Skip to main content

Application of Electrolyzed Water in Fruits and Vegetables Industry

  • Chapter
  • First Online:
Electrolyzed Water in Food: Fundamentals and Applications

Abstract

As food industry flourished, the use of EW as a novel sanitizing agent has gained interest worldwide. The chapter reviews recent progress in the application of EW in fruits and vegetables industry, summarizing its efficacy on disinfection and pesticide removal during their processing, and disease control along with inhibiting moth infestation throughout storage as well as the effect on physiochemical properties, chemical components, and postharvest physiology. Furthermore, it specially generalized the application of EW in the field of sprouts vegetables (our researching focus) to open up a new way for the development of functional food. It indicated that EW has sufficient obliterating efficacy on spoilage or pathogenic microorganisms, pesticide residues, and some insect pests existing on fruits and vegetables without compromising sensory and nutritional quality of them in most occasions. Besides, the employment of EW to sprouts vegetables makes those healthful components such as CABA and flavonoids accumulated. However, optimal processing parameters such as washing time along with physiochemical properties of EW need further selection. And, hurdle technology should not be tolerated to maximize treatment efficacy and prolong the shelf life of fresh produce. In brief, EW has a promising prospect in future utilization of fruits and vegetables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadias M, Usall J, Oliveira M et al (2008) Efficacy of neutral electrolyzed water (NEW) for reducing microbial contamination on minimally-processed vegetables. Int J Food Microbiol 123(1–2):151–158

    CAS  PubMed  Google Scholar 

  • Abdou A, Higashiguchi S, Horie K et al (2006) Relaxation and immunity enhancement effects of gamma-aminobutyric acid (GABA) administration in humans. BioFactors 26(3):201–208

    Article  CAS  PubMed  Google Scholar 

  • Aday MS (2016) Application of electrolyzed water for improving postharvest quality of mushroom. Food Sci Technol 68:44–51

    CAS  Google Scholar 

  • Afari GK, Hung Y, King CH (2015) Efficacy of neutral pH electrolyzed water in reducing Escherichia coli O157:H7 and Salmonella typhimurium DT 104 on fresh produce items using an automated washer at simulated food service conditions. J Food Sci 80(8):M1815–M1822

    Article  CAS  PubMed  Google Scholar 

  • Afari GK, Hung YC, King CH et al (2016) Reduction of Escherichia coli O157:H7 and Salmonella typhimurium DT 104 on fresh produce using an automated washer with near neutral electrolyzed (NEO) water and ultrasound. Food Control 63:246–254

    Article  CAS  Google Scholar 

  • Alexandre EMC, Brandão TRS, Silva CLM (2012) Emerging technologies to improve the safety and quality of fruits and vegetables, 261–297

    Google Scholar 

  • Al-Haq MI, Seo Y, Oshita S et al (2002) Disinfection effects of electrolyzed oxidizing water on suppressing fruit rot of pear caused by Botryosphaeria berengeriana. Food Res Int 35(7):657–664

    Article  Google Scholar 

  • Al-Holy MA, Rasco BA (2015) The bactericidal activity of acidic electrolyzed oxidizing water against Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes on raw fish, chicken and beef surfaces. Food Control 54:317–321

    Article  CAS  Google Scholar 

  • Anthon GE, Barrett DM (2012) Pectin methylesterase activity and other factors affecting pH and titratable acidity in processing tomatoes. Food Chem 132(2):915–920

    Article  CAS  Google Scholar 

  • Antunes MD, Sfakiotakis EM (2008) Changes in fatty acid composition and electrolyte leakage of ‘Hayward’ kiwifruit during storage at different temperatures. Food Chem 110(4):891–896

    Article  CAS  PubMed  Google Scholar 

  • Arevalos-Sánchez M, Regalado C, Martin SE et al (2012) Effect of neutral electrolyzed water and nisin on Listeria monocytogenes biofilms, and on listeriolysin O activity. Food Control 24(1–2):116–122

    Article  CAS  Google Scholar 

  • Arevalos-Sánchez M, Regalado C, Martin SE et al (2013) Effect of neutral electrolyzed water on lux-tagged Listeria monocytogenes EGDe biofilms adhered to stainless steel and visualization with destructive and non-destructive microscopy techniques. Food Control 34(2):472–477

    Article  CAS  Google Scholar 

  • Athayde DR, Flores DRM, da Silva JS et al (2017) Application of electrolyzed water for improving pork meat quality. Food Res Int 100(Pt 1):757–763

    Article  CAS  PubMed  Google Scholar 

  • Audenaert K, Monbaliu S, Deschuyffeleer N et al (2012) Neutralized electrolyzed water efficiently reduces Fusarium spp. in vitro and on wheat kernels but can trigger deoxynivalenol (DON) biosynthesis. Food Control 23(2):515–521

    Article  CAS  Google Scholar 

  • Bempah CK, Agyekum AA, Akuamoa F et al (2016) Dietary exposure to chlorinated pesticide residues in fruits and vegetables from Ghanaian markets. J Food Compos Anal 46:103–113

    Article  CAS  Google Scholar 

  • Ben-Amor R, de Miguel-Gómez MD, Martínez-Sánchez A et al (2016) Effect of hot air on Deglet Noor palm quality parameters and on Ectomyelois ceratoniae. J Stor Prod Res 68:1–8

    Article  Google Scholar 

  • Bessi H, Debbabi H, Grissa K et al (2014) Microbial reduction and quality of stored date fruits treated by electrolyzed water. J Food Qua 37(1):42–49

    Article  CAS  Google Scholar 

  • Birmpa A, Sfika V, Vantarakis A (2013) Ultraviolet light and ultrasound as non-thermal treatments for the inactivation of microorganisms in fresh ready-to-eat foods. Int J Food Microbiol 167(1):96–102

    Article  PubMed  Google Scholar 

  • Brasil IM, Siddiqui MW (2018) Chapter 1—postharvest quality of fruits and vegetables: an overview. In: Preharvest modulation of postharvest fruit and vegetable quality. Academic Press, pp 1–40

    Google Scholar 

  • Burkard M, Leischner C, Lauer UM et al (2017) Dietary flavonoids and modulation of natural killer cells: implications in malignant and viral diseases. J Nutr Biochem 46:1–12

    Article  CAS  PubMed  Google Scholar 

  • Butscher D, Van H, Waskow A et al (2016) Plasma inactivation of microorganisms on sprout seeds in a dielectric barrier discharge. Int J Food Microbiol 238:222–232

    Article  CAS  PubMed  Google Scholar 

  • Calligaris S, Valoppi F, Barba, L et al (2018) β-Carotene degradation kinetics as affected by fat crystal network and solid/liquid ratio. Food Res Int 105(Supplement C):599–604

    Article  CAS  PubMed  Google Scholar 

  • Cao W, Zhu ZW, Shi ZX et al (2009) Efficiency of slightly acidic electrolyzed water for inactivation of Salmonella enteritidis and its contaminated shell eggs. Int J Food Microbiol 130(2):88–93

    Article  CAS  PubMed  Google Scholar 

  • Castro-Ibáñez I, Gil MI, Allende A (2017) Ready-to-eat vegetables: current problems and potential solutions to reduce microbial risk in the production chain. Food Sci Technol 85:284–292

    Google Scholar 

  • Chen Q, Wang Y, Chen F et al (2014) Chlorine dioxide treatment for the removal of pesticide residues on fresh lettuce and in aqueous solution. Food Control 40:106–112

    Article  CAS  Google Scholar 

  • Chen Y, Hung YC, Chen M et al (2017) Effects of acidic electrolyzed oxidizing water on retarding cell wall degradation and delaying softening of blueberries during postharvest storage. Food Sci Technol 84:650–657

    Article  CAS  Google Scholar 

  • Cheng X, Tian Y, Zhao C et al (2016) Bactericidal effect of strong acid electrolyzed water against flow Enterococcus faecalis biofilms. J Endod 42(7):1120–1125

    Article  PubMed  Google Scholar 

  • Chuang CY, Yang S, Chang MY et al (2013) Inactivation efficiency to Bacillus subtilis and Escherichia colibacterial aerosols of spraying neutral electrolyzed water. J Air Waste Manag Assoc 63(12):1447–1456

    Article  CAS  PubMed  Google Scholar 

  • Cui X, Shang Y, Shi Z et al (2009) Physicochemical properties and bactericidal efficiency of neutral and acidic electrolyzed water under different storage conditions. J Food Eng 91(4):582–586

    Article  CAS  Google Scholar 

  • Del D, Rodriguez-Mateos A, Spencer JP et al (2013) Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox 18(14):1818–1892

    Article  CAS  Google Scholar 

  • Diana M, Quílez J, Rafecas M (2014) Gamma-aminobutyric acid as a bioactive compound in foods: a review. J Funct Foods 10:407–420

    Article  CAS  Google Scholar 

  • Dilarri G, Silva VLd, Pecora HB et al (2016) Electrolytic treatment and biosurfactants applied to the conservation of Eugenia uniflora fruit. Food Sci Technol (Campinas) 36(3):456–460

    Article  Google Scholar 

  • Ding T, Jin YG, Oh DH (2009) Predictive model for growth of Listeria monocytogenes in untreated and treated lettuce with alkaline electrolyzed water. World J Microb Biot 26(5):863–869

    Article  Google Scholar 

  • Ding T, Rahman SME, Oh DH (2011) Inhibitory effects of low concentration electrolyzed water and other sanitizers against foodborne pathogens on oyster mushroom. Food Control 22(2):318–322

    Article  CAS  Google Scholar 

  • Ding T, Ge Z, Shi J et al (2015) Impact of slightly acidic electrolyzed water (SAEW) and ultrasound on microbial loads and quality of fresh fruits. Food Sci Technol 60(2):1195–1199

    CAS  Google Scholar 

  • Ding T, Xuan XT, Li J et al (2016) Disinfection efficacy and mechanism of slightly acidic electrolyzed water on Staphylococcus aureus in pure culture. Food Control 60:505–510

    Article  CAS  Google Scholar 

  • Doulia DS, Anagnos EK, Liapis KS et al (2016) Removal of pesticides from white and red wines by microfiltration. J Hazard Mater 317:135–146

    Article  CAS  PubMed  Google Scholar 

  • Duan D, Liu G, Yao P et al (2016) The effects of organic compounds on inactivation efficacy of Artemia salina by neutral electrolyzed water. Ocean Eng 125:31–37

    Article  Google Scholar 

  • Dufour C, Loonis M, Delosière M et al (2018) The matrix of fruit and vegetables modulates the gastrointestinal bioaccessibility of polyphenols and their impact on dietary protein digestibility. Food Chem 240(Supplement C):314–322

    Article  CAS  PubMed  Google Scholar 

  • Eda H, Seckin MSA (2015) The effect of different electrolyzed water treatments on the quality and sensory attributes of sweet cherry during passive atmosphere packaging storage. Postharvest Biol Technol 102:32–41

    Article  CAS  Google Scholar 

  • Erdozain MS, Allen KJ, Morley KA et al (2013) Failures in sprouts-related risk communication. Food Control 30(2):649–656

    Article  Google Scholar 

  • Etienne A, Génard M, Bancel D et al (2013) A model approach revealed the relationship between banana pulp acidity and composition during growth and post harvest ripening. Sci Hortic 162:125–134

    Article  CAS  Google Scholar 

  • Fallanaj F, Ippolito A, Ligorio A et al (2016) Electrolyzed sodium bicarbonate inhibits Penicillium digitatum and induces defence responses against green mould in citrus fruit. Postharvest Biol Technol 115:18–29

    Article  CAS  Google Scholar 

  • Favre N, Bárcena A, Bahima JV et al (2018) Pulses of low intensity light as promising technology to delay postharvest senescence of broccoli. Postharvest Biol Technol 142:107–114

    Article  Google Scholar 

  • Feliziani E, Lichter A, Smilanick JL et al (2016) Disinfecting agents for controlling fruit and vegetable diseases after harvest. Postharvest Biol Technol 122:53–69

    Article  CAS  Google Scholar 

  • Fishburn JDT, Tang YJ, Frank FJ (2012) Efficacy of various consumer-friendly produce washing technologies in reducing pathogens on fresh produce. Food Prot Trends 32(8):456–466

    Google Scholar 

  • Forghani F, Oh DH (2013) Hurdle enhancement of slightly acidic electrolyzed water antimicrobial efficacy on Chinese cabbage, lettuce, sesame leaf and spinach using ultrasonication and water wash. Food Microbiol 36(1):40–45

    Article  CAS  PubMed  Google Scholar 

  • Forghani F, Rahman SME, Park MS et al (2013) Ultrasonication enhanced low concentration electrolyzed water efficacy on bacteria inactivation and shelf life extension on lettuce. Food Sci Biotechnol 22(1):131–136

    Article  Google Scholar 

  • Forghani F, Park JH, Oh DH (2015) Effect of water hardness on the production and microbicidal efficacy of slightly acidic electrolyzed water. Food Microbiol 48:28–34

    Article  CAS  PubMed  Google Scholar 

  • Gan RY, Lui WY, Wu K et al (2017) Bioactive compounds and bioactivities of germinated edible seeds and sprouts: an updated review. Trends Food Sci Tech 59:1–14

    Article  CAS  Google Scholar 

  • Gil MI, Gómez-López VM et al (2015) Potential of electrolyzed water as an alternative disinfectant agent in the fresh-cut industry. Food Bioprocess Technol 8(6):1336–1348

    Article  CAS  Google Scholar 

  • Gillberg L, Orskov AD et al (2018) Vitamin C—a new player in regulation of the cancer epigenome. Semin Cancer Biol 51:59–67

    Article  CAS  PubMed  Google Scholar 

  • Giovenzana V, Beghi R, Civelli R et al (2015) Optical techniques for rapid quality monitoring along minimally processed fruit and vegetable chain. Trends Food Sci Tech 46(2):331–338

    Article  CAS  Google Scholar 

  • Gómez-López VM, Ragaert P et al (2007) Shelf-life of minimally processed cabbage treated with neutral electrolysed oxidising water and stored under equilibrium modified atmosphere. Int J Food Microbiol 117(1):91–98

    Article  PubMed  CAS  Google Scholar 

  • Gómez-López VM, Marín A et al (2013) Generation of trihalomethanes with chlorine-based sanitizers and impact on microbial, nutritional and sensory quality of baby spinach. Postharvest Biol Technol 85:210–217

    Article  CAS  Google Scholar 

  • Gómez-López VM, Gil MI, Pupunat L et al (2015) Cross-contamination of Escherichia coli O157:H7 is inhibited by electrolyzed water combined with salt under dynamic conditions of increasing organic matter. Food Microbiol 46:471–478

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Mascaraque LG, Perez-Masiá R, González-Barrio R et al (2017) Potential of microencapsulation through emulsion-electrospraying to improve the bioaccesibility of β-carotene. Food Hydrocolloids 73:1–12

    Article  CAS  Google Scholar 

  • Graça A, Nunes C, Centro M et al (2009) Efficacy of neutral and acidic electrolyzed water for reducing microbial contamination on fresh-cut fruits. In: 6th international postharvest symposium

    Google Scholar 

  • Graça A, Nunes C, Salazar M (2010) Efficacy of neutral and acidic electrolyzed water for reducing microbial contamination on fresh-cut fruits. Acta Hortic 877(Part 1):649–655

    Google Scholar 

  • Graça A, Abadias M, Salazar M et al (2011) The use of electrolyzed water as a disinfectant for minimally processed apples. Postharvest Biol Tech 61(2–3):172–177

    Article  CAS  Google Scholar 

  • Graça A, Esteves E, Nunes C et al (2017a) Microbiological quality and safety of minimally processed fruits in the marketplace of southern Portugal. Food Control 73:775–783

    Article  Google Scholar 

  • Graça A, Santo D, Quintas C et al (2017b) Growth of Escherichia coli, Salmonella enterica and Listeria spp., and their inactivation using ultraviolet energy and electrolyzed water, on ‘Rocha’ fresh-cut pears. Food Control 77:41–49

    Article  CAS  Google Scholar 

  • Guentzel JL, Liang L, Callan K et al (2008) Reduction of bacteria on spinach, lettuce, and surfaces in food service areas using neutral electrolyzed oxidizing water. Food Microbiol 25(1):36–41

    Article  CAS  PubMed  Google Scholar 

  • Guentzel JL, Lam KL, Callan MA et al (2010) Postharvest management of gray mold and brown rot on surfaces of peaches and grapes using electrolyzed oxidizing water. Int J Food Microbiol 143(1–2):54–60

    Article  CAS  PubMed  Google Scholar 

  • Hampson CR, Stanich K, McKenzie DL et al (2014) Determining the optimum firmness for sweet cherries using just-about-right sensory methodology. Postharvest Biol Technol 91:104–111

    Article  Google Scholar 

  • Han Q, Song X, Zhang Z et al (2017) Removal of foodborne pathogen biofilms by acidic electrolyzed water. Front Microbiol 8:988

    Article  PubMed  PubMed Central  Google Scholar 

  • Hao J, Liu H, Liu R et al (2011a) Efficacy of slightly acidic electrolyzed water (SAEW) for reducing microbial contamination on fresh-cut Cilantro. J Food Saf 31(1):28–34

    Article  CAS  Google Scholar 

  • Hao J, Liu H et al (2011b) Reduction of pesticide residues on fresh vegetables with electrolyzed water treatment. J Food Sci 76(4):C520–C524

    Article  CAS  PubMed  Google Scholar 

  • Hao J, Qiu S, Li H et al (2012) Roles of hydroxyl radicals in electrolyzed oxidizing water (EOW) for the inactivation of Escherichia coli. Int J Food Microbiol 155(3):99–104

    Article  CAS  PubMed  Google Scholar 

  • Hao J, Li H, Wan Y et al (2015a) Combined effect of acidic electrolyzed water (AEW) and alkaline electrolyzed water (AlEW) on the microbial reduction of fresh-cut cilantro. Food Control 50:699–704

    Article  CAS  Google Scholar 

  • Hao J, Li H, Wan Y et al (2015b) Effect of slightly acidic electrolyzed water (SAEW) treatment on the microbial reduction and storage quality of fresh-cut Cilantro. J Food Process Pres 39(6):559–566

    Article  CAS  Google Scholar 

  • Hao J, Wu T, Li H et al (2016a) Differences of bactericidal efficacy on Escherichia coli, Staphylococcus aureus, and Bacillus subtilis of slightly and strongly acidic electrolyzed water. Food Bioprocess Technol 10(1):155–164

    Article  CAS  Google Scholar 

  • Hao J, Wu T, Li H et al (2016b) Dual effects of slightly acidic electrolyzed water (SAEW) treatment on the accumulation of gamma-aminobutyric acid (GABA) and rutin in germinated buckwheat. Food Chem 201:87–93

    Article  CAS  PubMed  Google Scholar 

  • Hati S, Mandal S, Minz PS et al (2012) Electrolyzed oxidized water (EOW): non-thermal approach for decontamination of food borne microorganisms in food industry. Food Nutr Sci 03(06):760–768

    CAS  Google Scholar 

  • Hricova D, Zweifel R (2008) Electrolyzed water and its application in the food industry. J Food Protect 71(9):1934–1947

    Article  CAS  Google Scholar 

  • Hua W, Feng H, Luo Y (2006) Dual-phasic inactivation of Escherichia coli O157:H7 with peroxyacetic acid, acidic electrolyzed water and chlorine on cantaloupes and fresh-cut apples. J Food Saf 26:335–347

    Article  Google Scholar 

  • Huang YR, Hung YC, Hsu SY et al (2008) Application of electrolyzed water in the food industry. Food Control 19(4):329–345

    Article  CAS  Google Scholar 

  • Hung YC, Bailly D, Kim C et al (2010a) Effect of electrolyzed oxidizing water and chlorinated water treatments on strawberry and broccoli quality. J Food Qual 33(5):578–598

    Article  CAS  Google Scholar 

  • Hung YC, Tilly P, Kim C (2010b) Efficacy of electrolyzed oxidizing (Eo) water and chlorinated water for inactivation of Escherichia coli O157:H7 on strawberries and broccoli. J Food Qual 33(5):559–577

    Article  CAS  Google Scholar 

  • Ignat A, Manzocco L, Maifreni M et al (2016) Decontamination efficacy of neutral and acidic electrolyzed water in fresh-cut salad washing. J Food Process Pres 40(5):874–881

    Article  CAS  Google Scholar 

  • Imam MU, Ishaka A, Ooi DJ et al (2014) Germinated brown rice regulates hepatic cholesterol metabolism and cardiovascular disease risk in hypercholesterolaemic rats. J Funct Foods 8:193–203

    Article  CAS  Google Scholar 

  • Inatsu Y, Weerakkody K, Bari ML et al (2017) The efficacy of combined (NaClO and organic acids) washing treatments in controlling Escherichia coli O157:H7, Listeria monocytogenes and spoilage bacteria on shredded cabbage and bean sprout. Food Sci Technol 85:1–8

    CAS  Google Scholar 

  • Islam MS, Patras A, Pokharel B et al (2016) UV-C irradiation as an alternative disinfection technique: study of its effect on polyphenols and antioxidant activity of apple juice. Innov Food Sci Emerg Technol 34:344–351

    Article  CAS  Google Scholar 

  • Issa-Zacharia A, Kamitani Y, Miwa N et al (2011) Application of slightly acidic electrolyzed water as a potential non-thermal food sanitizer for decontamination of fresh ready-to-eat vegetables and sprouts. Food Control 22(3–4):601–607

    Article  CAS  Google Scholar 

  • Jadeja R, Hung YC, Bosilevac JM (2013) Resistance of various shiga toxin-producing Escherichia coli to electrolyzed oxidizing water. Food Control 30(2):580–584

    Article  CAS  Google Scholar 

  • Jaeger BN, Parylak SL, Gage FH (2017) Mechanisms of dietary flavonoid action in neuronal function and neuroinflammation. Mol Aspects Med 61:50–62

    Article  PubMed  CAS  Google Scholar 

  • Jalali A, Seiiedlou S, Linke M et al (2017) A comprehensive simulation program for modified atmosphere and humidity packaging (MAHP) of fresh fruits and vegetables. J Food Eng 206:88–97

    Article  CAS  Google Scholar 

  • Jemâa MB, Haouel S, Khouja ML (2013) Efficacy of Eucalyptus essential oils fumigant control against Ectomyelois ceratoniae (Lepidoptera: Pyralidae) under various space occupation conditions. J Stored Prod Res 53:67–71

    Google Scholar 

  • Jemni M, Gómez P, Souza M et al (2014a) Combined effect of UV-C, ozone and electrolyzed water for keeping overall quality of date palm. Food Sci Technol 59(2):649–655

    CAS  Google Scholar 

  • Jemni M, Otón M, Ramirez JG et al (2014b) Conventional and emergent sanitizers decreased Ectomyelois ceratoniae infestation and maintained quality of date palm after shelf-life. Postharvest Biol Tech 87:33–41

    Article  CAS  Google Scholar 

  • Jiménez-Pichardo R, Regalado C, Castaño-Tostado E et al (2016) Evaluation of electrolyzed water as cleaning and disinfection agent on stainless steel as a model surface in the dairy industry. Food Control 60:320–328

    Article  CAS  Google Scholar 

  • Jonathan W, Leff NF (2013) Bacterial communities associated with the surfaces of fresh fruits and vegetables. PLoS ONE 8(3):e59310

    Article  CAS  Google Scholar 

  • Joshi K, Mahendran R, Alagusundaram K et al (2013) Novel disinfectants for fresh produce. Trends Food Sci Technol 34(1):54–61

    Article  CAS  Google Scholar 

  • Ju SY, Ko JJ, Yoon HS et al (2017) Does electrolyzed water have different sanitizing effects than sodium hypochlorite on different vegetable types? Brit Food J 119(2):342–356

    Article  Google Scholar 

  • Jung Y, Gao J, Jang H et al (2017a) Sanitizer efficacy in preventing cross-contamination during retail preparation of whole and fresh-cut cantaloupe. Food Control 75:228–235

    Article  CAS  Google Scholar 

  • Jung Y, Jang H, Guo M et al (2017b) Sanitizer efficacy in preventing cross-contamination of heads of lettuce during retail crisping. Food Microbiol 64:179–185

    Article  CAS  PubMed  Google Scholar 

  • Jungklang J, Saengnil K, Uthaibutra J (2017) Effects of water-deficit stress and paclobutrazol on growth, relative water content, electrolyte leakage, proline content and some antioxidant changes in Curcuma alismatifolia Gagnep. cv. Chiang Mai Pink. Saudi J Biol Sci 24(7):1505–1512

    Article  CAS  PubMed  Google Scholar 

  • Keskinen LA, Burke A, Annous BA (2009) Efficacy of chlorine, acidic electrolyzed water and aqueous chlorine dioxide solutions to decontaminate Escherichia coli O157:H7 from lettuce leaves. Int J Food Microbiol 132(2–3):134–140

    Article  CAS  PubMed  Google Scholar 

  • Khalid S, Malik AU, Khan AS et al (2017) Tree age and fruit size in relation to postharvest respiration and quality changes in ‘Kinnow’ mandarin fruit under ambient storage. Sci Hortic 220:183–192

    Article  CAS  Google Scholar 

  • Khan I, Tango CN, Miskeen S et al (2017) Hurdle technology: a novel approach for enhanced food quality and safety—a review. Food Control 73:1426–1444

    Article  Google Scholar 

  • Khayankarn S, Uthaibutra J, Setha S et al (2013) Using electrolyzed oxidizing water combined with an ultrasonic wave on the postharvest diseases control of pineapple fruit cv. ‘Phu Lae’. Crop Prot 54:43–47

    Article  CAS  Google Scholar 

  • Kim C, Hung YC (2012) Inactivation of E. coli O157:H7 on blueberries by electrolyzed water, ultraviolet light, and ozone. J Food Sci 77(4):M206–M211

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Hung YC (2014) Effect of alkaline electrolyzed water as an inhibitor of enzymatic browning in red delicious apples. J Food Biochem 38(6):542–550

    Article  CAS  Google Scholar 

  • Kimura M, Chounan O, Takahashi R et al (2002) Effects of fermented milk containing γ-aminobutyric acid on normal adult subjects. Jpn J Food Chem 9(1):1–6

    CAS  Google Scholar 

  • Klintham P, Tongchitpakdee S, Chinsirikul W et al (2017) Combination of microbubbles with oxidizing sanitizers to eliminate Escherichia coli and Salmonella typhimurium on Thai leafy vegetables. Food Control 77:260–269

    Article  CAS  Google Scholar 

  • Koide S, Takeda J, Shi J et al (2009) Disinfection efficacy of slightly acidic electrolyzed water on fresh cut cabbage. Food Control 20(3):294–297

    Article  CAS  Google Scholar 

  • Koide S, Shitanda D, Note M et al (2011) Effects of mildly heated, slightly acidic electrolyzed water on the disinfection and physicochemical properties of sliced carrot. Food Control 22(3–4):452–456

    Article  CAS  Google Scholar 

  • Koseki S, Yoshida K, Kamitani Y et al (2004) Effect of mild heat pre-treatment with alkaline electrolyzed water on the efficacy of acidic electrolyzed water against Escherichia coli O157:H7 and Salmonella on Lettuce. Food Microbiol 21(5):559–566

    Article  CAS  Google Scholar 

  • Laureano J, Giacosa S, Río Segade S et al (2016) Effects of continuous exposure to ozone gas and electrolyzed water on the skin hardness of table and wine grape varieties. J Texture Stud 47(1):40–48

    Article  Google Scholar 

  • Lee NY, Kim NH, Jang IS et al (2014) Decontamination efficacy of neutral electrolyzed water to eliminate indigenous flora on a large-scale of cabbage and carrot both in the laboratory and on a real processing line. Food Res Int 64:234–240

    Article  CAS  PubMed  Google Scholar 

  • Lehto M, Kuisma R, Kymäläinen HR (2017) Neutral electrolyzed water (NEW), chlorine dioxide, organic acid based product, and ultraviolet-C for inactivation of microbes in fresh-cut vegetable washing waters. J Food Process Pres e13354

    Google Scholar 

  • Li X, Hao J, Liu X et al (2015) Effect of the treatment by slightly acidic electrolyzed water on the accumulation of gamma-aminobutyric acid in germinated brown millet. Food Chem 186:249–255

    Article  CAS  PubMed  Google Scholar 

  • Li H, Ren Y, Hao J et al (2017) Dual effects of acidic electrolyzed water treatments on the microbial reduction and control of enzymatic browning for fresh-cut lotus root. J Food Saf 37(3):e12333

    Article  CAS  Google Scholar 

  • Li L, Hao J, Song S et al (2018) Effect of slightly acidic electrolyzed water on bioactive compounds and morphology of broccoli sprouts. Food Res Int 105:102–109

    Article  CAS  PubMed  Google Scholar 

  • Liao LB, Chen WM, Xiao XM (2007) The generation and inactivation mechanism of oxidation–reduction potential of electrolyzed oxidizing water. J Food Eng 78(4):1326–1332

    Article  CAS  Google Scholar 

  • Lin Q, Liang R, Williams PA et al (2018) Factors affecting the bioaccessibility of β-carotene in lipid-based microcapsules: digestive conditions, the composition, structure and physical state of microcapsules. Food Hydrocoll 77:187–203

    Article  CAS  Google Scholar 

  • Liu A, Niyongira R (2017) Chinese consumers food purchasing behaviors and awareness of food safety. Food Control 79:185–191

    Article  Google Scholar 

  • Liu R, Yu ZL (2017) Application of electrolyzed water on reducing the microbial populations on commercial mung bean sprouts. J Food Sci Technol 54(4):995–1001

    Article  CAS  PubMed  Google Scholar 

  • Liu R, He X, Shi J et al (2013) The effect of electrolyzed water on decontamination, germination and γ-aminobutyric acid accumulation of brown rice. Food Control 33(1):1–5

    Article  CAS  Google Scholar 

  • Liu R, Zhang D, He X et al (2014) The relationship between antioxidant enzymes activity and mungbean sprouts growth during the germination of mungbean seeds treated by electrolyzed water. Plant Growth Regul 74(1):83–91

    Article  CAS  Google Scholar 

  • Luo K, Oh DH (2016) Inactivation kinetics of Listeria monocytogenes and Salmonella enterica serovar Typhimurium on fresh-cut bell pepper treated with slightly acidic electrolyzed water combined with ultrasound and mild heat. Food Microbiol 53:165–171

    Article  CAS  PubMed  Google Scholar 

  • Luo K, Kim SY, Wang J et al (2016) A combined hurdle approach of slightly acidic electrolyzed water simultaneous with ultrasound to inactivate Bacillus cereus on potato. Food Sci Technol 73:615–621

    CAS  Google Scholar 

  • Ma L, Zhang M, Bhandari B et al (2017) Recent developments in novel shelf life extension technologies of fresh-cut fruits and vegetables. Trends Food Sci Technol 64:23–38

    Article  CAS  Google Scholar 

  • Machado I, Meireles A, Fulgêncio R et al (2016) Disinfection with neutral electrolyzed oxidizing water to reduce microbial load and to prevent biofilm regrowth in the processing of fresh-cut vegetables. Food Bioprod Process 98:333–340

    Article  CAS  Google Scholar 

  • Mahajan PV, Caleb OJ, Gil MI et al (2017) Quality and safety of fresh horticultural commodities: recent advances and future perspectives. Food Packag Shelf 14(Part A):2–11

    Article  Google Scholar 

  • Malarkodi C, Rajeshkumar S, Annadurai G (2017) Detection of environmentally hazardous pesticide in fruit and vegetable samples using gold nanoparticles. Food Control 80:11–18

    Article  CAS  Google Scholar 

  • Mansur AR, Oh DH (2015) Combined effects of thermosonication and slightly acidic electrolyzed water on the microbial quality and shelf life extension of fresh-cut kale during refrigeration storage. Food Microbiol 51:154–162

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Hernández GB, Navarro-Rico J, Gómez PA et al (2015) Combined sustainable sanitising treatments to reduce Escherichia coli and Salmonella enteritidis growth on fresh-cut kailan-hybrid broccoli. Food Control 47:312–317

    Article  CAS  Google Scholar 

  • Martínez-Hernández GB, Artés-Hernández F, Gómez PA et al (2017) Postharvest treatments to control physiological and pathological disorders in lemon fruit. Food Packag Shelf 14:34–39

    Article  Google Scholar 

  • Masis N, Johnson SL, McCaffrey J et al (2017) Fruit and vegetable preferences and identification by kindergarteners through 2nd-graders with or without the US Department of Agriculture Fresh Fruit and Vegetable Program. J Nutr Educ Behav 49(9):752–758

    Article  PubMed  Google Scholar 

  • Mditshwa A, Magwaza LS, Tesfay SZ et al (2017) Postharvest factors affecting vitamin C content of citrus fruits: a review. Sci Hortic 218:95–104

    Article  CAS  Google Scholar 

  • Meireles A, Giaouris E, Simões M (2016) Alternative disinfection methods to chlorine for use in the fresh-cut industry. Food Res Int 82:71–85

    Article  CAS  Google Scholar 

  • Meireles A, Ferreira C, Melo L et al (2017) Comparative stability and efficacy of selected chlorine-based biocides against Escherichia coli in planktonic and biofilm states. Food Res Int 102:511–518

    Article  CAS  PubMed  Google Scholar 

  • Millan-Sango D, Sammut E, Van I et al (2017) Decontamination of alfalfa and mung bean sprouts by ultrasound and aqueous chlorine dioxide. Food Sci Technol 78:90–96

    CAS  Google Scholar 

  • Mock JT, Chaudhari K, Sidhu A et al (2017) The influence of vitamins E and C and exercise on brain aging. Exp Gerontol 94:69–72

    Article  CAS  PubMed  Google Scholar 

  • Moggia C, Graell J, Lara I et al (2016) Fruit characteristics and cuticle triterpenes as related to postharvest quality of highbush blueberries. Sci Hortic 211:449–457

    Article  CAS  Google Scholar 

  • Monnin A, Lee J, Pascall MA (2012) Efficacy of neutral electrolyzed water for sanitization of cutting boards used in the preparation of foods. J Food Eng 110(4):541–546

    Article  Google Scholar 

  • Nam TG, Lee SM, Park JH et al (2015) Flavonoid analysis of buckwheat sprouts. Food Chem 170:97–101

    Article  CAS  PubMed  Google Scholar 

  • Navarro-Rico J, Artés-Hernández F, Gómez PA et al (2014) Neutral and acidic electrolysed water kept microbial quality and health promoting compounds of fresh-cut broccoli throughout shelf life. Innov Food Sci Emerg Technol 21:74–81

    Article  CAS  Google Scholar 

  • Ngnitcho PFK, Khan I, Tango CN et al (2017) Inactivation of bacterial pathogens on lettuce, sprouts, and spinach using hurdle technology. Innov Food Sci Emerg Tech 43:68–76

    Article  CAS  Google Scholar 

  • Ni L, Zheng W, Zhang Q et al (2016) Application of slightly acidic electrolyzed water for decontamination of stainless steel surfaces in animal transport vehicles. Prev Vet Med 133:42–51

    Article  PubMed  Google Scholar 

  • Nieoczym D, SocaÅ‚a K, Raszewski G et al (2014) Effect of quercetin and rutin in some acute seizure models in mice. Prog Neuro-Psychoph 54(Supplement C):50–58

    Article  CAS  PubMed  Google Scholar 

  • Okull DO, Laborde LF (2004) Activity of electrolyzed oxidizing water against Penicilium expansum in suspension and on wounded apples. J Food Sci 69(1):FMS23–FMS27

    Article  CAS  Google Scholar 

  • Ovissipour M, Al-Qadiri HM, Sablani SS et al (2015) Efficacy of acidic and alkaline electrolyzed water for inactivating Escherichia coli O104:H4, Listeria monocytogenes, Campylobacter jejuni, Aeromonas hydrophila, and Vibrio parahaemolyticus in cell suspensions. Food Control 53:117–123

    Article  CAS  Google Scholar 

  • Pangloli P (2009) Reduction of Escherichia coli O157:H7 on produce by use of electrolyzed water under simulated food service operation conditions. J Food Protect 72(9):1854–1861

    Article  Google Scholar 

  • Pangloli P, Hung YC (2011) Efficacy of slightly acidic electrolyzed water in killing or reducing Escherichia coli O157:H7 on iceberg lettuce and tomatoes under simulated food service operation conditions. J Food Sci 76(6):M361–M366

    Article  CAS  PubMed  Google Scholar 

  • Pangloli P, Hung YC (2013) Reducing microbiological safety risk on blueberries through innovative washing technologies. Food Control 32(2):621–625

    Article  CAS  Google Scholar 

  • Park C, Hung Y, Doyle M et al (2001) Pathogen reduction and quality of lettuce treated with electrolyzed oxidizing and acidified chlorinated water. J Food Sci 66(9):1368–1372

    Article  CAS  Google Scholar 

  • Park H, Hung YC, Chung D (2004) Effects of chlorine and pH on efficacy of electrolyzed water for inactivating Escherichia coli O157:H7 and Listeria monocytogenes. Int J Food Microbiol 91(1):13–18

    Article  CAS  PubMed  Google Scholar 

  • Park E, Alexander E, Taylor G et al (2008a) Effect of electrolyzed water for reduction of foodborne pathogens on lettuce and spinach. J Food Sci 73(6):M268–M272

    Article  CAS  PubMed  Google Scholar 

  • Park E, Alexander E, Taylor G et al (2008b) Fate of foodborne pathogens on green onions and tomatoes by electrolysed water. Lett Appl Microbiol 46(5):519–525

    Article  PubMed  Google Scholar 

  • Park E, Alexander E, Taylor G et al (2009) The decontaminative effects of acidic electrolyzed water for Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes on green onions and tomatoes with differing organic demands. Food Microbiol 26(4):386–390

    Article  CAS  PubMed  Google Scholar 

  • Park K, Lim J, Jung H et al (2017) Disinfection efficacy of slightly acidic electrolyzed water (SlAEW) against some fresh vegetables. Korean J Food Preserv 24(2):312–319

    Article  Google Scholar 

  • Phillips K, Council-Troche M, McGinty R (2016) Stability of vitamin C in fruit and vegetable homogenates stored at different temperatures. J Food Compos Anal 45:147–162

    Article  CAS  Google Scholar 

  • Phua L, Neo S, Khoo G (2014) Comparison of the efficacy of various sanitizers and hot water treatment in inactivating inoculated foodborne pathogens and natural microflora on mung bean sprouts. Food Control 42:270–276

    Article  CAS  Google Scholar 

  • Pinto L, Ippolito A, Baruzzi F (2015) Control of spoiler Pseudomonas spp. on fresh cut vegetables by neutral electrolyzed water. Food Microbiol 50:102–108

    Article  CAS  PubMed  Google Scholar 

  • Pinto L, Baruzzi F, Ippolito A (2016) Recent advances to control spoilage microorganisms in washing water of fruits and vegetables: the use of electrolyzed water. Acta Hort 1144:379–384

    Article  Google Scholar 

  • Pongrac P, Potisek M, FraÅ› A et al (2016) Composition of mineral elements and bioactive compounds in tartary buckwheat and wheat sprouts as affected by natural mineral-rich water. J Cereal Sci 69:9–16

    Article  CAS  Google Scholar 

  • Posada-Izquierdo G, Perez-Rodriguez F, Lopez-Galvez F et al (2014) Modeling growth of Escherichia coli O157:H7 in fresh-cut lettuce treated with neutral electrolyzed water and under modified atmosphere packaging. Int J Food Microbiol 177:1–8

    Article  CAS  PubMed  Google Scholar 

  • Prasad K, Jacob S, Siddiqui M (2018) Chapter 2—fruit maturity, harvesting, and quality standards. In: Siddiqui MW (ed) Preharvest modulation of postharvest fruit and vegetable quality. Academic Press, pp 41–69

    Google Scholar 

  • Puligundla P, Kim JW, Mok C (2018) Broccoli sprout washing with electrolyzed water: effects on microbiological and physicochemical characteristics. Food Sci technology 92:600–606

    CAS  Google Scholar 

  • Qin P, Wei A, Zhao D et al (2017) Low concentration of sodium bicarbonate improves the bioactive compound levels and antioxidant and alpha-glucosidase inhibitory activities of tartary buckwheat sprouts. Food Chem 224:124–130

    Article  CAS  PubMed  Google Scholar 

  • Rady A, Ekramirad N, Adedeji A et al (2017) Hyperspectral imaging for detection of codling moth infestation in GoldRush apples. Postharvest Biol Technol 129:37–44

    Article  CAS  Google Scholar 

  • Rahman S, Ding T, Oh DH (2010a) Effectiveness of low concentration electrolyzed water to inactivate foodborne pathogens under different environmental conditions. Int J Food Microbiol 139(3):147–153

    Article  CAS  PubMed  Google Scholar 

  • Rahman S, Jin Y, Oh DH (2010b) Combined effects of alkaline electrolyzed water and citric acid with mild heat to control microorganisms on cabbage. J Food Sci 75(2):M111–M115

    Article  CAS  PubMed  Google Scholar 

  • Rahman S, Ding T, Oh DH (2010c) Inactivation effect of newly developed low concentration electrolyzed water and other sanitizers against microorganisms on spinach. Food Control 21(10):1383–1387

    Article  CAS  Google Scholar 

  • Rahman S, Jin Y, Oh DH (2011) Combination treatment of alkaline electrolyzed water and citric acid with mild heat to ensure microbial safety, shelf-life and sensory quality of shredded carrots. Food Microbiol 28(3):484–491

    Article  CAS  PubMed  Google Scholar 

  • Rahman S, Park J, Wang J et al (2012) Stability of low concentration electrolyzed water and its sanitization potential against foodborne pathogens. J Food Eng 113(4):548–553

    Article  Google Scholar 

  • Rahman S, Khan I, Oh DH (2016) Electrolyzed water as a novel sanitizer in the food industry: current trends and future perspectives. Compr Rev Food Sci F 15(3):471–490

    Article  Google Scholar 

  • Ramos B, Miller F, Brandão T et al (2013) Fresh fruits and vegetables—an overview on applied methodologies to improve its quality and safety. Innov Food Sci Emerg Technol 20:1–15

    Article  CAS  Google Scholar 

  • Ramsay S, Shriver L, Taylor C (2017) Variety of fruit and vegetables is related to preschoolers’ overall diet quality. Prev Med Rep 5(Supplement C):112–117

    Article  PubMed  Google Scholar 

  • Ren SC, Sun JT (2014) Changes in phenolic content, phenylalanine ammonia-lyase (PAL) activity, and antioxidant capacity of two buckwheat sprouts in relation to germination. J Funct Foods 7:298–304

    Article  CAS  Google Scholar 

  • Rico D, Martín-Diana A, Barry-Ryan C et al (2008) Use of neutral electrolysed water (EW) for quality maintenance and shelf-life extension of minimally processed lettuce. Innov Food Sci Emerg Technol 9(1):37–48

    Article  CAS  Google Scholar 

  • Robinson G, Thorn R, Reynolds D (2012) The effect of long-term storage on the physiochemical and bactericidal properties of electrochemically activated solutions. Int J Mol Sci 14(1):457–469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodriguez-Garcia O, Gonzalez-Romero V, Fernandez-Escartin E (2011) Reduction of Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes with electrolyzed oxidizing water on inoculated has avocados (Persea americana var. Hass). J Food Prot 74(9):1552–1557

    Article  PubMed  Google Scholar 

  • Rolny N, Costa L, Carrion C et al (2011) Is the electrolyte leakage assay an unequivocal test of membrane deterioration during leaf senescence? Plant Physiol Biochem 49(10):1220–1227

    Article  CAS  PubMed  Google Scholar 

  • Romanazzi G, Sanzani S, Tian S et al (2016a) Induced resistance to control postharvest decay of fruit and vegetables. Postharvest Biol Technol 122:82–94

    Article  CAS  Google Scholar 

  • Romanazzi G, Smilanick J, Feliziani E (2016b) Integrated management of postharvest gray mold on fruit crops. Postharvest Biol Technol 113:69–76

    Article  CAS  Google Scholar 

  • Rui L, Jianxiong H, Haijie L et al (2011) Application of electrolyzed functional water on producing mung bean sprouts. Food Control 22(8):1311–1315

    Article  CAS  Google Scholar 

  • Santo D, Graça A, Nunes C et al (2016) Survival and growth of Cronobacter sakazakii on fresh-cut fruit and the effect of UV-C illumination and electrolyzed water in the reduction of its population. Int J Food Microbiol 231:10–15

    Article  CAS  PubMed  Google Scholar 

  • Santo D, Graça A, Nunes C et al (2018) Escherichia coli and Cronobacter sakazakii in ‘Tommy Atkins’ minimally processed mangos: survival, growth and effect of UV-C and electrolyzed water. Food Microbiol 70:49–54

    Article  CAS  PubMed  Google Scholar 

  • Sardella D, Gatt R, Valdramidis V (2017) Physiological effects and mode of action of ZnO nanoparticles against postharvest fungal contaminants. Food Res Int 101:274–279

    Article  CAS  PubMed  Google Scholar 

  • Scharff R, Besser J, Sharp D et al (2016) An economic evaluation of PulseNet: a network for Foodborne disease surveillance. Am J Prev Med 50(5 Suppl 1):S66–S73

    Article  PubMed  Google Scholar 

  • Shahidi F, Ambigaipalan P (2015) Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects—a review. J Funct Foods 18:820–897

    Article  CAS  Google Scholar 

  • Shigenobu K, Seiichiro I, Kazuhiko I (2004) Efficacy of acidic electrolyzed water for microbial decontamination of cucumbers and strawberries. J Food Prot 67(6):1247–1251

    Article  Google Scholar 

  • Silva B, Cadavez V, Teixeira J et al (2017) Meta-analysis of the incidence of foodborne pathogens in vegetables and fruits from retail establishments in Europe. Curr Opin Food Sci 18:21–28

    Article  Google Scholar 

  • Solomon S, Sugar P (2009) Efficacy of electrolyzed water to minimize postharvest sucrose losses in sugarcane. Sugar Technol 11(2):228–230

    Article  CAS  Google Scholar 

  • Souza L, Faroni L, Heleno F et al (2018) Ozone treatment for pesticide removal from carrots: optimization by response surface methodology. Food Chem 243:435–441

    Article  CAS  PubMed  Google Scholar 

  • Stopforth JD, Kottapalli TMB, Samadpour M (2008) Effect of acidified sodium chlorite, chlorine, and acidic electrolyzed water on Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes inoculated onto leafy greens. J Food Prot 71(3):625–628

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Zhang S, Chen J et al (2012) Efficacy of acidic and basic electrolyzed water in eradicating Staphylococcus aureus biofilm. Can J Microbiol 58(4):448–454

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Wang M, Liu H et al (2018) Acidic electrolysed water delays browning by destroying conformation of polyphenoloxidase. J Sci Food Agric 98(1):147–153

    Article  CAS  PubMed  Google Scholar 

  • Tango C, Mansur A, Oh D (2015) Fumaric acid and slightly acidic electrolyzed water inactivate gram positive and gram negative Foodborne pathogens. Microorganisms 3(1):34–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tango C, Khan I, Ngnitcho K et al (2017) Slightly acidic electrolyzed water combined with chemical and physical treatments to decontaminate bacteria on fresh fruits. Food Microbiol 67:97–105

    Article  CAS  PubMed  Google Scholar 

  • Teng Y, Sheu M, Hsieh Y et al (2016) β-carotene reverses multidrug resistant cancer cells by selectively modulating human P-glycoprotein function. Phytomed 23(3):316–323

    Article  CAS  Google Scholar 

  • Tirawat D, Phongpaichit S, Benjakul S et al (2016) Microbial load reduction of sweet basil using acidic electrolyzed water and lactic acid in combination with mild heat. Food Control 64:29–36

    Article  CAS  Google Scholar 

  • Tkhawkho L, Jackson K, Nitzan O et al (2017) Destruction of Clostridium difficile spores colitis using acidic electrolyzed water. Am J Infect Control 45(1):1053

    Article  PubMed  Google Scholar 

  • Toivonen P, Brummell D (2008) Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables. Postharvest Biol Technol 48(1):1–14

    Article  CAS  Google Scholar 

  • Tomás-Callejas A, Martínez-Hernández G, Artés F et al (2011) Neutral and acidic electrolyzed water as emergent sanitizers for fresh-cut mizuna baby leaves. Postharvest Biol Technol 59(3):298–306

    Article  CAS  Google Scholar 

  • Torlak E (2014) Inactivation of Alicyclobacillus acidoterrestris spores in aqueous suspension and on apples by neutral electrolyzed water. Int J Food Microbiol 185:69–72

    Article  CAS  PubMed  Google Scholar 

  • Tsurunaga Y, Takahashi T, Katsube T et al (2013) Effects of UV-B irradiation on the levels of anthocyanin, rutin and radical scavenging activity of buckwheat sprouts. Food Chem 141(1):552–556

    Article  CAS  PubMed  Google Scholar 

  • Tuan P, Thwe A, Kim J et al (2013) Molecular characterisation and the light-dark regulation of carotenoid biosynthesis in sprouts of tartary buckwheat (Fagopyrum tataricum Gaertn.). Food Chem 141(4):3803–3812

    Article  CAS  PubMed  Google Scholar 

  • Udompijitkul P, Daeschel M, Zhao Y (2007) Antimicrobial effect of electrolyzed oxidizing water against Escherichia coli O157:H7 and Listeria monocytogenes on fresh strawberries (Fragaria x ananassa). J Food Sci 72(9):M397–M406

    Article  CAS  PubMed  Google Scholar 

  • Vandekinderen I, Van C, Meulenaer B et al (2009a) Moderate and high doses of sodium hypochlorite, neutral electrolyzed oxidizing water, peroxyacetic acid, and gaseous chlorine dioxide did not affect the nutritional and sensory qualities of fresh-cut Iceberg lettuce (Lactuca sativa Var. capitata L.) after washing. J Agric Food Chem 57(10):4195–4203

    Article  CAS  PubMed  Google Scholar 

  • Vandekinderen I, Van C, Devlieghere F et al (2009b) Evaluation of the use of decontamination agents during fresh-cut leek processing and quantification of their effect on its total quality by means of a multidisciplinary approach. Innov Food Sci Emerg Technol 10(3):363–373

    Article  CAS  Google Scholar 

  • Vandekinderen I, Van J, Devlieghere F et al (2009c) Effect of decontamination on the microbial load, the sensory quality and the nutrient retention of ready-to-eat white cabbage. Eur Food Res Technol 229(3):443–455

    Article  CAS  Google Scholar 

  • Vasquez-Lopez A, Villarreal-Barajas T, Rodriguez-Ortiz G (2016) Effectiveness of neutral electrolyzed water on incidence of fungal rot on tomato fruits (Solanum lycopersicum L.). J Food Prot 79(10):1802–1806

    Article  PubMed  Google Scholar 

  • Vojkovska H, Myskova P, Gelbicova T et al (2017) Occurrence and characterization of food-borne pathogens isolated from fruit, vegetables and sprouts retailed in the Czech Republic. Food Microbiol 63:147–152

    Article  PubMed  Google Scholar 

  • Wang H, Feng H, Luo Y (2004) Microbial reduction and storage quality of fresh-cut cilantro washed with acidic electrolyzed water and aqueous ozone. Food Res Int 37(10):949–956

    Article  CAS  Google Scholar 

  • Wang H, Feng H, Luo Y (2007) Control of browning and microbial growth on fresh-cut apples by sequential treatment of sanitizers and calcium ascorbate. J Food Sci 72(1):M001–M007

    Article  PubMed  CAS  Google Scholar 

  • Whangchai K, Saengnil K, Singkamanee C et al (2010) Effect of electrolyzed oxidizing water and continuous ozone exposure on the control of Penicillium digitatum on tangerine cv. ‘Sai Nam Pung’ during storage. Crop Protect 29(4):386–389

    Article  CAS  Google Scholar 

  • Xanthopoulos G, Templalexis C, Aleiferis N (2017) The contribution of transpiration and respiration in water loss of perishable agricultural products: the case of pears. Biosys Eng 158:76–85

    Article  Google Scholar 

  • Xie Z, Xia S, Le G (2014) Gamma-aminobutyric acid improves oxidative stress and function of the thyroid in high-fat diet fed mice. J Funct Foods 8:76–86

    Article  CAS  Google Scholar 

  • Xiong K, Li X, Guo S et al (2014) The antifungal mechanism of electrolyzed oxidizing water against Aspergillus flavus. Food Sci Biotech 23(2):661–669

    Article  CAS  Google Scholar 

  • Xuan X, Wang M, Ahn J et al (2016) Storage stability of slightly acidic electrolyzed water and circulating electrolyzed water and their property changes after application. J Food Sci 81(3):E610–E617

    Article  CAS  PubMed  Google Scholar 

  • Xuan X, Ding T, Li J et al (2017) Estimation of growth parameters of Listeria monocytogenes after sublethal heat and slightly acidic electrolyzed water (SAEW) treatment. Food Control 71:17–25

    Article  CAS  Google Scholar 

  • Yamamoto T, Nakano T, Yamaguchi M et al (2012) Disinfective process of strongly acidic electrolyzed product of sodium chloride solution against Mycobacteria. Med Mol Morphol 45(4):199–205

    Article  CAS  PubMed  Google Scholar 

  • Yoon J, Lee S (2017) Review: comparison of the effectiveness of decontaminating strategies for fresh fruits and vegetables and related limitations. Crit Rev Food Sci Nutr 1–20

    Google Scholar 

  • Zhang C, Lu Z, Li Y et al (2011) Reduction of Escherichia coli O157:H7 and Salmonella enteritidis on mung bean seeds and sprouts by slightly acidic electrolyzed water. Food Control 22(5):792–796

    Article  CAS  Google Scholar 

  • Zhang M, Zeiss M, Geng S (2015) Agricultural pesticide use and food safety: California’s model. J Integ Agr 14(11):2340–2357

    Article  Google Scholar 

  • Zhang C, Cao W, Hung Y et al (2016a) Application of electrolyzed oxidizing water in production of radish sprouts to reduce natural microbiota. Food Control 67:177–182

    Article  CAS  Google Scholar 

  • Zhang C, Cao W, Hung Y et al (2016b) Disinfection effect of slightly acidic electrolyzed water on celery and cilantro. Food Control 69:147–152

    Article  CAS  Google Scholar 

  • Zhi H, Liu Q, Dong Y et al (2017) Effect of calcium dissolved in slightly acidic electrolyzed water on antioxidant system, calcium distribution, and cell wall metabolism of peach in relation to fruit browning. J Hortic Sci Biote 92(6):621–629

    Article  CAS  Google Scholar 

  • Zhou R, Zhang G, Hu Y et al (2012) Reductions in flesh discolouration and internal morphological changes in Nanhui peaches (Prunus persica (L.) Batsch, cv. Nanhui) by electrolysed water and 1-methylcyclopropene treatment during refrigerated storage. Food Chem 135(3):985–992

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Guo H, Li Z et al (2015) Experimental study on the disinfection efficiencies of a continuous-flow ultrasound/ultraviolet baffled reactor. Ultrason Sonochem 27:81–86

    Article  CAS  PubMed  Google Scholar 

  • Zhu W, Zhu B, Li Y et al (2016) Acidic electrolyzed water efficiently improves the flavour of persimmon (Diospyros kaki L. cv. Mopan) wine. Food Chem 197(Pt A):141–149

    Article  CAS  PubMed  Google Scholar 

  • Zou H, Wang L (2017) The disinfection effect of a novel continuous-flow water sterilizing system coupling dual-frequency ultrasound with sodium hypochlorite in pilot scale. Ultrason Sonochem 36:246–252

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxiong Hao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd. and Zhejiang University Press, Hangzhou

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hao, J., Wang, Q. (2019). Application of Electrolyzed Water in Fruits and Vegetables Industry. In: Ding, T., Oh, DH., Liu, D. (eds) Electrolyzed Water in Food: Fundamentals and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-3807-6_4

Download citation

Publish with us

Policies and ethics