Skip to main content

Development of Lignin-Based Antioxidants for Polymers

  • Chapter
  • First Online:

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 9))

Abstract

The growing interest in lignin as a potential source for biofuels and biochemicals is driven by multiple factors: (1) relative abundance, (2) absence of competition between food and fuel, and (3) recent legislation and mandates promoting a green economy. This book chapter presents a detailed literature review on how lignin fits into the growing market for antioxidants especially fpr polyolefins, and discusses previous studies on lignin as a bio-based chemical. There is a scarcity of the literature addressing the effects of adding technical lignin and its de-polymerized products in polyolefins and their antioxidant properties. In this context, the authors explored lignin de-polymerization as a promising approach to improve the reactivity of the lignin-based antioxidants for polymers (polyethylene, PE and polypropylene, PP). A proprietary hydrolytic de-polymerization process was utilized to increase the antioxidant activity of two types of technical lignin: Kraft lignin, KL (a by-product from the pulp and paper industry) and hydrolysis lignin, HL (a by-product from the pre-treatment processes in cellulosic ethanol plants). This book chapter discusses some of the results showing how de-polymerization can improve the antioxidant activity of commercial lignins, and how the mechanical properties are affected after incorporating lignin into polymer matrixes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Frost & Sullivan (2015) Strategic analysis of the European and North American plastics additives market. http://cds.frost.com. Accessed 12 May 2017

  2. Sjöström E (2013) Wood chemistry: fundamentals and applications, 2nd edn. Academic, Orlando

    Google Scholar 

  3. Perlack RD, Stokes BJ (2011) U.S. billion-ton update: biomass supply for a bioenergy and bioproducts industry. Oak Ridge National Laboratory, Oak Ridge

    Google Scholar 

  4. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review q. Bioresour Technol 83:1–11. https://doi.org/10.1016/S0960-8524(01)00212-7

    Article  CAS  PubMed  Google Scholar 

  5. Harmsen P, Huijgen W, López L, Bakker R (2010) Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. Food Biobased Res 1–49

    Google Scholar 

  6. Laurichesse S, Avérous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39:1266–1290. https://doi.org/10.1016/j.progpolymsci.2013.11.004

    Article  CAS  Google Scholar 

  7. Ragauskas AJ, Beckham GT, Biddy MJ et al (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246843. https://doi.org/10.1126/science.1246843

    Article  CAS  PubMed  Google Scholar 

  8. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599. https://doi.org/10.1021/cr900354u

    Article  CAS  PubMed  Google Scholar 

  9. Yousif E, Haddad R (2013) Photodegradation and photostabilization of polymers, especially polystyrene: review. Springerplus 2:398. https://doi.org/10.1186/2193-1801-2-398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dow-Corning degradation of polymers in nature. http://www.dowcorning.com/content/publishedlit/01-1112-01.pdf. Accessed 12 June 2017

  11. Bamford CH, Tipper CFH (1975) Degradation of polymers. Elsevier Scientific Pub. Co., Amsterdam

    Google Scholar 

  12. Beyler CL, Hirschler MM (2001) Thermal decomposition of polymers. SPE Handb Fire Prot Eng 110–131. doi:https://doi.org/10.1021/cm200949v

  13. Pasquini N, Addeo A (2005) Polypropylene handbook. Hanser, Munich

    Google Scholar 

  14. Mendes AA, Cunha AM, Bernardo CA (2011) Study of the degradation mechanisms of polyethylene during reprocessing. Polym Degrad Stab 96:1125–1133. https://doi.org/10.1016/j.polymdegradstab.2011.02.015

    Article  CAS  Google Scholar 

  15. Peterson JD, Vyazovkin S, Wight CA (2001) Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol Chem Phys 202:775–784. https://doi.org/10.1002/1521-3935(20010301)202:6<775::AID-MACP775>3.0.CO;2-G

    Article  CAS  Google Scholar 

  16. Baum B (1974) The weathering degradation of polyolefins. Polym Eng Sci 14:206–211. https://doi.org/10.1002/pen.760140309

    Article  Google Scholar 

  17. Jacoby P (1975) The effect of hindered phenol stabilizers on Oxygen Induction Time (OIT ) measurements , and the use of OIT measurements to predict long term thermal stability. – Philip Jacoby, Vice President of Technology, vol 1230. Mayzo, Norcross, pp 268–271

    Google Scholar 

  18. Tolinski M (2015) Additives for polyolefins: getting the most out of polypropylene, polyethylene and TPO. William Andrew Applied Science Publishers. https://www.elsevier.com/books/additives-for-polyolefins/tolinski/978-0-323-35884-2

    Google Scholar 

  19. Preedy VR, Watson RR (2007) The encyclopedia of vitamin E. CABI, Oxford

    Book  Google Scholar 

  20. Vulic I, Vitarelli G, Zenner JM (2002) Structure-property relationships: phenolic antioxidants with high efficiency and low colour contribution. Polym Degrad Stab 78:27–34. https://doi.org/10.1016/S0141-3910(02)00115-5

    Article  CAS  Google Scholar 

  21. Tocháček J (2004) Effect of secondary structure on physical behaviour and performance of hindered phenolic antioxidants in polypropylene. Polym Degrad Stab 86:385–389. https://doi.org/10.1016/j.polymdegradstab.2004.05.010

    Article  CAS  Google Scholar 

  22. Pokorný J (1991) Natural antioxidants for food use. Trends Food Sci Technol 2:223–227. https://doi.org/10.1016/0924-2244(91)90695-F

    Article  Google Scholar 

  23. Brewer MS (2011) Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Compr Rev Food Sci Food Saf 10:221–247. https://doi.org/10.1111/j.1541-4337.2011.00156.x

    Article  CAS  Google Scholar 

  24. García A, Toledano A, Andrés MÁ, Labidi J (2010) Study of the antioxidant capacity of Miscanthus sinensis lignins. Process Biochem 45:935–940. https://doi.org/10.1016/j.procbio.2010.02.015

    Article  CAS  Google Scholar 

  25. García A, González Alriols M, Spigno G, Labidi J (2012) Lignin as natural radical scavenger. Effect of the obtaining and purification processes on the antioxidant behaviour of lignin. Biochem Eng J 67:173–185. https://doi.org/10.1016/j.bej.2012.06.013

    Article  CAS  Google Scholar 

  26. Addler JACKNS (2006) Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity. J Agric Food Chem 54:5806–5813

    Article  Google Scholar 

  27. Pouteau C, Dole P, Cathala B et al (2003) Antioxidant properties of lignin in polypropylene. Polym Degrad Stab 81:9–18. https://doi.org/10.1016/S0141-3910(03)00057-0

    Article  CAS  Google Scholar 

  28. Canetti M, Bertini F, De Chirico A, Audisio G (2006) Thermal degradation behaviour of isotactic polypropylene blended with lignin. Polym Degrad Stab 91:494–498. https://doi.org/10.1016/j.polymdegradstab.2005.01.052

    Article  CAS  Google Scholar 

  29. Alexy P, Košíková B, Podstránska G (2000) The effect of blending lignin with polyethylene and polypropylene on physical properties. Polymer (Guildf) 41:4901–4908. https://doi.org/10.1016/S0032-3861(99)00714-4

    Article  CAS  Google Scholar 

  30. Xu C, Arneil R, Arancon D et al (2014) Lignin depolymerisation strategies: towards valuable chemicals and fuels. Chem Soc Rev Chem Soc Rev 43:7485–7500. https://doi.org/10.1039/c4cs00235k

    Article  CAS  PubMed  Google Scholar 

  31. Mahmood N, Yuan Z, Schmidt J, Xu C(C) (2016) Depolymerization of lignins and their applications for the preparation of polyols and rigid polyurethane foams: a review. Renew Sust Energ Rev 60:317–329. https://doi.org/10.1016/j.rser.2016.01.037

    Article  CAS  Google Scholar 

  32. U.S. Congress, Office of Technology Assessment (1989) Technologies for Reducing Dioxin in the Manufacture of Bleached Wood Pulp, OTA-BP-O-54, Washington, DC.

    Google Scholar 

  33. Kouisni L, Gagne A, Maki K et al (2016) LignoForce system for the recovery of lignin from black liquor: feedstock options, odor profile, and product characterization. ACS Sustain Chem Eng 4:5152–5159. https://doi.org/10.1021/acssuschemeng.6b00907

    Article  CAS  Google Scholar 

  34. Stewart D (2008) Lignin as a base material for materials applications: chemistry, application and economics. Ind Crop Prod 27:202–207. https://doi.org/10.1016/j.indcrop.2007.07.008

    Article  CAS  Google Scholar 

  35. Dessbesell L, Xu CC, Pulkki R et al (2017) Forest biomass supply chain optimization for a biorefinery aiming to produce high-value bio-based materials and chemicals from lignin and forestry residues: a review of literature. Can J For Res 47:277–288

    Article  CAS  Google Scholar 

  36. Isikgor FH, Remzi Becer C (2015) Lignocellulosic biomass: a sustainable platform for production of bio-based chemicals and polymers. Polym Chem 6:4497–4559. https://doi.org/10.1039/c3py00085k

    Article  CAS  Google Scholar 

  37. Masek A (2015) Flavonoids as natural stabilizers and color indicators of ageing for polymeric materials. Polymers (Basel) 7:1125–1144. https://doi.org/10.3390/polym7061125

    Article  CAS  Google Scholar 

  38. Cerruti P, Malinconico M, Rychly J et al (2009) Effect of natural antioxidants on the stability of polypropylene films. Polym Degrad Stab 94:2095–2100. https://doi.org/10.1016/j.polymdegradstab.2009.07.023

    Article  CAS  Google Scholar 

  39. Samper MD, Fages E, Fenollar O et al (2013) The potential of flavonoids as natural antioxidants and UV light stabilizers for polypropylene. J Appl Polym Sci 129:1707–1716. https://doi.org/10.1002/app.38871

    Article  CAS  Google Scholar 

  40. Espinoza-Acosta JL, Torres-Chávez PI, Ramírez-Wong B, López-Saiz CM, Montaño-Leyva B (2016) Antioxidant, antimicrobial and antimutagenic properties of technical lignins and their applications. BioResources 11(2):5452–5481

    Article  Google Scholar 

  41. Dizhbite T, Telysheva G, Jurkjane V, Viesturs U (2004) Characterization of the radical scavenging activity of lignins – natural antioxidants. Bioresour Technol 95:309–317. https://doi.org/10.1016/j.biortech.2004.02.024

    Article  CAS  PubMed  Google Scholar 

  42. Ponomarenko J, Dizhbite T, Lauberts M, Volperts A, Telysheva G (2015) Analytical pyrolysis – a tool for revealing of lignin structure-antioxidant activity relationship. J Anal Appl Pyrolysis 13:360–369

    Article  Google Scholar 

  43. Kabir AS (2017) Effects of lignin as a stabilizer or antioxidant in polyolefins. Electronic Thesis and Dissertation, University of Western Ontario. https://ir.lib.uwo.ca/etd/4796/

  44. Garcia A, Amendola D, González M et al (2011) Lignin as natural radical scavenger. Study of the antioxidant capacity of apple tree pruning lignin obtained by different methods. Chem Eng Trans 24:925–931

    Google Scholar 

  45. Kaur R, Uppal SK (2015) Structural characterization and antioxidant activity of lignin from sugarcane bagasse. Colloid Polym Sci 293:2585–2592. https://doi.org/10.1007/s00396-015-3653-1

    Article  CAS  Google Scholar 

  46. Levon K, Huhtala J, Malm B, Lindberg JJ (1987) Improvement of the thermal stabilization of polyethylene with lignosulphonate. Polymer (Guildf) 28:745–750. https://doi.org/10.1016/0032-3861(87)90223-0

    Article  CAS  Google Scholar 

  47. Pucciariello R, Villani V, Bonini C et al (2004) Physical properties of straw lignin-based polymer blends. Polymer (Guildf) 45:4159–4169. https://doi.org/10.1016/j.polymer.2004.03.098

    Article  CAS  Google Scholar 

  48. Gregorová A, Cibulková Z, Košíková B, Šimon P (2005) Stabilization effect of lignin in polypropylene and recycled polypropylene. Polym Degrad Stab 89:553–558. https://doi.org/10.1016/j.polymdegradstab.2005.02.007

    Article  CAS  Google Scholar 

  49. Piña I, Ysambertt F, Perez D, Lopez K (2015) Study of antioxidant effectiveness of Kraft lignin in HDPE. J Polym 2015:1–8

    Article  Google Scholar 

  50. Sailaja RRN (2005) Low density polyethylene and grafted lignin polyblends using epoxy-functionalized compatibilizer: mechanical and thermal properties. Polym Int 54:1589–1598. https://doi.org/10.1002/pi.1864

    Article  CAS  Google Scholar 

  51. Sailaja RRN, Deepthi MV (2010) Mechanical and thermal properties of compatibilized composites of polyethylene and esterified lignin. Mater Des 31:4369–4379. https://doi.org/10.1016/j.matdes.2010.03.046

    Article  CAS  Google Scholar 

  52. Ye D, Li S, Lu X et al (2016) Antioxidant and thermal stabilization of polypropylene by addition of butylated lignin at low loadings. ACS Sustain Chem Eng 4:5248–5257. https://doi.org/10.1021/acssuschemeng.6b01241

    Article  CAS  Google Scholar 

  53. Dehne L, Vila Babarro C, Saake B, Schwarz KU (2016) Influence of lignin source and esterification on properties of lignin-polyethylene blends. Ind Crop Prod 86:320–328. https://doi.org/10.1016/j.indcrop.2016.04.005

    Article  CAS  Google Scholar 

  54. Pandey MP, Kim CS (2011) Lignin depolymerization and conversion: a review of thermochemical methods. Chem Eng Technol 34:29–41. https://doi.org/10.1002/ceat.201000270

    Article  CAS  Google Scholar 

  55. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev. https://doi.org/10.1021/cr900354u

  56. Mahmood N (2016) Hydrolytic depolymerization of lignin for the preparation of polyols and rigid polyurethane foams. Electronic thesis and dissertation, University of Western Ontario. http://ir.lib.uwo.ca/etd/2614/

  57. Dehne L, Vila C, Saake B, Schwarz KU (2017) Esterification of Kraft lignin as a method to improve structural and mechanical properties of lignin-polyethylene blends. J Appl Polym Sci 134:1–8. https://doi.org/10.1002/app.44582

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the funding support of Natural Sciences and Engineering Research Council of Canada (NSERC), Canada Foundation for Innovation, and BioFuelNet Canada. We also thank Mrs. Fang Cao for her assistance in analysis of some samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunbao (Charles) Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kabir, A.S., Yuan, ZS., Kuboki, T., Xu, C.(. (2019). Development of Lignin-Based Antioxidants for Polymers. In: Fang, Z., Smith, Jr, R., Tian, XF. (eds) Production of Materials from Sustainable Biomass Resources . Biofuels and Biorefineries, vol 9. Springer, Singapore. https://doi.org/10.1007/978-981-13-3768-0_2

Download citation

Publish with us

Policies and ethics