health 3(6):304–308

    Google Scholar 

  8. Bernardo-Gil MG, Roque R, Roseiro LB, Duarte LC, Girio F, Esteves P (2011) Supercritical extraction of carob kibbles (Ceratonia siliqua L.). J Supercrit Fluids 59:36–42

    Article  CAS  Google Scholar 

  9. Ali-Delille L (2010). Les plantes médicinales d’Algérie, vol 82. Berti Editions

    Google Scholar 

  10. Rol F (1973) Locust bean gum. In: Whistler RL (ed) Industrial gums: polysaccharides and their derivatives, 2nd edn. Academic Press, New York, pp 323–337

    Chapter  Google Scholar 

  11. De Candolle A (1883) L’origine des plantes cultivées. Balière, París

    Google Scholar 

  12. Vavilov NI (1951) The origin, variation, immunity, and breeding of cultivated plants [translated from the Russian by K.S. Chester]. The Ronald Press Co., New York

    Google Scholar 

  13. Shepperd VD (2008) Fabaceae-pea family Ceratonia siliqua L. woody plant seed manual, pp 371–373

    Google Scholar 

  14. Tetik N, Turfan I, Karhan M, Oziyci HR (2010) Characterization of, and 5-Hydroxymethylfurfural concentration in carob pekmez. Gida 35(4):1–6

    Google Scholar 

  15. Yousif AK, Alghzawi HM (2000) Processing and characterization of carob powder. Food Chem 69:283–287

    Article  CAS  Google Scholar 

  16. Jaradat NA (2005) Medical plants utilized in Palestinian folk medicine for treatment of diabetes mellitus and cardiac diseases. Al-Aqsa University

    Google Scholar 

  17. Cakılcıoğlu U, Turkoğlu I (2007) Plants and fruits used for cholesterol treatment by the folk in Elaziğ. Phytologia Balcanica 13:239–245

    Google Scholar 

  18. Lev E, Amar Z (2002) Ethnopharmacological survey of traditional drugs sold in the Kingdom of Jordan. J Ethnopharmacol 82:131–145

    Article  Google Scholar 

  19. Gutzwiller A (2016) Aliments diététiques contenant de la caroube contre la diarhhée du porcelet sevré. Recherche agronomique suisse 7(6):290–295

    Google Scholar 

  20. Kotrotsios N, Christaki E, Bonos E, Florou-Paneri P (2012) Dietary carob on growth performance and meat quality of fattening pigs. Asian-Aust J Anim Sci 25:880–885

    Article  CAS  Google Scholar 

  21. Marakis S (1996) Carob bean in food and feed: current status and future potentials—a critical appraisal. J Food Sci Technol-Mysore 33(5):365–383

    Google Scholar 

  22. Gravador RS, Luciano G, Jongberg S, Bognanno M, Scerra M, Andersen ML, Lund MN, Priolo A (2015) Fatty acids and oxidative stability of meat from lambs fed carob-containing diets. Food Chem 182:27–34

    Article  CAS  Google Scholar 

  23. Priolo Q, Vasta V (2007) Effects of tannin-containing diets on small ruminant meat quality. Ital J Anim Sci 6(SUPPL. 1):527–530

    Article  Google Scholar 

  24. Cepo DV, Mornar A, Nigovic B, Kremer D, Radanovic D, Dragojevic IV (2014) Optimization of roasting conditions as an useful approach for increasing antioxidant activity of carob powder. LWT-Food Sci Technol 58:578–586

    Article  Google Scholar 

  25. Barroso LS, de Oliveira VR, Garcia AV, Doneda D, Ouriques LA, Vieira MM (2015) Physicochemical and sensory evaluation of sandwich cookies made with carob. Adv J Food Sci Technol 9(4):290–295

    Article  CAS  Google Scholar 

  26. Dos Santos LM, Tulio LT, Campos LF, Domeles MR, Hecke Krüger CC (2015) Glycemic response to carob (Ceratonia siliqua L.) in healthy subjects and with the in vitro hydrolysis index. Nutricion hospitaliria 31(1):482–487

    Google Scholar 

  27. Baston O (2016) Production and analysis of Ceratonia siliqua L. Powders Ann Food Sci Technol 17:50–54

    CAS  Google Scholar 

  28. Rosa CS, Tessele K, Prestes RC, Silveira M, Franco F (2015) Effect of substituting of cocoa powder for carob flour in cakes made with soy and banana flours. Int Food Res J 22:2111–2118

    CAS  Google Scholar 

  29. Makris DP, Kefalas P (2004) Carob pods (Ceratonia siliqua L.) as a source of polyphenolic antioxidants. Food Technol Biotechnol 42:105–108

    CAS  Google Scholar 

  30. Santos M, Rodrigues A, Teixeira JA (2005) Production of dextran and fructose from carob pod extract and cheese whey by Leuconostoc mesenteroides, NRRL B512 (f). Biochem Eng J 25:1–6

    Article  CAS  Google Scholar 

  31. Bernardo-Gil MG, Roque R, Roseiro BL, Duarte LC, Girio F, Esteves P (2011) Supercritical extraction of carob kibbles (Ceratonia siliqua L.). J Supercrit Fluids 59:36–42

    Article  CAS  Google Scholar 

  32. Nasar-abbas SM, Huma Z, Vu T-H, Khan MK, Esbenshade H, Jayasena V (2016) Carob kibble: a bioactive-rich food ingredient. Compr Rev Food Sci Food Saf 15:63–72

    Article  Google Scholar 

  33. Avallone R, Cosenza F, Farina F, Baraldi C, Baraldi M (2002) Extraction and purification from Ceratonia siliqua of compounds acting on central and peripheral benzodiazepine receptors. Fitoterapia 73:390–396

    Article  CAS  Google Scholar 

  34. Iipumbu L (2008) Compositional analysis of locally cultivated carob (Ceratonia siliqua) cultivars and development of nutritional food products for a range of market sectors. University of Stellenbosch, Stellenbosch

    Google Scholar 

  35. Correiaa PJ, Saavedraa T, Gamaa F, Miguela MG, Varennesb A, Pestana M (2018) Biologically active compounds available in Ceratonia siliqua L. grown in contrasting soils under Mediterranean climate. Sci Hortic 235:228–234

    Article  Google Scholar 

  36. Ozcan MM, Arslan D, Gokcalik H (2007) Some compositional properties and mineral contents of carob (Ceratonia siliqua) fruit, flour and syrup. Int J Food Sci Nutr 58:652–658

    Article  CAS  Google Scholar 

  37. Youssef MKE, El-Manfaloty MM, Ali HM (2013) Assessment of proximate chemical composition, nutritional status, fatty acid composition and phenolic compounds of carob (Ceratonia siliqua L.). Food Public Health:304–308

    Google Scholar 

  38. Dakia PA, Wathelet B, Paquot M (2007) Isolation and chemical evaluation of carob (Ceratonia siliqua L.) seed germ. Food Chem 102:1368–1374

    Article  CAS  Google Scholar 

  39. Goulas V, Stylos E, Chatziathanasiadou MV, Mavromoustakous T, Tzakos AG (2016) Review functional components of carob fruit: linking the chemical and biological space. Int J Mol Sci 17:1875. https://doi.org/10.3390/ijms17111875

    Article  CAS  PubMed Central  Google Scholar 

  40. Sarni-manchado P, Cheynier V (2006) Les polyphénols en agroalimentaire. TEC&DOC, Lavoisier

    Google Scholar 

  41. Roseiro LB, Duarte LC, Oliveira DL, Roque R, Bernardo-Gil MG, Martins AI, Sepúlveda C, Almeida J, Meireles M, Gírio FM, Rauter AP (2013a) Supercritical, ultrasound and conventional extracts from carob (Ceratonia siliqua L.) biomass: effect on the phenolic profile and antiproliferative activity. Ind Crops Prod 47:132–138

    Article  CAS  Google Scholar 

  42. Roseiro LB, Tavares CS, Roseiro JC, Rauter AP (2013) Antioxidants from aqueous decoction of carob pods biomass (Ceratonia siliqua L.): optimisation using response surface methodology and phenolic profile by capillary electrophoresis. Ind Crops Prod 44:119–126

    Article  CAS  Google Scholar 

  43. Papagiannopoulos M, Wollseifen HR, Mellenthin A, Haber B, Galensa R (2004) Identification and quantification of polyphenols in carob fruits (Ceratonia siliqua L.) and derived products by HPLC-UV-ESI/MSn. J Agric Food Chem 52:3784–3791

    Article  CAS  Google Scholar 

  44. Owen RW, Haubner R, Hull WE, Erben G, Spiegelhalder B, Bartsch H, Haber B (2003) Isolation and structure elucidation of the major individual polyphenols in carob fibre. Food Chem Toxicol 41:1727–1738

    Article  CAS  Google Scholar 

  45. Tetik N, Yüksel E (2014) Ultasound-assisted extraction of d-pinitol from carob using response surface methodology. Ultrason Sonochem 21:860–865

    Article  CAS  Google Scholar 

  46. Kumazawa S, Taniguchi M, Suzuki Y, Shimura M, Kwon M, Nakayama T (2002) Antioxidant activity of polyphenols in carob pods. J Agric Food Chem 50:373–377

    Article  CAS  Google Scholar 

  47. Zunft HJF, Lüder W, Harde A, Haber B, Graubaum HJ, Koebnick C, Grünwald J (2003) Carob pulp preparation rich in insoluble fibre lowers total and LDL cholesterol in hypercholesterolemic patients. Eur J Nutr 42:235–242

    Google Scholar 

  48. Klenow S, Glei M (2009) New insight into the influence of carob extract and gallic acid on hemin induced modulation of HT29 cell growth parameters. Toxicol In Vitro 23:1055–1061

    Article  CAS  Google Scholar 

  49. Cháfer A, Berna A (2014). Study of kinetics of the d-pinitol extraction from carob pods using supercritical CO2. J Supercrit Fluids:212–215

    Article  Google Scholar 

  50. Priolo A, Lanza M, Biondi L, Pappalardo P, Young OA (1998) Effect of partially replacing dietary barley with 20% carob pulp on post-weaning growth, and carcass and meat characteristics of Comisana lambs. Meat Sci 50(3):355–363

    Article  CAS  Google Scholar 

  51. Berna, A, Perez-Gago MB, Guardiola VG, Salazar D, Mulet A (1997) Effect of temperature on isobutyric acid loss during roasting of carob kibble. J Agric Food Chem 45:4084–4087

    Article  CAS  Google Scholar 

  52. Cantalejo MJ (1997) Effects of roasting temperature on the aroma components of carob (Ceratonia siliqua L.). Agric Food Chem 45:1345–1350

    Article  CAS  Google Scholar 

  53. Almanasrah M, Roseiro LB, Bogel-Lukasik R, Carvalheiro F, Brazinha C, Crespo J, Kallioinen M, Mänttäri M, Duarte LC (2015) Selective recovery of phenolic compounds and carbohydrates from carob kibbles using water-based extraction. Ind Crops Prod 70:443–450

    Article  CAS  Google Scholar 

  54. Almanasrah M, Brazinha C, Kallioinen M, Duarte LC, Roseiro LB, Bogel-Lukasik R, Carvalheiro F, Mänttäri M, Crespo JG (2015) Nanofiltration and reverse osmosis as a platform for production of natural botanic extracts: the case study of carob by-products. Sep Purif Technol 149:389–397

    Article  CAS  Google Scholar 

  55. Jeantet R, Croguennec T, Schuck P, Brule G (2006) Sciences des aliments. Biochimie. Microbiologie. Procédés. Produits. I. Stabilisation biologique et physico-chimique. Techniques & Documentation. 122

    Google Scholar 

  56. Amarowicz R (2009) Antioxidant activity of Maillard reaction products. Eur J Lipid Sci Technol 111:109–111

    Article  CAS  Google Scholar 

  57. Kroh LW (1994) Caramelisation in food and beverages. Food Chem 51:373–379

    Article  CAS  Google Scholar 

  58. Joslyn MA, Nishira H, Ito S (1968) Leucoanthocyanins and related phenolic compounds of carob pods (Ceratonia siliqua). J Sci Food Agric 19:543–550

    Article  CAS  Google Scholar 

  59. Saura-Calixto F, Perez-Jimenez J, Tourino S, Serrano J, Fuguet E, Torres JL, Goni I (2010) Proanthocyanidin metabolites associated with dietary fiber from in vitro colonic fermentation and proanthocyanidin metabolites in human plasma. Mol Nutr Food Res 54:939–946

    Article  CAS  Google Scholar 

  60. Babovic N, Djilas S, Jadranin M, Vajs V, Ivanovic J, Petrovic S, Zizovic I (2010) Supercritical carbon dioxide extraction of antioxidant fractions from selected Lamiaceae herbs and their antioxidant capacity. Innovative Food Sci Emerg Technol 11:98–107

    Article  CAS  Google Scholar 

  61. Ak T, Gulcin I (2008) Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact 174:27–37

    Article  CAS  Google Scholar 

  62. Corsi L, Avallone R, Cosenza F, Farina F, Baraldi C, Baraldia M (2002) Antiproliferative effects of Ceratonia siliqua L. on mouse hepatocellular carcinoma cell line. Fitoterapia 73:674–684

    Article  CAS  Google Scholar 

  63. Wolever TMS (1990) The glycemic index. In: Borne GH (ed) Aspects of some vitamins, minerals and enzymes in health and disease. Karger, Basel, Switzerland, pp 120–185

    Google Scholar 

  64. Banuls C, Rovira-Llopis S, Falcon R, Veses S, Monzo N, Víctor MV, Rocha M, Hermandez-Mijares A (2016) A chronic consumption of an inositol-enriched carob extract improves postprandial glycaemia and insulin sensitivity in healthy subjects: a randomized controlled trial. Clin Nutr 35:600–607

    Article  Google Scholar 

  65. Mohamed DA, Hamed IM, Al-Okbi SY (2008) Ceratonia siliqua pods as a cheap source of functional food components. DtschLebensmittRundsch 104:25–29

    CAS  Google Scholar 

  66. Croze ML, Soulage CO (2013) Potential role and therapeutic interests of myo-inositol in metabolic diseases. Biochimie 95:1811–1827

    Article  CAS  Google Scholar 

  67. Ruiz-Roso B, Quintela JC, Fuente E, Haya J, Pérez-Olleros L (2010) Insoluble carob fiber rich in polyphenols lowers total and LDL cholesterol in hypercholesterolemicsujects. Plant Foods Hum Nutr 65:50–56

    Article  CAS  Google Scholar 

  68. Tassou CC, Drosinos EH, Nychas GJE (1997) Weak antimicrobial effect of carob (Ceratonia siliqua) extract against food-related bacteria in culture media and model food systems. World J MicrobBiot 13:479–481

    Article  Google Scholar 

  69. Meziani S, Oomah BD, Zaidi F, Simon-Lever TA, Bertrand C, Zaidi-Yahiaoui R (2014) Antibacterial activity of carob (Ceratonia siliqua L.) extracts against phytopathogenic bacteria Pectobacterium atrosepticum. Microb Pathog 78:95–102

    Article  Google Scholar 

  70. Lee YP, Mori TA, Sipsas S, Barden A, Puddey IB, Burke V, Hall RS, Hodgson JM (2006) Lupin-enriched bread increases satiety and reduces energy intake acutely. Am J Clin Nutr 84(5):975–980

    Article  CAS  Google Scholar 

  71. Aksit S, Caglayan S, Cukan R, Yaprak I (1998) Carob bean juice: a powerful adjunct to oral rehydration solution treatment in diarrhoea. Paediatr Perinat Epidemiol 12(2):176–181

    Article  CAS  Google Scholar 

  72. Tsatsaragkou K, Yiannopoulos S, Kontogiorgi A, Poulli E, Krokida M, Mandala I (2014) Effect of carob flour addition on the rheological properties of gluten-free breads. Food Bioprocess Technol 7:868–876

    Article  CAS  Google Scholar 

  73. Haber B (2002) Carob fiber benefits and applications. Cereal Food World 47(8):365–9

    Google Scholar 

  74. Mis A, Grundas S, Dziki D, Laskowski J (2012) Use of farinograph measurements for predicting extensograph traits of bread dough enriched with carob fiber and oat wholemeal. J Food Engr 108(1):1–12

    Article  Google Scholar 

  75. Çag Lar A, Erol1 N, Elgün MS (2012) Effect of carob flour substitution on chemical and functional properties of Tarhana. J Food Process Preserv:1745–4549

    Google Scholar 

  76. Sanchez-Muniz FJ, Botega DZ, Lorenzo L, Marmesat S, Bastida S, Perez-Olleros L, Ruiz-Roso B (2007) A non-extractable condensed-tannins fiber reduces thermal oxidation in oils at frying temperature. Eur J Lipid Sci Tech 109(12):1218–1225

    Article  CAS  Google Scholar 

  77. Botega ZD, Bastida S, Marmesat S, Perez-Olleros L, Ruiz-Roso B, Sanchez-Muniz FJ (2009) Carob fruit polyphenols reduce tocopherol loss, triacylglycerol polymerization and oxidation in heated sunflower oil. J Am Oil Chem Soc 86(5):419–425

    Article  Google Scholar 

  78. Atasoy AF (2009) The effects of carob juice concentrates on the properties of Yoghurt. Intl J Dairy Technol 62(2):228–233

    Article  CAS  Google Scholar 

  79. Rababah TM, Al-u’datt M, Ereifej K, Almajwal A, Al-Mahasneh M, Brewer S, Alsheyab F, Yang W (2013) Chemical, functional and sensory properties of carob juice. J Food Qual 36(4):238–44

    Article  CAS  Google Scholar 

  80. Vaheed H, Shojaosadati SA, Galip H (2011) Evaluation and optimization of ethanol production from carob pod extract by Zymomonasmobilis using response surface methodology. J Ind Microbiol Biotechnol 38:101–111

    Article  CAS  Google Scholar 

  81. Turhan I, Bialka KL, Demirci A, Karhan M (2010) Enhanced lactic acid production from carob extract by Lactobacillus casei using Invertase pretreatment. Food Biotechnol 24:364–374

    Article  CAS  Google Scholar 

  82. Carvalheiro F, Moniz P, Duarte LC, Esteves MP, Gírio FM (2011) Mannitol production by lactic acid bacteria grown in supplemented carob syrup. J Ind Microbiol Biotechnol 38:221–227

    Article  CAS  Google Scholar 

  83. Pramod T, Lingappa K (2012) Immobilization of Aspergillus niger in Hen Egg White for the production of Citric acid using carob pod extract. J Microbiol Biotechnol Res 2

    Google Scholar 

  84. Roukas T, Biliaderis CG (1995) Evaluation of carob pod as a substrate for pullulan production by Aureobasidium pullulans. Appl Biochem Biotechnol 55:27–44

    Article  CAS  Google Scholar 

  85. Andrade CT, Azero EG, Luciano L, Goncalves MP (1999) Solution properties of the galactomannans extracted from the seeds of Caesalpiniapulcherrima and Cassia javanica: comparison with locust bean gum. Intl J Biol Macromol 26(2–3):181–185

    Article  CAS  Google Scholar 

  86. Turhan I, Bialka KL, Demirci A, Karhan M (2010) Ethanol production from carob extract by using Saccharomyces cerevisiae. BioresourTechnol 101:5290–5296

    Article  CAS  Google Scholar 

  87. Sahin H, Topuz A, Pischetsrieder M, Ozdemir F (2009) Effect of roasting process on phenolic, antioxidant and browning properties of carob powder. Eur Food Res Technol 230(1):155–161

    Article  CAS  Google Scholar 

  88. Arrighi WJ, Hartman TG, Ho C-T (1997) Carob bean aroma dependence on roasting conditions. Perfumer Flavorist 22(1):31–41

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikram Boublenza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boublenza, I., Boublenza, I., Boublenza, A., Madji, S., Fabiano-Tixier, AS., Chemat, F. (2019). Carob as Source for Sustainable Ingredients and Products. In: Li, Y., Chemat, F. (eds) Plant Based “Green Chemistry 2.0”. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3810-6_10

Download citation

Publish with us

Policies and ethics