Skip to main content

Halophytic Microbiome in Ameliorating the Stress

  • Chapter
  • First Online:

Abstract

Stress environments hinder the crop growth and development, and under ever-increasing food demand circumstances, concerns of food security have asked for exploring options to overcome such stress conditions. High soluble/exchangeable salt stress referred to as salinity stress resulting from environmental characteristics (i.e., climate and soil parent material) and human-induced factors such as fertilization and irrigation poses serious threats to crop production in saline areas on different extents ranging from low to very high, categorically. This stress affects the plant growth through osmotic stress, which ultimately leads to several physiological disruptions including oxidative stress, nutrient imbalance, and water uptake problems. Subsequently, halophytes gained importance for their accumulation capability leading toward the development of phytoremediation techniques when manipulated through anthropogenic activities. The diversity of halophytes in such conditions offered a huge genetic pool together with wide options for recultivating such saline areas. The variety of halophytic plants also put forward the promising microorganisms associated with such plants helping in ameliorating the stress through various mechanisms, viz., antioxidant and other stress-related exudates production, 1-aminocyclopropane-1-carboxylate deaminase release, chelating agents production, and expression of stress-related genes along with widely understood enhancement of the plant growth through a multitude of processes. Such organisms including bacteria, fungi, and arbuscular mycorrhiza, epiphytic or endophytic, have been reported to enhance the phytoremediation potential of halophytes. Keeping in view the potential of halophytes and associated microbiome, this chapter will focus on genetic and agronomic potential of halophytes and role of allied microorganisms in enhancing the salinity tolerance and assisted phytoremediation of saline soils.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abou-Elela SI, Kamel MM, Fawzy ME (2010) Biological treatment of saline wastewater using a salt-tolerant microorganism. Desalination 250:1–5

    Article  CAS  Google Scholar 

  • Ahmad P, Hashem A, Abd-Allah EF, Alqarawi AA, John R, Egamberdieva D, Gucel S (2015) Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Front Plant Sci 6:868. https://doi.org/10.3389/fpls.2015.00868

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali A, Shahzad R, Khan AL, Halo BA, Al-Yahyai R, Al-Harrasi A, Al-Rawahi A, Lee IJ (2017) Endophytic bacterial diversity of Avicennia marina helps to confer resistance against salinity stress in Solanum lycopersicum. J Plant Interact 12:312–322

    Article  CAS  Google Scholar 

  • Aliasgharzadeh N, Rastin SN, Towfighi H, Alizadeh A (2001) Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza 11:119–122. https://doi.org/10.1007/s005720100113

    Article  CAS  Google Scholar 

  • Altomare C, Norvell WA, Björkman T, Harman GE (1999) Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Appl Environ Microbiol 65:2926–2933

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1998) Soil aggregation status and rhizobacteria in the mycorrhizosphere. Plant Soil 202:89–96

    Article  CAS  Google Scholar 

  • Angel SMM, Badillo MGC, Osuna MAI (2011) The plant growth-promoting fungus Aspergillus ustus promotes growth and induces resistance against different lifestyle pathogens in Arabidopsis thaliana. J Microbiol Biotechnol 21:686–696

    Article  Google Scholar 

  • Armstrong W, Wright EJ, Lythe S, Gaynard TJ (1985) Plant zonation and the effects of the spring-neap tidal cycle on soil aeration in a Humber salt marsh. J Ecol 73:323–339

    Article  Google Scholar 

  • Armstrong W, Justin SHFW, Beckett PM, Lythe S (1991) Root adaptation to soil waterlogging. Aquat Bot 39:57–73

    Article  Google Scholar 

  • Aroca R, Bago A, Sutka M, Paz JA, Cano C, Amodeo G, Ruiz-Lozano JM (2009) Expression analysis of the first arbuscular mycorrhizal fungi aquaporin described reveals concerted gene expression between salt stressed and nonstressed mycelium. Mol Plant Microbe Interact 22:1160–1178

    Article  CAS  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Bárzana G, Aroca R, Paz JA, Chaumont F, Martinez-Ballesta MC, Carvajal M, Ruiz-Lozano JM (2012) Arbuscular mycorrhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions. Ann Bot 109:1009–1017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benítez T, Rincón AM, Limón MC, Codon AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260

    PubMed  Google Scholar 

  • Bilal L, Asaf S, Hamayun M, Gul H, Iqbal A, Ullah I, Lee I-J, Hussain A (2018) Plant growth promoting endophytic fungi Asprgillus fumigatus TS1 and Fusarium proliferatum BRL1 produce gibberellins and regulates plant endogenous hormones. Symbiosis 76:117–127

    Article  CAS  Google Scholar 

  • Blomberg A, Adler L (1992) Physiology of osmotolerance in fungi. Adv Microb Physiol 33:145–212

    Article  CAS  PubMed  Google Scholar 

  • Bødker L, Kjøller R, Rosendahl S (1998) Effect of phosphate and the arbuscular mycorrhizal fungus Glomus intraradices on disease severity of root rot of peas (Pisum sativum) caused by Aphanomyces euteiches. Mycorrhiza 8:169–174

    Article  Google Scholar 

  • Bothe H (2012) Arbuscular mycorrhiza and salt tolerance of plants. Symbiosis 58:7–16

    Article  CAS  Google Scholar 

  • Boullard B (1959) Relations entre la photopériode et l’abondance des mycorrhizes chez Aster tripolium L. Bull Soc Bot France 106:131–134

    Article  Google Scholar 

  • Boullard B (1964) Halophytes et mycorhizes. Bull Soc Prang Phys Veget 10:292–299

    Google Scholar 

  • Brown AM, Bledsoe C (1996) Spatial and temporal dynamics of mycorrhizas in Jaumea carnosa, a tidal saltmarsh halophyte. J Ecol 84:703–715

    Article  Google Scholar 

  • Brundrett MC, Abbott LK, Jasper DA (1999) Glomalean mycorrhizal fungi from tropical Australia. I: Comparison of the effectiveness and specificity of different isolation procedures. Mycorrhiza 8:305–314

    Article  Google Scholar 

  • Cantrell IC, Linderman RG (2001) Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil 233:269–281

    Article  CAS  Google Scholar 

  • Carvalho LM, Caçador I, Martins-Loução MA (2001) Temporal and spatial variation of arbuscular mycorrhizas in salt marsh plants of the Tagus estuary (Portugal). Mycorrhiza 11:303–309

    Article  CAS  PubMed  Google Scholar 

  • Carvalho LM, Correia PM, Caçador I, Martins-Loução MA (2003) Effects of salinity and flooding on the infectivity of salt marsh arbuscular mycorrhizal fungi in Aster tripolium L. Biol Fertil Soils 38:137–143

    Article  Google Scholar 

  • Chapman VJ (1960) Salt marshes and salt deserts of the world. Leonard Hill Interscience, New York

    Google Scholar 

  • Chen LZ, Wang GH, Hong S, Liu A, Li C, Liu YD (2009) UV-B-induced oxidative damage and protective role of exopolysaccharides in desert cyanobacterium Microcoleus vaginatus. J Integr Plant Biol 51:194–200

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Liu Y, Wu G, Veronican Njeri K, Shen Q, Zhang N, Zhang R (2016a) Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9. Physiol Plant 158:34–44

    Article  CAS  PubMed  Google Scholar 

  • Chen L-H, Zheng J-H, Shao X-H, Shen S-S, Yu Z-H, Mao X-Y, Chang T-T (2016b) Effects of Trichoderma harzianum T83 on Suaeda salsa L. in coastal saline soil. Ecol Eng 91:58–64

    Article  Google Scholar 

  • Cheng Z, Park E, Glick BR (2007) 1-aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53:912–918

    Article  CAS  PubMed  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corkıdı L, Rıncön E (1997) Arbuscular mycorrhizae in a tropical sand dune ecosystem on the Gulf of Mexico. I: Mycorrhizal status and inoculum potential along a successional gradient. Mycorrhiza 7:9–15

    Article  Google Scholar 

  • Dalpé Y, Diop TA, Plenchette C, Gueye M (2000) Glomales species associated with surface and deep rhizosphere of Faidherbia albida in Senegal. Mycorrhiza 10:125–129

    Article  Google Scholar 

  • Diby P, Srinivasan B, Sudha N (2005) Osmotolerance in biocontrol strain of Pseudomonas pseudoalcaligenes MSP-538: a study using osmolyte, protein and gene expression profiling. Ann Microbiol 55:243–247

    CAS  Google Scholar 

  • Dimkpa C, Weinand T, Asch F (2009) Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694

    Article  CAS  PubMed  Google Scholar 

  • Dodd IC, Pérez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 63:3415–3428

    Article  CAS  PubMed  Google Scholar 

  • Enache M, Neagu S, Cojoc R (2014) Extracellular hydrolases of halophilic microorganisms isolated from hypersaline environments (salt mine and salt lakes). Sci Bull Series F Biotechnol 18:20–25

    Google Scholar 

  • Etesami H, Beattie GA (2018) Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Front Microbiol 9:148

    Article  PubMed  PubMed Central  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evelin H, Giri B, Kapoor R (2012) Contribution of Glomus intraradices to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza 22:203–217

    Article  CAS  PubMed  Google Scholar 

  • FAO (2018) Food and Agricultural Organization of the United nations. http://www.fao.org/soils-portal/soil-management/management-of-some-problem-soils/salt-affected-soils/more-information-on-salt-affected-soils/en/. Accessed on 1 May 2018

  • Feng G, Zhang FS, Li XL, Tian CY, Tyang C, Rengel Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:185–190

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Aunión C, Hamouda TB, Iglesias-Guerra F, Argandoña M, Reina-Bueno M, Nieto JJ, Aouani ME, Vargas C (2010) Biosynthesis of compatible solutes in rhizobial strains isolated from Phaseolus vulgaris nodules in Tunisian fields. BMC Microbiol 10:192–192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179(4):945–963

    Article  CAS  PubMed  Google Scholar 

  • Frank B (1888) Uber die physiologische Bedeutung der Mycorrhiza. Ber Dtsch Bot Ges 6:248–269

    Google Scholar 

  • Fries N (1944) Beobachtungen über die thamniscophage Mykorrhiza einiger Halophyten. Bol Not 2:255–264

    Google Scholar 

  • Füzy A, Biro B, Toth T, Hildebrandt U, Bothe H (2008) Drought, but not salinity, determines the apparent effectiveness of halophytes colonized by arbuscular mycorrhizal fungi. J Plant Physiol 165:1181–1192

    Article  PubMed  CAS  Google Scholar 

  • Garrill A, Clipson NJW, Jennings DH (1992) Preliminary observations on the monovalent cation relations of Thraustochytrium aureum, a fungus requiring sodium for growth. Mycol Res 96:295–304

    Article  CAS  Google Scholar 

  • Gaur A, Adholeya A (2002) Arbuscular–mycorrhizal inoculation of five tropical fodder crops and inoculum production in marginal soil amended with organic matter. Biol Fertil Soils 35:214–218

    Article  CAS  Google Scholar 

  • Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312

    Article  PubMed  Google Scholar 

  • Goldstein AH (2009) Bacterial solubilization of mineral phosphates: historical perspective and future prospects. Am J Alternat Agric 1:51–57

    Article  Google Scholar 

  • Gostinčar C, Turk M, Plemenitaš A, Gunde-Cimerman N (2009) The expressions of Δ9-, Δ12-desaturases and an elongase by the extremely halotolerant black yeast Hortaea werneckii are salt dependent. FEMS Yeast Res 9:247–256

    Article  PubMed  CAS  Google Scholar 

  • Gostinčar C, Lenassi M, Gunde-Cimerman N, Plemenitaš A (2011) Chapter 3 – Fungal adaptation to extremely high salt concentrations. In: Laskin AI, Sariaslani S, Gadd GM (eds) Advances in applied microbiology, vol 77. Academic, New York, pp 71–96

    Google Scholar 

  • Goswami D, Dhandhukia P, Patel P, Thakker JN (2014) Screening of PGPR from saline desert of Kutch: growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiol Res 169:66–75

    Article  CAS  PubMed  Google Scholar 

  • Grzybowska B (2004) Arbuscular mycorrhiza of herbs colonizing a salt affected area near Krakow (Poland). Acta Soc Bot Pol 73:247–253

    Article  Google Scholar 

  • Guadarrama P, Álvarez-Sánchez FJ (1999) Abundance of arbuscular mycorrhizal fungi spores in different environments in a tropical rain forest, Veracruz, Mexico. Mycorrhiza 8:267–270

    Article  Google Scholar 

  • Guillot A, Obis D, Mistou MY (2000) Fatty acid membrane composition and activation of glycine-betaine transport in Lactococcus lactis subjected to osmotic stress. Int J Food Microbiol 55:47–51

    Article  CAS  PubMed  Google Scholar 

  • Gunde-Cimerman N, Zalar P (2014) Extremely halotolerant and halophilic fungi inhabit brine in solar salterns around the globe. Food Technol Biotechnol 52:170–179

    Google Scholar 

  • Gunde-Cimerman N, Zalar P, de Hoog S, Plemenitaš A (2000) Hypersaline waters in salterns – natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32:235–240

    CAS  Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Hashem A, Abd_Allah EF, Alqarawi AA, Al-Huqail AA, Wirth S, Egamberdieva D (2016) The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Front Microbiol 7:1089. https://doi.org/10.3389/fmicb.2016.01089

    Article  PubMed  PubMed Central  Google Scholar 

  • He AL, Niu SQ, Zhao Q, Li YS, Gou JY, Gao HJ, Suo SZ, Zhang JL (2018) Induced salt tolerance of perennial ryegrass by a novel bacterium strain from the rhizosphere of a desert shrub Haloxylon ammodendron. Int J Mol Sci 19. doi:https://doi.org/10.3390/ijms19020469

    Article  PubMed Central  CAS  Google Scholar 

  • Hedi A, Sadfi N, Fardeau ML, Rebib H, Cayol JL, Ollivier B, Boudabous A (2009) Studies on the biodiversity of halophilic microorganisms isolated from El-Djerid Salt Lake (Tunisia) under aerobic conditions. Int J Microbiol. https://doi.org/10.1155/2009/731786

    Article  CAS  Google Scholar 

  • Hildebrandt U, Janetta K, Ouziad F, Renne B, Nawrath K, Bothe H (2001) Arbuscular mycorrhizal colonization of halophytes in central European salt marshes. Mycorrhiza 10:175–183

    Article  CAS  Google Scholar 

  • Ho I (1987) Vesicular-arbuscular mycorrhiza of halophytic grasses in the Alvord desert of Oregon. Northwest Sci 61:148–151

    Google Scholar 

  • Hoefnagels MH, Broome SW, Shafer SR (1993) Vesicular-arbuscular mycorrhizae in salt marshes in North Carolina. Estuaries 16:851–858

    Article  Google Scholar 

  • Hossain MM, Sultana F, Kubota M, Koyama H, Hyakumachi M (2007) The plant growth-promoting fungus Penicillium simplicissimum GP17-2 induces resistance in Arabidopsis thaliana by activation of multiple defense signals. Plant Cell Physiol 48:1724–1736

    Article  CAS  PubMed  Google Scholar 

  • Hossain MM, Sultana F, Islam S (2017) Plant growth-promoting fungi (PGPF): phytostimulation and induced systemic resistance. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives: microbial interactions and agro-ecological impacts. Springer, Singapore, pp 135–191

    Google Scholar 

  • Hyakumachi M (1994) Plant-growth-promoting fungi from Turfgrass rhizosphere with potential for disease suppression. Soil Microorg 44:53–68

    Google Scholar 

  • Imhoff JF (2017) Anoxygenic phototrophic bacteria from extreme environments. In: Hallenbeck PC (ed) Modern topics in the phototrophic prokaryotes: environmental and applied aspects. Springer, Cham, pp 427–480

    Chapter  Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16. https://doi.org/10.1007/s00374-002-0546-5

    Article  Google Scholar 

  • Jha B, Gontia I, Hartmann A (2012) The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential. Plant Soil 356:265–277

    Article  CAS  Google Scholar 

  • Jindal V, Atwal A, Sekhon BS, Singh R (1993) Effect of vesicular-arbuscular mycorrhizae on metabolism of moong plants under sodium chloride salinity. Plant Physiol Biochem 31(475):481

    Google Scholar 

  • Joner Erik J, Leyval C (2003) Rhizosphere gradients of polycyclic aromatic hydrocarbon (PAH) dissipation in two industrial soils and the impact of Arbuscular mycorrhiza. Environ Sci Technol 37:2371–2375

    Article  CAS  PubMed  Google Scholar 

  • Juniper S, Abbott LK (1993) Vesicular-arbuscular mycorrhizas and soil salinity. Mycorrhiza 4(45):57

    Google Scholar 

  • Kahn AG (1974) The occurrence of mycorrhizas in halophytes, hydrophytes and xerophytes, and of Endogone spores in adjacent soils. J Gen Microbiol 81:7–14

    Article  Google Scholar 

  • Kasim WA, Gaafar RM, Abou-Ali RM, Omar MN, Hewait HM (2016) Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Ann Agric Sci 61:217–227

    Article  Google Scholar 

  • Kataoka R, Güneri E, Turgay OC, Yaprak AE, Sevilir B, Başköse I (2017) Sodium-resistant plant growth-promoting rhizobacteria isolated from a halophyte, Salsola grandis, in saline-alkaline soils of Turkey. Eur J Soil Sci 6(3):216

    Google Scholar 

  • Khan AG (1993) Occurrence and importance of mycorrhizae in aquatic trees of New South Wales, Australia. Mycorrhiza 3:31–38

    Article  Google Scholar 

  • Khan AG, Belik M (1995) Occurrence and ecological significance of mycorrhizal symbiosis in aquatic plants. In: Varma A, Hock B (eds) Mycorrhiza. Structure, function, molecular biology and biotechnology. Springer, Berlin/Heidelberg/New York, pp 627–666

    Google Scholar 

  • Khan SA, Hamayun M, Yoon H, Kim HY, Suh SJ, Hwang SK, Kim JM, Lee IJ, Choo YS, Yoon UH, Kong WS, Lee BM, Kim JG (2008) Plant growth promotion and Penicillium citrinum. BMC Microbiol 8:231. https://doi.org/10.1186/1471-2180-8-231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan AL, Hamayun M, Kim Y-H, Kang S-M, Lee J-H, Lee I-J (2011) Gibberellins producing endophytic Aspergillus fumigatus sp. LH02 influenced endogenous phytohormonal levels, isoflavonoids production and plant growth in salinity stress. Process Biochem 46:440–447

    Article  CAS  Google Scholar 

  • Khan AL, Hamayun M, Kang SM, Kim YH, Jung HY, Lee JH, Lee IJ (2012) Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol 12:3–3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim C-K, Weber DJ (1985) Distribution of VA mycorrhiza on halophytes on inland salt playas. Plant Soil 83:207–214

    Article  CAS  Google Scholar 

  • Klein W, Weber MHW, Marahiel MA (1999) Cold shock response of Bacillus subtilis: isoleucine-dependent switch in the fatty acid branching pattern for membrane adaptation to low temperatures. J Bacteriol 181:5341–5349

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Karan R, Kapoor S, Singh SP, Khare SK (2012) Screening and isolation of halophilic bacteria producing industrially important enzymes. Braz J Microbiol 43:1595–1603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunte HJ, Trüper HG, Stan-Lotter H (2002) Halophilic microorganisms. In: Horneck G, Baumstark-Khan C (eds) Astrobiology: the quest for the conditions of life. Springer, Berlin/Heidelberg, pp 185–200

    Chapter  Google Scholar 

  • Lamosa P, Martins LO, Da Costa MS, Santos H (1998) Effects of temperature, salinity, and medium composition on compatible solute accumulation by Thermococcus spp. Appl Environ Microbiol 64:3591–3598

    CAS  PubMed  PubMed Central  Google Scholar 

  • Landwehr M, Hildebrandt U, Wilde P, Nawrath K, Tóth T, Biró B, Bothe H (2002) The arbuscular mycorrhizal fungus Glomus geosporum in European saline, sodic and gypsum soils. Mycorrhiza 12:199–211

    Article  CAS  PubMed  Google Scholar 

  • Lamosa P, Burke A, Peist R, Huber R, Liu MY, Silva G, Rodrigues-Pousada C, LeGall J, Maycock C, Santos H (2000) Thermostabilization of proteins by diglycerol phosphate, a new compatible solute from the hyperthermophile Archaeoglobus fulgidus. Appl Environ Microbiol 66:1974–1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leitão AL, Enguita FJ (2015) Editorial: secondary metabolism. An unlimited foundation for synthetic biology. Front Microbiol 6:1562

    PubMed  Google Scholar 

  • Leung H-M, Wang Z-W, Ye Z-H, Yung K-L, Peng X-L, Cheung K-C (2013) Interactions between arbuscular mycorrhizae and plants in phytoremediation of metal-contaminated soils: a review. Pedosphere 23:549–563

    Article  CAS  Google Scholar 

  • Liu S, Hao H, Lu X, Zhao X, Wang Y, Zhang Y, Xie Z, Wang R (2017) Transcriptome profiling of genes involved in induced systemic salt tolerance conferred by Bacillus amyloliquefaciens FZB42 in Arabidopsis thaliana. Sci Rep 7:10795. https://doi.org/10.1038/s41598-017-11308-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutts S, Lefèvre I (2015) How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas? Ann Bot 115:509–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Galinski EA, Grant WD, Oren A, Ventosa A (2010) Halophiles 2010: life in saline environments. Appl Environ Microbiol 76:6971–6981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maciá-Vicente JG, Ferraro V, Burruano S, Lopez-Llorca LV (2012) Fungal assemblages associated with roots of halophytic and non-halophytic plant species vary differentially along a salinity gradient. Microb Ecol 64:668–679

    Article  PubMed  Google Scholar 

  • Mahmood A, Turgay OC, Farooq M, Hayat R (2016) Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiol Ecol 92. doi:https://doi.org/10.1093/femsec/fiw112

    Article  PubMed  CAS  Google Scholar 

  • Mapelli F, Marasco R, Rolli E, Barbato M, Cherif H, Guesmi A, Ouzari I, Daffonchio D, Borin S (2013) Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils. Biomed Res Int 2013:13

    Article  CAS  Google Scholar 

  • Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83

    Article  CAS  PubMed  Google Scholar 

  • Mason E (1928) Note on the presence of mycorrhizae in the roots of salt-marsh plants. New Phytol 27:193–195

    Article  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • Meera M, Shivanna M, Kageyama K, Hyakumachi M (1994) Plant growth promoting fungi from zoysiagrass rhizosphere as potential inducers of systemic resistance in cucumbers. Phytopathology 84:1399–1406

    Article  Google Scholar 

  • Mesbah NM, Wiegel J (2012) Life under multiple extreme conditions: diversity and physiology of the halophilic alkalithermophiles. Appl Environ Microbiol 78:4074–4082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller SP (1999) Arbuscular mycorrhizal colonization of semiaquatic grasses along a wide hydrologic gradient. New Phytol 145:145–155

    Article  Google Scholar 

  • Miller RM, Jastrow JD (2000) Mycorrhizal fungi influence soil structure. In: Kapulnik Y, Douds DD (eds) Arbuscular mycorrhizas: physiology and function. Kluwer Academic, Dordrecht, pp 3–18

    Chapter  Google Scholar 

  • Murali M, Amruthesh KN (2015) Plant growth-promoting fungus penicillium oxalicum enhances plant growth and induces resistance in pearl millet against Downy mildew disease. J Phytopathol 163:743–754

    Article  CAS  Google Scholar 

  • Naidoo G, McKee KL, Mendelssohn IA (1992) Anatomical and metabolic responses to waterlogging and salinity in Spartina alterniflora and S. patens (Poaceae). Am J Bot 79:765–770

    Article  CAS  Google Scholar 

  • Navarro-Torre S, Barcia-Piedras JM, Mateos-Naranjo E, Redondo-Gómez S, Camacho M, Caviedes MA, Pajuelo E, Rodríguez-Llorente ID (2017) Assessing the role of endophytic bacteria in the halophyte Arthrocnemum macrostachyum salt tolerance. Plant Biol 19:249–256

    Article  CAS  PubMed  Google Scholar 

  • Neto D, Carvalho LM, Cruz C, Martins-Loução MA (2006) How do mycorrhizas affect C and N relationships in flooded Aster tripolium plants? Plant Soil 279:51–63

    Article  CAS  Google Scholar 

  • Niu S-Q, Li H-R, Paré PW, Aziz M, Wang S-M, Shi H, Li J, Han Q-Q, Guo S-Q, Li J, Guo Q, Ma Q, Zhang J-L (2016) Induced growth promotion and higher salt tolerance in the halophyte grass Puccinellia tenuiflora by beneficial rhizobacteria. Plant Soil 407:217–230

    Article  CAS  Google Scholar 

  • Orhan F, Gulluce M (2015) Isolation and characterization of salt-tolerant bacterial strains in salt-affected soils of Erzurum, Turkey. Geomicrobiol J 32:521–529

    Article  CAS  Google Scholar 

  • Paul EA, Clark FE (1996) Soil microbiology and biochemistry. Academic Press, San Diego

    Google Scholar 

  • Paul D, Lade H (2014) Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron Sustain Dev 34:737–752

    Article  Google Scholar 

  • Paul D, Nair S (2008) Stress adaptations in a Plant Growth Promoting Rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J Basic Microbiol 48:378–384

    Article  CAS  PubMed  Google Scholar 

  • Paul D, Dineshkumar N, Nair S (2006) Proteomics of a plant growth-promoting rhizobacterium, Pseudomonas fluorescens MSP-393, subjected to salt shock. World J Microbiol Biotechnol 22:369–374

    Article  CAS  Google Scholar 

  • Peat HJ, Fitter AH (1993) The distribution of arbuscular mycorrhizas in the British flora. New Phytol 125:843–854

    Article  Google Scholar 

  • Pennings SC, Callaway RM (1992) Salt marsh plant zonation: the relative importance of competition and physical factors. Ecology 73:681–690

    Article  Google Scholar 

  • Pfeiffer CM, Bloss HE (1988) Growth and nutrition of guayule (Parthenium argentatum) in a saline soil as influenced by vesicular-arbuscular mycorrhiza and phosphorus fertilization. New Phytol 108:315–321

    Article  Google Scholar 

  • Plemenitaš A, Vaupotič T, Lenassi M, Kogej T, Gunde-Cimerman N (2008) Adaptation of extremely halotolerant black yeast Hortaea werneckii to increased osmolarity: a molecular perspective at a glance. Stud Mycol 61:67–75

    Article  PubMed  PubMed Central  Google Scholar 

  • Porcel P, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustain Dev 32:181–200

    Article  CAS  Google Scholar 

  • Porras-Soriano A, Soriano-Martin M, Porras-Piedra A, Azcón R (2010) Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol 166:1350–1359

    Article  CAS  Google Scholar 

  • Prista C, Loureiro-Dias MC, Montiel V, García R, Ramos J (2005) Mechanisms underlying the halotolerant way of Debaryomyces hansenii. FEMS Yeast Res 5:693–701

    Article  CAS  PubMed  Google Scholar 

  • Rampelotto PH (2010) Resistance of microorganisms to extreme environmental conditions and its contribution to astrobiology. Sustainability 2:1602–1623

    Article  CAS  Google Scholar 

  • Rozema J, Arp W, Van Diggelen J, Van Esbroek M, Broekman R, Punte H (1986) Occurrence and ecological significance of vesicular-arbuscular mycorrhiza in the salt marsh environment. Acta Bot Neerl 35:457–467

    Article  Google Scholar 

  • Ruiz-Lozano JM, Azcón R (2000) Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza 10:137–143

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM, Azcón R, Gómez M (1996) Alleviation of salt stress by arbuscular mycorrhizal Glomus species in Lactuca sativa plants. Physiol Plant 98:767–772

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM, Porcel R, Azcón R, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63:4033–4044

    Article  CAS  PubMed  Google Scholar 

  • Ruppel S, Franken P, Witzel K (2013) Properties of the halophyte microbiome and their implications for plant salt tolerance. Funct Plant Biol 40:940–951

    Article  CAS  PubMed  Google Scholar 

  • Saldajeno MGB, Hyakumachi M (2011) The plant growth-promoting fungus Fusarium equiseti and the arbuscular mycorrhizal fungus Glomus mosseae stimulate plant growth and reduce severity of anthracnose and damping-off diseases in cucumber (Cucumis sativus) seedlings. Ann Appl Biol 159:28–40

    Article  Google Scholar 

  • Sandhya V, Ali SKZ, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 46:17–26

    Article  CAS  Google Scholar 

  • Saum SH, Müller V (2008a) Growth phase-dependent switch in osmolyte strategy in a moderate halophile: ectoine is a minor osmolyte but major stationary phase solute in Halobacillus halophilus. Environ Microbiol 10:716–726

    Article  CAS  PubMed  Google Scholar 

  • Saum SH, Müller V (2008b) Regulation of osmoadaptation in the moderate halophile Halobacillus halophilus: chloride, glutamate and switching osmolyte strategies. Saline Syst 4:4–4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scheloske S, Maetz M, Schneider T, Hildebrandt U, Bothe H, Povh H (2004) Element distribution in mycorrhizal and nonmycorrhizal roots of the halophyte Aster tripolium determined by proton induced X-ray emisision. Protoplasma 223:183–189

    Article  CAS  PubMed  Google Scholar 

  • Schubert S, Neubert A, Schierholt A, Sumer A, Zorb C (2009) Development of salt-resistant maize hybrids: the combination of physiological strategies using conventional breeding methods. Plant Sci 177:196–202

    Article  CAS  Google Scholar 

  • Sengupta A, Chaudhari S (1990) Vesicular arbuscular mycorrhiza (VAM) in pioneer salt marsh plants of the Ganges river delta in West Bengal (India). Plant Soil 122:111–113

    Article  Google Scholar 

  • Sengupta A, Chaudhurı S (2002) Arbuscular mycorrhizal relations of mangrove plant community at the Ganges river estuary in India. Mycorrhiza 12:169–174

    Article  PubMed  Google Scholar 

  • Sharifi M, Ghorbanli M, Ebrahimzadeh H (2006) Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. J Plant Physiol 164(2007):1144–1151

    PubMed  Google Scholar 

  • Siliakus MF, van der Oost J, Kengen SWM (2017) Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure. Extremophiles 21:651–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siqueira JO, Saggin-Júnior OJ (2001) Dependency on arbuscular mycorrhizal fungi and responsiveness of some Brazilian native woody species. Mycorrhiza 11:245–255

    Article  CAS  Google Scholar 

  • Slezack S, Dumas-Gaudot E, Paynot M, Gıanınazzı S (2000) Is a fully established arbuscular mycorrhizal symbiosis required for bioprotection of Pisum sativum roots against Aphanomyces euteiches? Mol Plant Microbe Interact 13:238–241

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, San Diego

    Google Scholar 

  • Sorty AM, Meena KK, Choudhary K, Bitla UM, Minhas P, Krishnani K (2016) Effect of plant growth promoting bacteria associated with halophytic weed (Psoralea corylifolia L) on germination and seedling growth of wheat under saline conditions. Appl Biochem Biotechnol 180:872–882

    Article  CAS  PubMed  Google Scholar 

  • Stocker O (1928) Das halophytenproblem. Ergeb Biol 3:265–353. https://doi.org/10.1007/978-3-642-91065-4_4

    Article  Google Scholar 

  • Strack D, Fester T, Hause B, Schliemann W, Walter MH (2003) Arbuscular mycorrhiza: biological, chemical, and molecular aspects. J Chem Ecol 29:1955–1979

    Article  CAS  PubMed  Google Scholar 

  • Suárez R, Wong A, Ramírez M, Barraza A, Orozco MDC, Cevallos MA, Lara M, Hernández G, Iturriaga G (2008) Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia. Mol Plant-Microbe Interact 21:958–966

    Article  PubMed  CAS  Google Scholar 

  • Szymańska S, Piernik A, Baum C, Złoch M, Hrynkiewicz K (2014) Metabolic profiles of microorganisms associated with the halophyte Salicornia europaea in soils with different levels of salinity. Ecoscience 21:114–122

    Article  Google Scholar 

  • Szymańska S, Płociniczak T, Piotrowska-Seget Z, Hrynkiewicz K (2016) Endophytic and rhizosphere bacteria associated with the roots of the halophyte Salicornia europaea L. – community structure and metabolic potential. Microbiol Res 192:37–51

    Article  PubMed  CAS  Google Scholar 

  • Titus JH, Titus PJ, Nowak RS, Smith SD (2002) Arbuscular mycorrhizae of Mojave Desert plants. West N Am Nat 62:327–334

    Google Scholar 

  • Tresner HD, Hayes JA (1971) Sodium chloride tolerance of terrestrial fungi. Appl Microbiol 22:210–213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turk M, Méjanelle L, Šentjurc M, Grimalt JO, Gunde-Cimerman N, Plemenitaš A (2004) Salt-induced changes in lipid composition and membrane fluidity of halophilic yeast-like melanized fungi. Extremophiles 8:53–61

    Article  CAS  PubMed  Google Scholar 

  • Ullah S, Bano A (2015) Isolation of plant-growth-promoting rhizobacteria from rhizospheric soil of halophytes and their impact on maize (Zea mays L.) under induced soil salinity. Can J Microbiol 61:307–313

    Article  CAS  PubMed  Google Scholar 

  • van der Meer JR (2003) Evolution of metabolic pathways for degradation of environmental pollutants. In: Encyclopedia of agrochemicals. Wiley, New York. doi:https://doi.org/10.1002/0471263397.env011

  • Ventosa A, Mellado E, Sanchez-Porro C, Marquez MC (2008) Halophilic and halotolerant micro-organisms from soils. In: Dion P, Nautiyal CS (eds) Microbiology of extreme soils. Springer, Berlin/Heidelberg, pp 87–115

    Chapter  Google Scholar 

  • Viterbo A, Landau U, Kim S, Chernin L, Chet I (2010) Characterization of ACC deaminase from the biocontrol and plant growth-promoting agent Trichoderma asperellum T203. FEMS Microbiol Lett 305:42–48

    Article  CAS  PubMed  Google Scholar 

  • Vohník M, Albrechtová J (2011) The co-occurrence and morphological continuum between ericoid mycorrhiza and dark septate endophytes in roots of six European Rhododendron species. Folia Geobot 46:373–386. https://doi.org/10.1007/s12224-011-9098-5

    Article  Google Scholar 

  • Vurukonda SSKP, Vardharajula S, Shrivastava M, Ali SKZ (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24

    Article  PubMed  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, von Wettstein D, Franken P, Kogel K-H (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A 102:13386–13391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walter H (1968) Die Vegetation der Erde in öko-physiologischer Betrachtung, vol 2 Die gemäßigten und arktischen Zonen. Gustav Fischer Verlag, Jena

    Google Scholar 

  • Whatmore AM, Chudek JA, Reed RH (1990) The effects of osmotic upshock on the intracellular solute pools of Bacillus subtilis. Microbiology 136:2527–2535

    CAS  Google Scholar 

  • Wijman JGE, de Leeuw PPLA, Moezelaar R, Zwietering MH, Abee T (2007) Air-liquid interface biofilms of Bacillus cereus: formation, sporulation, and dispersion. Appl Environ Microbiol 73:1481–1488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright SF, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198:97–107

    Article  CAS  Google Scholar 

  • Wright SF, Upadhyaya A (1999) Quantification of arbuscular mycorrhizal fungi activity by the glomalin concentration on hyphal traps. Mycorrhiza 8:283–285

    Article  CAS  Google Scholar 

  • Wu QS, Zou YN, Liu W, Ye XF, Zai HF, Zhao LJ (2010) Alleviation of salt stress in citrus seedlings inoculated with mycorrhiza: changes in leaf antioxidant defence systems. Plant Soil Environ 56:470–475

    Article  CAS  Google Scholar 

  • Wu QS, Zou YN, Fathi Abd-Allah E (2014) Chapter 15 – Mycorrhizal association and ROS in plants A2. In: Parvaiz A (ed) Oxidative damage to plants. Academic, San Diego, pp 453–475

    Chapter  Google Scholar 

  • Xiang W, Guo J, Feng W, Huang M, Chen H, Zhao J, Zhang J, Yang Z, Sun Q (2008) Community of extremely halophilic bacteria in historic Dagong brine well in southwestern China. World J Microbiol Biotechnol 24:2297–2305

    Article  Google Scholar 

  • Yaish MW, Al-Lawati A, Jana GA, Vishwas Patankar H, Glick BR (2016) Impact of soil salinity on the structure of the bacterial endophytic community identified from the roots of caliph medic (Medicago truncatula). PLoS One 11:e0159007. https://doi.org/10.1371/journal.pone.0159007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  PubMed  Google Scholar 

  • Yedidia I, Srivastva AK, Kapulnik Y, Chet I (2001) Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant Soil 235:235–242

    Article  CAS  Google Scholar 

  • Yuan Z, Druzhinina IS, Labbé J, Redman R, Qin Y, Rodriguez R, Zhang C, Tuskan GA, Lin F (2016) Specialized microbiome of a halophyte and its role in helping non-host plants to withstand salinity. Sci Rep 6:32467. https://doi.org/10.1038/srep32467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yukimura K, Nakai R, Kohshima S, Uetake J, Kanda H, Naganuma T (2009) Spore-forming halophilic bacteria isolated from Arctic terrains: implications for long-range transportation of microorganisms. Pol Sci 3:163–169

    Article  Google Scholar 

  • Zajc J, Kogej T, Galinski EA, Ramos J, Gunde-Cimerman N (2014) Osmoadaptation strategy of the most halophilic fungus, Wallemia ichthyophaga, growing optimally at salinities above 15% NaCl. Appl Environ Microbiol 80:247–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Gan Y, Xu B (2016) Application of plant-growth-promoting fungi Trichoderma longibrachiatum T6 enhances tolerance of wheat to salt stress through improvement of antioxidative defense system and gene expression. Front Plant Sci 7:1405

    PubMed  PubMed Central  Google Scholar 

  • Zhao Z-W, Xia Y-M, Qin X-Z, Li X-W, Cheng L-Z, Sha T, Wang G-H (2001) Arbuscular mycorrhizal status of plants and the spore density of arbuscular mycorrhizal fungi in the tropical rain forest of Xishuangbanna, Southwest China. Mycorrhiza 11:159–162

    Article  PubMed  Google Scholar 

  • Zhao S, Zhou N, Wang L, Tian CY (2013) Halophyte-endophyte coupling: a promising bioremediation system for oil-contaminated soil in Northwest China. Environ Sci Technol 47:11938–11939

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Zhou N, Zhao Z-Y, Zhang K, Wu G-H, Tian C-Y (2016) Isolation of endophytic plant growth-promoting bacteria associated with the halophyte Salicornia europaea and evaluation of their promoting activity under salt stress. Curr Microbiol 73:574–581

    Article  CAS  PubMed  Google Scholar 

  • Zhou N, Zhao S, Tian C-Y (2017) Effect of halotolerant rhizobacteria isolated from halophytes on the growth of sugar beet (Beta vulgaris L.) under salt stress. FEMS Microbiol Lett 364:fnx091

    Article  CAS  Google Scholar 

  • Zuccarini P, Okurowska P (2008) Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress. J Plant Nutr 31:497–513

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Emre Yaprak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahmood, A., Kataoka, R., Turgay, O.C., Yaprak, A.E. (2019). Halophytic Microbiome in Ameliorating the Stress. In: Hasanuzzaman, M., Nahar, K., Öztürk , M. (eds) Ecophysiology, Abiotic Stress Responses and Utilization of Halophytes. Springer, Singapore. https://doi.org/10.1007/978-981-13-3762-8_8

Download citation

Publish with us

Policies and ethics