Skip to main content

Halophyte Growth and Physiology Under Metal Toxicity

  • Chapter
  • First Online:
Book cover Ecophysiology, Abiotic Stress Responses and Utilization of Halophytes

Abstract

Heavy metals are present in low concentration in soil as their natural constituents. However various anthropogenic, industrial activities and agricultural practices have resulted in an increase in the concentration of heavy metals to toxic levels and thus become a limiting factor, affecting the sustainability of agricultural production. Environmental degradation due to increase in heavy metal is a serious issue which requires immediate remediation. To add to the problem large areas of agricultural land with heavy metal pollution are also affected by salinity particularly in arid and semiarid regions. Heavy metals inhibit plant growth and development and may be lethal at high concentrations. Heavy metal toxicity leads to a reduction of assimilation rate, respiration, nutrient uptake and increased oxidative stress. Oxidative stress damages various metabolic pathways which in turn affect the physiological and biochemical processes and cause a reduction in plant growth and productivity. Halophytes are salt-tolerant plants which can grow and reproduce in saline areas where glycophytes cannot survive. Due to special adaptive mechanism present in halophytes, they can be grown in saline soils which are also heavy metal-contaminated. However halophytes are also adversely affected by higher concentration of heavy metals (Cd, Cr, Pb and Ni). Halophytes have additional advantages as compared to glycophytes like higher tolerance to heavy metal and increased heavy metal uptake. Various studies revealed that halophytic plants are also tolerant to other abiotic stresses like temperature, drought and heavy metals. This may be due to the activated antioxidative system against ROS-induced oxidative stress. So the halophytic plants can be used for phytoremediation purpose in salt and heavy metal-contaminated soil. Among the halophytic flora, species having high biomass and deep root system are most suitable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 05 July 2019

    This book was inadvertently published with an incorrect affiliation of Dr. Pooja in chapters 2, 5 and 9.

Abbreviations

ABC transporters:

ATP-binding cassette transporter

APX:

Ascorbate peroxidase

As:

Net assimilation rate

Ca:

Calcium

CAT:

Catalase

CAX:

Cation exchanger

Cd:

Cadmium

CdCl2 :

Cadmium chloride

Chl:

Chlorophyll

Co:

Cobalt

Cr:

Chromium

Cu:

Copper

Cys:

Cysteine

GB:

Glycinebetaine

GPX:

Glutathione peroxidase

GR:

Glutathione reductase

gs:

Stomatal conductance

GSH:

Reduced form of glutathione

H2O2 :

Hydrogen peroxide

Hg:

Mercury

HM:

Heavy metal

K+ :

Potassium ion

KCl:

Potassium chloride

LOX:

Lipoxygenase

MDA:

Malondialdehyde

Mg:

Magnesium

MTs:

Metallothioneins

N:

Nitrogen

NaCl:

Sodium chloride

NADPH:

Reduced form of nicotinamide adenine dinucleotide phosphate

NaNO3 :

Sodium nitrate

Ni:

Nickel

O2 :

Superoxide anion

OH :

Hydroxyl radical

PAs:

Polyamines

Pb:

Lead

PCD:

Programmed cell death

PCs:

Phytochelatins

POX:

Peroxidase

PS II:

Photosystem II

ROS:

Reactive oxygen species

S:

Sulphur

SO4 2 :

Sulphate

SOD:

Superoxide dismutase

V:

Vanadium

Zn:

Zinc

References

  • Acosta JA, Jansen B, Kalbitz K, Faz A, Martínez-Martínez S (2011) Salinity increases mobility of heavy metals in soils. Chemosphere 85:1318–1324

    Article  CAS  PubMed  Google Scholar 

  • Aidid SB, Okamoto H (1993) Responses of elongation growth rate, turgor pressure and cell wall extensibility of stem cells of Impatiens balsamina to lead, cadmium and zinc. Biometals 6:245–249

    Article  CAS  Google Scholar 

  • Ajmal M, Nomani AA, Khan MA (1984) Pollution in the Ganga River, India. Water Sci Technol 16:347–358

    Article  CAS  Google Scholar 

  • Almeida CMR, Mucha AP, Vascancelos MTSD (2006) Variability of metal contents in the sea rush Juncus maritimus- estuarine sediment system through one year of plant’s life. Mar Environ Res 61:424–438

    Article  CAS  PubMed  Google Scholar 

  • Almeida CMR, Mucha AP, Teresa Vasconcelos M (2011) Role of different salt marsh plants on metal retention in an urban estuary (Lima estuary, NW Portugal). Estuar Coast Shelf Sci 91(2):243–249

    Article  CAS  Google Scholar 

  • Amari T, Ghnaya T, Sghaier S, Porrini M, Lucchini G, Attilio Sacchi G, Abdelly C (2016) Evaluation of the Ni2+ phytoextraction potential in Mesembryanthemum crystallinum (Halophyte) and Brassica juncea. J Bioremed Biodegr 7(2):1–7. https://doi.org/10.4172/2155-6199.1000336

    Article  CAS  Google Scholar 

  • Andrades-Moreno L, Cambrolle J, Figueroa ME, Mateos-Naranjo E (2013) Growth and survival of Halimione portulacoides stem cuttings in heavy metal contaminated soils. Mar Pollut Bull 75:28–32

    Article  CAS  PubMed  Google Scholar 

  • Anjum NA, Ahmad I, Valega M, Mohmood I, Gill SS, Tuteja N, Duarte AC, Pereira E (2014) Salt marsh halophyte services to metal–metalloid remediation: assessment of the processes and underlying mechanisms. Crit Rev Environ Sci Technol 44(18):2038–2106

    Article  CAS  Google Scholar 

  • Arcega-Cabrera F, Garza-Pérez R, Noreña-Barroso E, Oceguera-Vargas I (2015) Impacts of geochemical and environmental factors on seasonal variation of heavy metals in a coastal Lagoon Yucatan, Mexico. Bull Environ Contam Toxicol 94:58–65

    Article  CAS  PubMed  Google Scholar 

  • Arduini I, Godbold DL, Onnis A (1996) Cadmium and copper uptake and distribution in Mediterranean tree seedlings. Physiol Plant 97:111–117

    Article  CAS  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    Article  CAS  Google Scholar 

  • Ayyappan D, Sathiyaraj G, Ravindran KC (2016) Phytoextraction of heavy metals by Sesuvium portulacastrum l. a salt marsh halophyte from tannery effluent. Int J Phytoremediation 18(5):453–459

    Article  CAS  PubMed  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  PubMed  Google Scholar 

  • Banerjee S, Pramanik A, Sengupta S, Chattopadhyay D, Bhattacharyya M (2017) Distribution and source identification of heavy metal concentration in Chilika Lake, Odisha India: an assessment over salinity gradient. Curr Sci 112:87–94

    Article  CAS  Google Scholar 

  • Bankaji I, Sleimi N, Gomez Cadenas A, Perez Clemente RM (2016) NaCl protects against Cd and Cu-induced toxicity in the halophyte Atriplex halimus. Span J Agric Res 14:1–12

    Article  Google Scholar 

  • Bingham FT, Sposito G, Strong JE (1986) The effect of sulfate on the availability of cadmium. Soil Sci 141:172–177

    Article  CAS  Google Scholar 

  • Brady CJ, Gibson TS, Barlow EWR, Speirs J, Wyn Jones RG (1984) Salt tolerance in plants. I. Ions compatible organic solutes and the stability of plant ribosomes. Plant Cell Environ 7:571–578

    CAS  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    Article  CAS  PubMed  Google Scholar 

  • Caçador I, Vale C, Catarino F (2000) Seasonal variation of Zn, Pb, Cu and Cd concentrations in the root-sediment system of Spartina maritima and Halimione portulacoides from Tagus estuary salt marshes. Mar Environ Res 49:279–290

    Article  PubMed  Google Scholar 

  • Cambrolle J, Redondo-Gomez S, Mateos-Naranjo E, Figueroa ME (2008) Comparison of the role of two Spartina species in terms of phytostabilization and bioaccumulation of metals in the estuarine sediment. Mar Pollut Bull 56:2037–2042

    Article  CAS  PubMed  Google Scholar 

  • Candan N, Tarhan L (2003) Relationship among chlorophyll-carotenoid content, antioxidant enzyme activities and lipid peroxidation levels by Mg2+ deficiency in the Mentha pulegium leaves. Plant Physiol Biochem 41:35–40

    Article  CAS  Google Scholar 

  • Carpene E, Andreani G, Isani G (2007) Metallothionein functions and structural characteristics. J Trace Elem Med Biol 21(suppl):35–39

    Article  CAS  PubMed  Google Scholar 

  • Carvalho SM, Caçador I, Martins-Loução MA (2006) Arbuscular mycorrhizal fungi enhance root cadmium and copper accumulation in the roots of the salt marsh plant Aster tripolium L. Plant Soil 285:161–169

    Article  CAS  Google Scholar 

  • Castro R, Pereira S, Lima A, Corticeiro S, Valega M, Pereira E, Duarte A, Figueira E (2009) Accumulation, distribution and cellular partitioning of mercury in several halophytes of a contaminated salt marsh. Chemosphere 76:1348–1355

    Article  CAS  PubMed  Google Scholar 

  • Chai MW, Shi FC, Li RL, Liu FC, Qiu GY, Liu LM (2013) Effect of NaCl on growth and Cd accumulation of halophyte Spartina alterniflora under CdCl2 stress. S Afr J Bot 85:63–69

    Article  CAS  Google Scholar 

  • Chai M, Shi F, Li R, Qiu G, Liu F, Liu L (2014) Growth and physiological responses to copper stress in a halophyte Spartina alterniflora (Poaceae). Acta Physiol Plant 793 36(3):745–754

    Article  CAS  Google Scholar 

  • Chandra R, Kang H (2016) Mixed heavy metal stress on photosynthesis, transpiration rate, and chlorophyll content in poplar hybrids. Forest Sci Tech 12:55–61

    Article  Google Scholar 

  • Chaturvedi AK, Mishra A, Tiwari V, Jha B (2012) Cloning and transcript analysis of type 2 metallothionein gene (SbMT-2) from extreme halophyte Salicornia brachiata and its heterologous expression in E. coli. Gene 499:280–287

    Article  CAS  PubMed  Google Scholar 

  • Chen CT, Chen TH, Lo KF, Chiu CY (2004) Effects of proline on copper transport in rice seedlings under excess copper stress. Plant Sci 166:103–111

    Article  CAS  Google Scholar 

  • Chen L, Long XH, Zhang ZH, Zheng XT, Rengel Z, Liu ZP (2011) Cadmium accumulation and translocation in two Jerusalem artichoke (Helianthus tuberosus L.) Cultivars. Pedosphere 21:573–580

    Article  CAS  Google Scholar 

  • Choudhary M, Jetley UK, Khan MA, Zutshi S, Fatma T (2007) Effect of heavy metal stress on proline, malondialdehyde and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5. Ecotoxicol Environ Saf 66:204–209

    Article  CAS  PubMed  Google Scholar 

  • Christofilopoulos S, Syranidou E, Gkavrou G, Manousaki E, Kalogerakis N (2016) The role of halophyte Juncus acutus L. in the remediation of mixed contamination in a hydroponic greenhouse experiment. J Chem Technol Biotechnol 91(6):1665–1674

    Article  CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    Article  CAS  PubMed  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cobbett C, Goldsbrough PB (2002) Phytochelatins and metallothionein: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  CAS  PubMed  Google Scholar 

  • Cornic G (2000) Drought stress inhibits photosynthesis by decreasing stomatal aperture – not by affecting ATP synthesis. Trends Plant Sci 5:187–188

    Article  Google Scholar 

  • Coyle P, Philcox JC, Carey LC, Rofe AM (2002) Cellular and molecular life sciences metallothionein: the multipurpose protein. Cell Mol Life Sci 59:627–647

    Article  CAS  PubMed  Google Scholar 

  • Dazy M, Masfaraud JF, Ferard JF (2009) Induction of oxidative stress biomarkers associated with heavy metal stress in Fontinalis antipyretica Hedw. Chemosphere 75:297e302

    Article  CAS  Google Scholar 

  • De Filippis LF, Pallaghy CK (1994) Heavy metals: sources and biological effects. E. Schweizerbarts’sche, Verlagsbuchhandlung, Stuttgart

    Google Scholar 

  • de Vos AC, Broekman R, de Almeida Guerra CC, van Rijsselberghe M, Rozema J (2013) Developing and testing new halophyte crops: a case study of salt tolerance of two species of the Brassicaceae, Diplotaxis tenuifolia and Cochlearia officinalis. Environ Exp Bot 92:154–164

    Article  CAS  Google Scholar 

  • Defew LH, Mair JM, Guzman HM (2005) An assessment of metal contamination in mangrove sediments and leaves from Punta Mala Bay, Pacific Panama. Mar Pollut Bull 50:547–552

    Article  CAS  PubMed  Google Scholar 

  • Demidchik V (2014) Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. J Exp Bot 109:212–228

    Article  CAS  Google Scholar 

  • Demidchik V, Cuin TA, Svistunenko D et al (2010) Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. J Cell Sci 123:1468–1479

    Article  CAS  PubMed  Google Scholar 

  • Eid MA (2011) Halophytic plants for phytoremediation of heavy metals contaminated soil. J Am Sci 7:377–382

    Google Scholar 

  • Eid MA, Eisa SS (2010) The use of some halophytic plants to reduce Zn, Cu and Ni in soil. Aust J Basic Appl Sci 4:1590–1596

    CAS  Google Scholar 

  • Eissa MA (2015) Impact of compost on metals phytostabilization potential of two halophytes species. Int J Phytoremediation 17:662–668

    Article  CAS  PubMed  Google Scholar 

  • El-said GF, Draz SEO, El-Sadaawy MM, Moneer AA (2014) Sedimentology, geochemistry, pollution status and ecological risk assessment of some heavy metals in surficial sediments of an Egyptian lagoon connecting to the Mediterranean Sea. J Environ Sci Health A 49:1029–1044

    Article  CAS  Google Scholar 

  • European Environment Agency (2007) Progress in management of contaminated sites (CSI015). EEA, Copenhagen

    Google Scholar 

  • Fargasova A (1998) Accumulation and toxin effects of Cu2+, Cu+, Mn2+, VO4 3−, Ni2+and MoO4 2− and their associations: influence on respiratory rate and chlorophyll a con-tent of the green alga Scenedesmus quadricauda. J Trace Microprobe Techn 16:481–490

    CAS  Google Scholar 

  • Fitzgerald EJ, Caffrey JM, Nesaratnam ST, McLoughlin P (2003) Copper and lead concentrations in salt marsh plants on the suir Estuary. Irel Environ Pollut 123:67–74

    Article  CAS  Google Scholar 

  • Flexas J, Medrano H (2002) Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann Bot 89:183–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol 28:89–121

    Article  CAS  Google Scholar 

  • Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct Plant Biol 37:604–612

    Article  Google Scholar 

  • Freeman JL, Salt DE (2007) The metal tolerance profile of Thlaspi goes in genes is mimicked in Arabidopsis thaliana heterologously expressing serine acetyl-transferase. BMC Plant Biol 7:63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garcia-Miragaya J, Page AL (1976) Influence of ionic strength and inorganic complex formation on the sorption of trace amounts of Cd by Montmorillonite. Soil Sci Soc Am J 40:658–663

    Article  CAS  Google Scholar 

  • Garnier L, Simon-Plas F, Thuleau P, Agnel JP, Blein JP, Ranjeva R, Montillet JL (2006) Cadmium affects tobacco cells by a series of three waves of reactive oxygen species that contribute to cytotoxicity. Plant Cell Environ 29:1956–1969

    Article  CAS  PubMed  Google Scholar 

  • Ghnaya T, Nouairi I, Slama I et al (2005) Cadmium effects on growth and mineral nutrition of two halophytes: Sesuvium portulacastrum and Mesembryanthemum crystallinum. J Plant Physiol 162:1133–1140

    Article  CAS  PubMed  Google Scholar 

  • Ghnaya T, Slama I, Messedi D, Grignon C, Ghorbel MH, Abdelly C (2007) Effects of Cd2+ on K+, Ca2+ and N uptake in two halophytes Sesuvium portulacastrum and Mesembryanthemum crystallinum: consequences on growth. Chemosphere 67:72–79

    Article  CAS  PubMed  Google Scholar 

  • Ghosh R, Xalxo R, Ghosh M (2013) Estimation of heavy metal in vegetables from different market sites of tribal based Ranchi city through ICP-OES and to assess health risk. Curr World Environ 8:435–444

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–255

    Article  Google Scholar 

  • Gonzalez-Mendoza D, Moreno AQ, Zapata-Perez O (2007) Coordinated responses of phytochelatin synthase and metallothionein genes in black mangrove, Avicennia germinans, exposed to cadmium and copper. Aquat Toxicol 83:306–314

    Article  CAS  PubMed  Google Scholar 

  • Gouia H, Suzuki A, Brulfert J, Ghorbal MH (2003) Effects of cadmium on the co-ordination of nitrogen and carbon metabolism in bean seedlings. J Plant Physiol 160:367–376

    Article  CAS  PubMed  Google Scholar 

  • Grateao PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494

    Article  CAS  Google Scholar 

  • Gupta A, Rai DK, Pandey RS, Sharma B (2009) Analysis of some heavy metals in the riverine water, sediments and fish from Ganges at Allahabad. Environ Monit Assess 157:449–458

    Article  CAS  PubMed  Google Scholar 

  • Hagemeyer J, Waisel Y (1988) Excretion of ions (Cd2+, Li+, Na+ and Cl) by Tamarix aphylla. Physiol Plant 73(4):541–546

    Article  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  PubMed  Google Scholar 

  • Han RM, Lefèvre I, Ruan CJ, Beukelaers N, Qin P, Lutts S (2012a) Effects of salinity on the response of the wetland halophyte Kosteletzkya virginica (L.) Presl. to copper toxicity. Water Air Soil Pollut 223:1137–1150

    Article  CAS  Google Scholar 

  • Han RM, Lefèvre I, Ruan CJ, Qin P, Lutts S (2012b) NaCl differently interferes with Cd and Zn toxicities in the wetland halophyte species Kosteletzkya virginica (L.) Presl. Plant Growth Regul 68:97–109

    Article  CAS  Google Scholar 

  • Han RM, Lefèvre I, Albacete A et al (2013) Antioxidant enzyme activities and hormonal status in response to Cd stress in wetland halophyte Kosteletzkya virginica under saline conditions. Physiol Plant 147:352–368

    Article  CAS  PubMed  Google Scholar 

  • Haoliang L, Yan Chongling Y, Jingchun L (2007) Low-molecular-weight organic acids exuded by Mangrove (Kandelia candel (L.) Druce) roots and their effect on cadmium species change in the rhizosphere. Environ Exp Bot 61:159–166

    Article  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  Google Scholar 

  • Hasna E, Karim BH, Maria FA, Maren M, Chedly A, Sergi MB (2013) Drought and cadmium may be as effective as salinity in conferring subsequent salt stress tolerance in Cakile maritima. Planta 237:1311–1323

    Article  CAS  Google Scholar 

  • Hawkes SJ (1997) What is a “heavy metal”. J Chem Educ 74(11):1374. https://doi.org/10.1021/ed074p1374

    Article  CAS  Google Scholar 

  • Heiss S, Wachter A, Bogs J, Cobbett C, Rausch T (2003) Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure. J Exp Bot 54:1833–1839

    Article  CAS  PubMed  Google Scholar 

  • Hong Z, Lakkineni K, Zhang Z, Verma DPS (2000) Removal of feedback inhibition of 1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain Z, Nouri MZ, Komatsu S (2012) Plant cell organelle proteomics in response to abiotic stress. J Proteome Res 11:37–48

    Article  CAS  PubMed  Google Scholar 

  • Huang GY, Wang YS (2009) Expression analysis of type 2 metallothionein gene in mangrove species (Bruguiera gymnorrhiza) under heavy metal stress. Chemosphere 77:1026–1029

    Article  CAS  PubMed  Google Scholar 

  • Jha B, Sharma A, Mishra A (2011) Expression of SbGSTU (tau class glutathione S-transferase) gene isolated from Salicornia brachiata in tobacco for salt tolerance. Mol Biol Rep 38:4823–4832

    Article  CAS  PubMed  Google Scholar 

  • Jiang LY, Yang XE, Chen JM (2008) Copper tolerance and accumulation of Elsholtzia splendens Nakai in a pot environment. J Plant Nutr 31(8):1382–1392

    Article  CAS  Google Scholar 

  • Jisha KC, Puthur JT (2014) Halopriming of seeds imparts tolerance to NaCl and PEG induced stress in Vigna radiata (L.) wilczek varieties. Physiol Mol Biol Plants 20:303–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabata Pendias A, Pendias H (2001) Trace elements in soils and plants, 3rd edn. CRC Press, Boca Raton, p 331

    Google Scholar 

  • Kadukova J, Kalogerakis N (2007) Lead accumulation from non-saline and saline environment by Tamarix smyrnensis Bunge. Eur J Soil Biol 43:216–223

    Article  CAS  Google Scholar 

  • Kadukova J, Manousaki E, Kalogerakis N (2008) Pb and Cd accumulation and phytoexcretion by salt cedar (Tamarix smyrnensis Bunge). Int J Phytoremediation 10:31–46

    Article  CAS  PubMed  Google Scholar 

  • Kamala-Kannan S et al (2008) Assessment of heavy metals (Cd, Cr and Pb) in water, sediment and seaweed (Ulva lactuca) in the Pulicat Lake, South East India. Chemosphere 71:1233–1240

    Article  CAS  PubMed  Google Scholar 

  • Katschnig D, Broekman R, Rozema J (2013) Salt tolerance in the halophyte Salicornia dolichostachya Moss: growth, morphology and physiology. Environ Exp Bot 92:32–42

    Article  CAS  Google Scholar 

  • Khodaverdiloo H, Taghlidabad RH (2013) Phytoavailability and potential transfer of Pb from a salt-affected soil to Atriplex verucifera, Salicornia europaea and Chenopodium album. Chem Ecol 30(3):216–226

    Article  CAS  Google Scholar 

  • King MA, Sogbanmu TO, Doherty F, Otitoloju AA (2012) Toxicological evaluation and usefulness of lipid peroxidation as a biomarker of exposure to crude oil and petroleum products tested against African catfish (Clarias gariepinus) and Hermit crab (Clibanarius africanus). Nat Environ Pollut Technol 11:1–6

    CAS  Google Scholar 

  • Kumari A, Sheokand S, Swaraj K (2010) Nitric oxide induced alleviation of toxic effects of short term and long term Cd stress on growth, oxidative metabolism and Cd accumulation in Chickpea. Braz J Plant Physiol 22:271–284

    Article  Google Scholar 

  • Kupper H, Kochian LV (2010) Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population). New Phytol 185:114–129

    Article  CAS  PubMed  Google Scholar 

  • Kupper H, Parameswaran A, Leitenmaier B, Trtilek M, Setlik I (2007) Cadmium induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescens. New Phytol 175:655–674

    Article  PubMed  Google Scholar 

  • Lefèvre I, Marchal G, Meerts P, Correal E, Lutts S (2009) Chloride salinity reduces cadmium accumulation by the Mediterranean halophyte species Atriplex halimus L. Environ Exp Bot 65:142–152

    Article  CAS  Google Scholar 

  • Lefèvre I, Marchal G, Edmond Ghanem M, Correal E, Lutts S (2010) Cadmium has contrasting effects on polyethylene glycol-sensitive and resistant cell lines in the Mediterranean halophyte species Atriplex halimus L. J Plant Physiol 167(5):365–374

    Article  PubMed  CAS  Google Scholar 

  • Li YM, Chaney RL, Schneiter AA (1994) Effect of soil chloride level on cadmium concentration in sunflower kernels. Plant Soil 167:275–280

    Article  CAS  Google Scholar 

  • Li W, Khan MA, Yamaguchi S, Kamiya Y (2005) Effects of heavy metals on seed germination and early seedling growth of Arabidopsis thaliana. Plant Growth Regul 46:45–50

    Article  CAS  Google Scholar 

  • Li R, Shi F, Fukuda K (2010) Interactive effects of various salt and alkali stresses on growth, organic solutes, and cation accumulation in a halophyte Spartina alterniflora (Poaceae). Environ Exp Bot 68:66–74

    Article  CAS  Google Scholar 

  • Li L, Liu X, Peijnenburg JGM, Willie, Zhao J, Chen X, Yu J, Wu H (2012) Pathways of cadmium fluxes in the root of the halophyte Suaeda salsa. Ecotoxicol Environ Saf 75:1–7

    Article  PubMed  CAS  Google Scholar 

  • Lilebo AI, Valega M, Otero M, Pardal MA, Pereira E, Duarte AC (2010) Daily and inter-tidal variations of Fe Mn and Hg in the water column of a contaminated salt marsh: halophytes effect. Estuar Coast Shelf Sci 88:91–98

    Article  CAS  Google Scholar 

  • Lokhande VH, Suprasanna P (2012) Prospectus of halophytes in understanding and managing abiotic stress tolerance. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. pp 29–56

    Google Scholar 

  • Lokhande VH, Srivastava S, Patade VY, Dwivedi S, Tripathi RD, Nikam TD, Suprasanna P (2011) Investigation of arsenic accumulation and tolerance in Sesuvium portulacastrum (L.). Chemosphere 82:529–534

    Article  CAS  PubMed  Google Scholar 

  • Lombi E, Wenzel WW, Gobran GR, Adriano DC (2001) Dependency of phytoavailability of metals on indigenous and induced rhizosphere processes: a review. In: Gobran GR, Wenzel WW, Lombi E (eds) Trace elements in the rhizosphere. CRC Press, Boca Raton, pp 3–24

    Google Scholar 

  • Lutts S, Lefèvre I (2015) How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt affected areas? Ann Bot 115:509–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutts S, Lefèvre I, Delpérée C et al (2004) Heavy metal accumulation by the halophyte species Mediterranean saltbush. J Environ Qual 33:1271–1279

    Article  CAS  PubMed  Google Scholar 

  • Lutts S, Hausman JF, Quinet M, Lefèvre I (2013) Polyamines and their roles in the alleviation of ion toxicities in plants. P Ahmad, MM Azooz, MNV Prasad, Ecophysiology and responses of plants under salt stress. Springer, New York. 315–353

    Chapter  Google Scholar 

  • Ma JG, Chai MW, Shi FC (2011) Effects of long-term salinity on the growth of the halophyte Spartina alterniflora Loisel. Afr J Biotechnol 10:17962–17968

    Article  CAS  Google Scholar 

  • Majumder AL, Sengupta S, Goswami L (2010) Osmolyte regulation in abiotic stress. In: Pareek A, Sudhir KS, Hans JB, Govindjee (eds) Abiotic stress adaptation in plants: physiological, molecular and genomic foundation. Springer, Dordrecht, pp 349–370

    Google Scholar 

  • Maksymiec W, Krupa Z (2006) The effects of short-term exposition to Cd, excess Cu ions and jasmonate on oxidative stress appearing in Arabidopsis thaliana. Environ Exp Bot 57:187–194

    Article  CAS  Google Scholar 

  • Manousaki E, Kalogerakis N (2009) Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity. Environ Sci Pollut Res 16:844–854

    Article  CAS  Google Scholar 

  • Manousaki E, Kalogerakis N (2011a) Halophytes – an emerging trend in phytoremediation. Int J Phytoremediation 13:959–969

    Article  CAS  PubMed  Google Scholar 

  • Manousaki E, Kalogerakis N (2011b) Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Ind Eng Chem Res 50(2):656–660

    Article  CAS  Google Scholar 

  • Manousaki E, Kadukova J, Papadonatonakis N, Kalogerakis N (2007) Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smyrnensis growing on contaminated non-saline and saline soils. Environ Res 106:326–332

    Article  PubMed  CAS  Google Scholar 

  • Manousaki E, Kadukova J, Papadantonakis N, Kalogerakis N (2008) Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smyrnensis growing on contaminated non-saline and saline soils. Environ Res 106:326–332

    Article  CAS  PubMed  Google Scholar 

  • Manousaki E, Galanaki K, Papadimitriou L, Kalogerakis N (2013) Metal phytoremediation by the halophyte Limoniastrum monopetalum (L.) Boiss: two contrasting ecotypes. Int J Phytoremediation 16:755–769

    Article  CAS  Google Scholar 

  • Manousaki E, Galanaki K, Papadimitriou L, Kalogerakis N (2014) Metal phytoremediation by the halophyte Limoniastrum monopetalum (L.) Boiss: two contrasting ecotypes. Int J Phytoremediation 16(7–8):755–769

    Article  CAS  PubMed  Google Scholar 

  • Marschner H, Römheld V, Horst WJ, Martin P (2007) Root induced changes in the rhizosphere: importance for the mineral nutrition of plants. J Plant Nutr Soil Sci 149:441–456

    Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Mazharia M, Homaeed M (2012) Annual halophyte Chenopidium botrys can phytoextract cadmium from contaminated soils. J Basic Appl Sci Res 2:1415–1422

    Google Scholar 

  • Mesnoua M, Mateos-Naranjo E, Barcia-Piedras JM, Perez-Romero JA, Lotmani B, Redondo-Gomez S (2016) Physiological and biochemical mechanisms preventing Cd-toxicity in the hyperaccumulator Atriplex halimus L. Plant Physiol Biochem 106:30–38

    Article  CAS  PubMed  Google Scholar 

  • Mil-Homens M, Vale C, Raimundo J, Pereira P, Brito P, Caetano M (2014) Major factors influencing the elemental composition of surface estuarine sediments: the case of 15 estuaries in Portugal. Mar Pollut Bull 84:135–146

    Article  CAS  PubMed  Google Scholar 

  • Milic D, Lukovic´ J, Ninkov J et al (2012) Heavy metal content in halophytic plants from inland and maritime saline areas. Cent Eur J Biol 7:307–317

    CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK (2006) Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65:1027–1039

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mnasri M, Ghabriche R, Fourati E, Zaier H, Sabally K, Barrington S, Lutts S, Abdelly C, Ghnaya T (2015) Cd and Ni transport and accumulation in the halophyte Sesuvium portulacastrum: implication of organic acids in these processes. Front Plant Sci 6:1–9

    Article  Google Scholar 

  • Moghaieb REA, Saneoka H, Fujita K (2004) Effect of salinity on osmotic adjustment, glycinebetaine accumulation and the betaine aldehyde dehydrogenase gene expression in two halophytic plants Salicornia europaea and Suaeda maritima. Plant Sci 166:1345–1349

    Article  CAS  Google Scholar 

  • Muhlingh KH, Lauchli A (2003) Interaction of NaCl and Cd stress on compartmentation pattern of cations, antioxidant enzymes and proteins in leaves of two wheat genotypes differing in salt tolerance. Plant Soil 253:219–231

    Article  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Najeeb U, Jilanic G, Alia S, Sarward M, Xua L, Zhoua W (2011) Insights into cadmium induced physiological and ultra-structural disorders in Juncus effusus L. and its remediation through exogenous citric acid. J Hazard Mater 186:565–574

    Article  CAS  PubMed  Google Scholar 

  • Nalla S, Hardaway CJ, Sneddon J (2012) Phytoextraction of selected metals by the first and second growth seasons of Spartina alterniflora. Instrum Sci Technol 40(1):17–28

    Article  CAS  Google Scholar 

  • Nedjimi B, Daoud Y (2009) Cadmium accumulation in Atriplex halimus subsp. schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora 204:316–324

    Article  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Nunes da Silva M, Mucha AP, Rocha AC, Silva C, Carli C, Gomes CR, Almeida CMR (2014) Evaluation of the ability of two plants for the phytoremediation of Cd in salt marshes. Estuar Coast Shelf Sci 141:78–84

    Article  CAS  Google Scholar 

  • Ouzounidou G, Moustakas M, Eleftheriou EP (1997) Physiological and ultrastructural effects of cadmium on wheat (Triticum aestivum L.) leaves. Arch Environ Contam Toxicol 32:154–160

    Article  CAS  PubMed  Google Scholar 

  • Ozawa T, Miura M, Fukuda M, Kakuta S (2009) Cadmium tolerance and accumulation in a halophyte Salicornia europaea as a new candidate for phytoremediation of saline soils. Sci Rep Grad Sch Life Environ Sci Osaka Pref Univ 60:1–8

    Google Scholar 

  • Pal M, Horváth E, Janda T, Páldi E, Szalai G (2006) Physiological changes and defense mechanisms induced by cadmium stress in maize. J Plant Nutr Soil Sci 169:239–246

    Article  CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Park J, Song WY, Ko D, Eom Y, Hansen TH, Schiller M, Lee TG, Martinoia E, Lee Y (2012) The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J 69:278–288

    Article  CAS  PubMed  Google Scholar 

  • Parmar P, Kumari N, Sharma V (2013) Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress. Bot Stud. https://doi.org/10.1186/1999-3110-54-45

    Article  PubMed  PubMed Central  Google Scholar 

  • Paul D (2017) Research on heavy metal pollution of river Ganga: a review. Ann Agrar Sci 15:278–286

    Article  Google Scholar 

  • Pedro CA, Santos MSS, Ferreira SMF, Goncalves SC (2013) The influence of cadmium contamination and salinity on the survival, growth and phytoremediation capacity of the saltmarsh plant Salicornia ramosissima. Mar Environ Res 92:197–205

    Article  CAS  PubMed  Google Scholar 

  • Pohlmeier A (2004) Metal speciation, chelation and complexing ligands in plants. In: Prasad MNV (ed) Heavy metal stress in plants: from biomolecules to ecosystems. Springer, New Delhi

    Google Scholar 

  • Prasad MNV (1995) Cadmium toxicity and tolerance in vascular plants. Environ Exp Bot 35:525–545

    Article  CAS  Google Scholar 

  • Prasad S, Mathur A, Rupaniwar DC (1989) Heavy metal distribution in the sediment and river confluence points of river Ganga in Varanasi Mirzapur region. Asian Environ 11:73–82

    CAS  Google Scholar 

  • Qiu RL, Zhao X, Tang YT, Yu FM, Hu PJ (2008) Antioxidative response to Cd in a newly discovered cadmium hyperaccumulator, Arabis paniculata F. Chemosphere 74:6–12

    Article  CAS  PubMed  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    Article  CAS  PubMed  Google Scholar 

  • Reboreda R, Caçador I (2008) Enzymatic activity in the rhizosphere of Spartina maritima: potential contribution for phytoremediation of metals. Mar Environ Res 65:77–84

    Article  CAS  PubMed  Google Scholar 

  • Redondo-Gómez S (2013) Bioaccumulation of heavy metals in Spartina. Funct Plant Biol 40:913–921

    Article  CAS  Google Scholar 

  • Redondo-Gómez S, Mateos-Naranjo E, Andrades-Moreno L (2010) Accumulation and tolerance characteristics of cadmium in a halophytic Cd hyperaccumulator Arthrocnemum macrostachyum. J Hazard Mater 184:299–307

    Article  PubMed  CAS  Google Scholar 

  • Remans T, Opdenakker K, Smeets K, Mathijsen D, Vangronsveld J, Cuypers A (2010) Metal-specific and NADPH oxidase dependent changes in lipoxygenase and NADPH oxidase gene expression in Arabidopsis thaliana exposed to cadmium or excess copper. Funct Plant Biol 37:532–544

    Article  CAS  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher-plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384

    Article  CAS  Google Scholar 

  • Rodrigo-Moreno A, Andrés-Colás N, Poschenrieder C, Gunsé B, Peñarrubia L, Shabala S (2013) Calcium- and potassium-permeable plasma membrane transporters are activated by copper in Arabidopsis root tips: linking copper transport with cytosolic hydroxyl radical production. Plant Cell Environ 36:844–855

    Article  CAS  PubMed  Google Scholar 

  • Rodrıguez-Serrano M, Romero-Puertas MC, Zabalza A et al (2006) Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ 29:1532–1544

    Article  PubMed  CAS  Google Scholar 

  • Rouhier N, Lemaire SD, Jacquot JP (2008) The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. Annu Rev Plant Biol 59:143–166

    Article  CAS  PubMed  Google Scholar 

  • Rui-Ming H, Lef’ever I, Albacete A, Perez-Alfocea F, Barba-Espin G, Diaz- Vivancos P, Quinet M, Cheng-Jiang R, Jose AH, Cantero-Navarro E, Lutts S (2013) Antioxidant enzyme activities and hormonal status in response to Cd stress in the wetland halophyte Kosteletzkya virginica under saline conditions. Physiol Plant 147:352–368

    Article  CAS  Google Scholar 

  • Sai Kachout S, Ben Mansoura A, Leclerc JC, Mechergui R, Rejeb MN, Ouerghi Z (2009) Effects of heavy metals on antioxidant activities of Atriplex hortensis and A rosea. Electron J Environ Agric Food Chem 9:444–457

    Google Scholar 

  • Sai Kachout SS, Ben Mansoura A, Mechergui R, Leclerc JC, Rejeb MN, Ouerghi Z (2012) Accumulation of Cu, Pb, Ni and Zn in the halophyte plant Atriplex grown on polluted soil. J Sci Food Agric 92:336–342

    Article  CAS  Google Scholar 

  • Sai Kachout S, Ben Mansoura A, Ennajah A, Leclerc JC, Ouerghi Z, Karray Bouraoui N (2015) Effects of metal toxicity on growth and pigment contents of annual Halophyte (A. hortensis and A. rosea). Int J Environ Res 9(2):613–620

    CAS  Google Scholar 

  • Sandalio L, Dalurzo HC, Gómez M, Romero Puertas M, del Río LA (2001) Cadmium induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    Article  CAS  PubMed  Google Scholar 

  • Sanitá di Tpooi L, Gabbrielli R (1999) Response to Cd in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Santos MSS, Pedro CA, Goncalves SC, Ferreira SMF (2015) Phytoremediation of cadmium by the facultative halophyte plant Bolboschoenus maritimus (L.) Palla, at different salinities. Environ Sci Pollut Res 22(20):15598–15609

    Article  CAS  Google Scholar 

  • Santos E, Abreu M, Peres S, Magalhaes M, Leitao S, Pereira A, Cerejeira MJ (2017) Potential of Tamarix africana and other halophyte species for phytostabilisation of contaminated salt marsh soils. J Soils Sediments 17:1459–1473

    Article  CAS  Google Scholar 

  • Semane B, Cuypers A, Smeets K, Belleghem VF (2007) Cadmium responses in Arabidopsis thaliana: glutathione metabolism and antioxidative defence system. Physiol Plant 129:519–528

    Article  CAS  Google Scholar 

  • Sengar RS, Gupta S, Gautam M, Sharma A, Sengar K (2008) Occurrence, uptake, accumulation and physiological responses of nickel in plants and its effects on environment. Res J Phytochem 2:4–60

    Article  Google Scholar 

  • Sghaier DB, Duarte B, Bankaji I, Caçador I, Sleimi N (2015) Growth, chlorophyll fluorescence and mineral nutrition in the halophyte Tamarix gallica cultivated in combined stress conditions: arsenic and NaCl. J Photochem Photobiol B: Biol 149:204–214

    Article  CAS  Google Scholar 

  • Shabala S (2012) Plant stress physiology. Cabi, Cambridge, MA

    Book  Google Scholar 

  • Shackira AM, Puthur JT (2013) An assessment of heavy metal contamination in soil sediments, leaves and roots of Acanthus ilicifolius L. Proceedings of 23rd Swadeshi Science Congress. pp 689–692

    Google Scholar 

  • Shackira M, Puthur JT (2017) Enhanced phytostabilization of cadmium by a halophyte—Acanthus ilicifolius L. Int J Phytoremediation 19(4):319–326

    Article  CAS  PubMed  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726

    Article  CAS  PubMed  Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    Article  CAS  PubMed  Google Scholar 

  • Sharma GI, Agarwal PK, Jha B (2010) Accumulation of heavy metals and its biochemical responses in Salicornia brachiata, an extreme halophyte. Mar Biol Res 6:511–518

    Article  Google Scholar 

  • Shevyakova NI, Netronina IA, Aronova EE, Kuznetsov VIV (2003) Compartmentation of cadmium and iron in Mesembryanthemum crystallinum plants during the adaptation to cadmium stress. Russ J Plant Physiol 179:57–64

    Google Scholar 

  • Shi J, Li LQ, Pan GX (2009) Variation of grain Cd and Zn concentrations of 110 hybrid rice cultivars grown in a low-Cd paddy soil. J Environ Sci 21:168–172

    Article  CAS  Google Scholar 

  • Singh PK, Tewari RK (2003) Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants. J Environ Biol 24:107–112

    CAS  PubMed  Google Scholar 

  • Singh RP, Dayal G, Taneja A, Kapoor CK (1993) Enrichment of Zn, Cd, Pb, and Cu, in the surface micro layer of river Ganga along Kanpur city. Pollut Res 12:161–165

    Google Scholar 

  • Sousa AI, Caçador I, Lillebø AI, Pardal MA (2008) Heavy metal accumulation in Halimione portulacoides: intra- and extra-cellular metal binding sites. Chemosphere 710:850–857

    Article  CAS  Google Scholar 

  • Srinivasa Reddy M, Basha S, Sravan Kumar VG, Joshi HV, Ghosh PK (2003) Quantification and classification of ship scraping waste at Alang–Sosiya, India. Mar Pollut Bull 46:1609–1614

    Article  CAS  PubMed  Google Scholar 

  • Stocker R, Keaney JF (2004) Role of oxidative modifications in atherosclerosis. Physiol Rev 84:1381–1478

    Article  CAS  PubMed  Google Scholar 

  • Subbarao GV, Levine LH, Wheeler RM, Stutte GW (2001) Glycine betaine accumulation accumulation: its role in stress resistance in crop plants. In: Perssarakli M (ed) Handbook of plant and crop physiology. Marcel Dekker, New York, pp 881–907

    Google Scholar 

  • Sun Z, Mou X, Sun W (2016) Decomposition and heavy metal variations of the typical halophyte litters in coastal marshes of the Yellow River estuary, China. Chemosphere 147:163–172

    Article  CAS  PubMed  Google Scholar 

  • Syakti AD et al (2015) Heavy metal concentrations in natural and human-impacted sediments of Segara Anakan Lagoon, Indonesia. Environ Monit Assess 187:4079. https://doi.org/10.1007/s10661-014-4079-9

    Article  CAS  PubMed  Google Scholar 

  • Szabados L, Savour A (2009) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  PubMed  CAS  Google Scholar 

  • Taamalli M, Ghabriche R, Amari T, Mnasri M, Zolla L, Lutts S, Abdely C, Ghnaya T (2014) Comparative study of Cd tolerance and accumulation potential between Cakile maritima L.(halophyte) and Brassica juncea L. Ecol Eng 71:623–627

    Article  Google Scholar 

  • Tamas L, Dudikova J, Durcekova K, Haluskova L, Huttova J, Mistrik I (2009) Effect of cadmium and temperature on the lipoxygenase activity in barley root tip. Protoplasma 235:7–25

    Article  CAS  Google Scholar 

  • Tao YM, Chen YZ, Tan T, Liu XC, Yang DL, Liang SC (2012) Comparison of antioxidant responses to cadmium and lead in Bruguiera gymnorrhiza seedlings. Biol Plant 56:149–152

    Article  CAS  Google Scholar 

  • Tewari A, Joshi HV, Trivedi RH, Srvankumar VG, Raghunathan C, Khambhati Y, Kotiwar OS, Mandal SK (2001) Studies on the effect of ship scraping industry and its associated waste on the biomass production and biodiversity of biota in in-situ condition at Alang. Mar Pollut Bull 42:462–469

    Article  CAS  PubMed  Google Scholar 

  • Thomas JC, Malick FK, Endreszl C, Davies EC, Murray KS (1998) Distinct response to copper stress in the halophyte Mesembryanthemum crystallinum. Physiol Plant 102:310–317

    Article  Google Scholar 

  • Vahedi A (2013) The absorption and metabolism of heavy metals and mineral matters in the halophyte plant Artemisia aucheri. Int J Biol 5:63–70

    CAS  Google Scholar 

  • Van Oosten MJ, Maggio A (2015) Functional biology of halophytes in the phytoremediation of heavy metal contaminated soils. Environ Exp Bot 111:135–146

    Article  CAS  Google Scholar 

  • Vromman D, Flores-Bavestrello A, Slejkovec Z et al (2011) Arsenic accumulation and distribution in relation to young seedling growth in Atriplex atacamensis Phil. Sci Total Environ 412(413):286–295

    Article  PubMed  CAS  Google Scholar 

  • Wali M, Ben Rjab K, Gunse B et al (2014) How does NaCl improve tolerance to cadmium in the halophyte Sesuvium portulacastrum? Chemosphere 117:243–250

    Article  CAS  Google Scholar 

  • Walker DJ, Lutts S, Sanchez-Garcıa M, Correal E (2014) Atriplex halimus: its biology and uses. J Arid Environ 100(101):111–121

    Article  Google Scholar 

  • Wang H, Zhong G (2011) Effect of organic ligands on accumulation of copper in hyperaccumulator and nonaccumulator Commelina communis. Biol Trace Elem Res 143(1):489–499

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Zeng B, Sun Z, Zhu C (2009) Relationship between proline and Hg2 +-induced oxidative stress in a tolerant rice mutant. Arch Environ Contam Toxicol 56:723–731

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Wang H, Han B et al (2012) Sodium instead of potassium and chloride is an important macronutrient to improve leaf succulence and shoot development for halophyte Sesuvium portulacastrum. Plant Physiol Biochem 51:53–62

    Article  CAS  PubMed  Google Scholar 

  • Wang HL, Tian CY, Jiang L, Wang L (2014) Remediation of heavy metals contaminated saline soils: a halophyte choice? Environ Sci Technol 48:21–22

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Osaki M (2002) Mechanism of adaptation to high aluminium condition in native plant species growing in acid soils: a review. Commun Soil Sci Plant Anal 33:1247–1260

    Article  CAS  Google Scholar 

  • Weber H, Chetelat A, Reymond P, Farmer EE (2004) Selective and powerful stress gene expression in Arabidopsis in response to malondialdehyde. Plant J 37:877–888

    Article  CAS  PubMed  Google Scholar 

  • Wei ZW, Wong JJ, Chen D (2003) Speciation of heavy metal binding non protein thiols in Agropyronelongaturn by size-exclusion HPLC-ICP-MS. Microchem J 74:207–213

    Article  CAS  Google Scholar 

  • Weis J, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 169:737–745

    Google Scholar 

  • Wong SC, Li XD, Zhang G, Qi SH, Min YH (2002) Heavy metals in agricultural soils of the Pearl River Delta, South China. Environ Pollut 119:33–44

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Liu X, Zhao J, Yu J (2013) Regulation of metabolites, gene expression, and antioxidant enzymes to environmentally relevant lead and zinc in the halophyte Suaeda salsa. J Plant Growth Regul 32(2):353–361

    Article  CAS  Google Scholar 

  • Xiang C, Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10:1539–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Yin HX, Liu X, Li X (2010) Salt affects plants Cd-stress responses by modulating growth and Cd accumulation. Planta 231(2):449–459

    Article  CAS  PubMed  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179

    Article  CAS  Google Scholar 

  • Yadav G, Srivastava PK, Singh VP, Prasad SM (2014) Light intensity alters the extent of arsenic toxicity in Helianthus annuus L. seedlings. Biol Trace Elem Res 158:410–421

    Article  CAS  PubMed  Google Scholar 

  • Ying RR, Qiu RL, Tang YT, Hu PJ, Chen QH, Shi HR, TH Morel JL (2010) Cadmium tolerance of carbon assimilation enzymes and chloroplast in Zn/Cd hyperaccumulator Picris divaricata. J Plant Physiol 167:81–87

    Article  CAS  PubMed  Google Scholar 

  • Zachmann DW, Mohanti M, Treutler HC, Scharf B (2009) Assessment of element distribution and heavy metal contamination in Chilika Lake sediments (India). Lakes Reserv Res Manag 14:105–125

    Article  CAS  Google Scholar 

  • Zaier H, Ghnaya T, Lakhdar A et al (2010) Comparative study of Pb-phytoextraction potential in Sesuvium portulacastrum and Brassica juncea: tolerance and accumulation. J Hazard Mat 183:609–615

    Article  CAS  Google Scholar 

  • Zeng FX, Mab LQ, Qiua R, Tanga Y (2009) Responses of non-protein thiols to Cd exposure in Cd hyperaccumulator Arabis paniculata. Environ Exp Bot 66:242–248

    Article  CAS  Google Scholar 

  • Zhang F, Wang Y, Zhi Ping L, Jun De D (2007) Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere 67:44–50

    Article  CAS  PubMed  Google Scholar 

  • Zhang JE, Liu JL, Zhao BL (2011) Physiological responses of mangrove Sonneratia apetala buch-ham plant to wastewater nutrients and heavy metals. Int J Phytoremediation 13:456–464

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Wei G, Li J, Qian Q, Yu J (2004) Silicon alleviates salt stress and increases antioxidant enzyme activity in leaves of salt-stresses cucumber (Cucumis sativus L.). Plant Sci 167:527–533

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumari, A. et al. (2019). Halophyte Growth and Physiology Under Metal Toxicity. In: Hasanuzzaman, M., Nahar, K., Öztürk , M. (eds) Ecophysiology, Abiotic Stress Responses and Utilization of Halophytes. Springer, Singapore. https://doi.org/10.1007/978-981-13-3762-8_5

Download citation

Publish with us

Policies and ethics