Skip to main content

Behavior of Halophytes and Their Tolerance Mechanism Under Different Abiotic Stresses

  • Chapter
  • First Online:
Ecophysiology, Abiotic Stress Responses and Utilization of Halophytes

Abstract

Chemical toxicity, drought, extreme temperatures, salinity, and oxidative stress, these are the abiotic stresses, and they are menace to field production and the nature of the environment. Toxic environmental conditions cause a major hazard in crops and affect the plant growth. Morphological, physiological, biochemical, and molecular changes adversely cause loss in productivity worldwide. Because of increase in stresses, the devastating global effects are observed in arable land, resulting in 30% land loss, and it may be up to 50% by the year 2050. The first approach is to increase crop production dramatically which depends on improving plant productivity under stress conditions. Halophytes could be a leading choice to meet the respective goal. Inhabiting areas for halophytic plants range from inland desert to wetland areas. To tolerate different types of stresses, halophytes have been considered better as compared to glycophytic plants. These plants have adapted themselves with the simple mechanisms like compartmentalization and accumulation of organic solutes. Under drought stress, these plants express differential response to water deficit. During drought stress, plants evolve a number of strategies including high tolerance, storage of a large amount of water, and compartmentalization of salinity in mesophyll cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 05 July 2019

    This book was inadvertently published with an incorrect affiliation of Dr. Pooja in chapters 2, 5 and 9.

References

  • Aken BV (2008) Transgenic plants for phytoremediation: helping nature to clean up environmental pollution. Cell Biol 26:225–227

    Google Scholar 

  • Alkio M, Tabuchi TM, Wang X, Colon-Carmona A (2005) Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response-like symptoms. J Exp Bot 56:2983–2994

    Article  CAS  PubMed  Google Scholar 

  • Azevedo Neto AJ, Prisco JT, Eneas-Filho J, Braga de Abreu CE, Gomes Filho E (2006) Effects of salt stress on antioxidative enzymes and lipid peroxidation in leaves and root of salt-tolerant and salt-sensitive maize genotypes. Environ Exp Bot 56:87–94

    Article  Google Scholar 

  • Ball MC, Chow WS, Anderson JM (1987) Salinity induced potassium deficiency causes loss of functional photosystem II in leaves of the grey mangrove, Avicennia marina, through depletion of atrazine-binding polypeptide. J Plant Physiol 14:351–361

    CAS  Google Scholar 

  • Booth WA, Beardall J (1991) Effect of salinity on inorganic carbon utilization and carbonic anhydrase activity in the halotolerant alga Dunaliella salina (Chlorophyta). Phycologia 30:220–225

    Article  Google Scholar 

  • Cakmak (2002) Plant nutrition research priorities to meet human needs for food in sustainable ways. Istanbul, Turkey Plant Soil 247:3–24

    Article  CAS  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    Article  CAS  Google Scholar 

  • Epstein E, Norlyn J, Rush D, Kingsbury R, Kelley D, Cunningham G, Wrona A (1980) Saline culture of crops: a genetic approach. Science 210:399–404

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Yeo A (1995) Breeding for salinity resistance in crops plants: where next? Aust J Plant Physiol 22:875–884

    Google Scholar 

  • Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct Plant Biol 37:604–612

    Article  Google Scholar 

  • Ghnaya T, Slama I, Messedi D, Grignon C, Ghorbel MH, Abdelly C (2007) Cd-induced growth reduction in the halophyte Sesuvium portulacastrum is significantly improved by NaCl. J Plant Res 120:309–316

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Goldschmidt VM (1954) Geochemistry. Clarendon Press, Oxford, p 730

    Google Scholar 

  • Gupta NK, Meena SK, Gupta S, Khandelwal SK (2002) Gas exchange, membrane permeability and ion uptake in two species of Indian jujube differing in salt tolerance. Photosynthetica 40:535–539

    Article  CAS  Google Scholar 

  • Gyuricza V, Fodor F, Szigeti Z (2010) Phytotoxic effects of heavy metal contaminated soil reveal limitations of extract-based Ecotoxicological tests. Water Air Soil Pollut 210:113–122

    Article  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  • Hayashi H, Murata N (1998) Genetically engineered enhancement of salt tolerance in higher plants. In: Sato Murata N (ed) Stress responses of photosynthetic organisms: molecular and molecular regulation. Elsevier, Ansterdam, pp 133–148

    Chapter  Google Scholar 

  • Hellebust JA (1976) Annu Rev Plant Physiol 27:485–505

    Article  CAS  Google Scholar 

  • Hernandez JA, Ferrer MA, Jimenez A, Barcelo AR, Sevilla F (2001) Antioxidant systems and O2/H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol 127:817–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong GJ, Xue XY, Mao YB, Wang LJ, Chen XY (2012) Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. Plant Cell 24:2635–2648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jammes F, Song C, Shin D, Munemasa S, Takeda K, GU D (2009) MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proc Natl Acad Sci U S A 106:20520–20525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jithesh MN, Prashanth SR, Sivaprakash KR, Parida AK (2006) Antioxidative response mechanisms in halophytes: their role in stress defense. J Genet 85(3):237–254

    Article  CAS  PubMed  Google Scholar 

  • Jordan FL, Robin-Abbott M, Maier RM, Glenn EP (2002) A comparison of chelator-facilitated metal uptake by a halophyte and a glycophyte. Environ Toxicol Chem 21(12):2698–2704

    Article  CAS  PubMed  Google Scholar 

  • Joset F, Jeanjean R, Hagemann M (1996) Dynamics of the response of cyanobacteria to salt stress: deciphering the molecular events. Physiol Plant 96:738–744

    Article  CAS  Google Scholar 

  • Ketchum REB, Warren RC, Klima LJ, Lopez-Gutierrez F, Nabors MW (1991) The mechanism and regulation of proline accumulation in suspension cultures of the halophytic grass Distichlis spicata L. J Plant Physiol 137:368–374

    Article  CAS  Google Scholar 

  • Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levitt J (1980) Responses of plant to environmental stress: water, radiation, salt and other stresses. Academic Press, New York, p 365

    Google Scholar 

  • Lokhande VH, Srivastava S, Patade VY, Dwivedi S, Tripathi RD, Nikam TD, Suprasanna P (2011) Investigation of arsenic accumulation and tolerance potential of Sesuvium portulacastrum (L.). Chemosphere 82:529–534

    Article  CAS  PubMed  Google Scholar 

  • Marco F, Bitrian M, Carrasco P, Rajam MV, Alcazar R, Tiburcio AF (2015) Genetic engineering strategies for abiotic stress tolerance in plants. In: Bahadur B, Rajam MV, Sahijram L, Krishnmurthy KV (eds) Plant biology and biotechnology. Springer, New York, pp 579–609

    Chapter  Google Scholar 

  • Maris PA, Blumwald E (2007) Na+ transport in plants. FEBS Lett 581:2247–2254

    Article  Google Scholar 

  • Marschner H (1986) Mineral nutrition in higher plants. Academic, London, pp 477–542

    Google Scholar 

  • Messedi D (2004) Limits imposed by salt to the growth of the halophytes Sesuvium portulacastrum. J Plant Nutr Soil Sci 167:720–725

    Article  CAS  Google Scholar 

  • Miller G, Suzuki N, CiftciYilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 33(4):453–467

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance bringing them together. New Phytol 167:645–663

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Pivetz BE (2001) Ground water issue: phytoremediation of contaminated soil and ground water at hazardous waste sites. EPA/540/S-01/ 500. EPA, Washington DC, p 36

    Google Scholar 

  • Seki M, Ishida J, Narusaka M, Fujita M, Umezawa T, Kamiya A, Nakajima M, Enju A, Sakurai T (2002) Monitoring the expression pattern of around 7000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct Integr Genomics 2:282–291

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Pooja, Devi A, Pawan (2016) Effect of salt stress (NaCl) on different growth parameters, photosynthetic pigments and lipid peroxidation in the leaves of local cultivar of tomato (Solanum lycopersicum). Int J Recent Sci Res 7:14413–14419

    Google Scholar 

  • Shekari F (2000) Effect of drought stress on phenology, water relations, growth, yield and quality canola, doctorate thesis in the field of Agriculture. University of Tabriz. 180

    Google Scholar 

  • Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci U S A 97:6896–6901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slama I, Ghnaya T, Savoure A, Abdelly C (2008) Combined effects of long term salinity and soil drying on growth, water relations, nutrient status and proline accumulation of Sesuvium portulacastrum. C R Biol 331:442–451

    Article  CAS  PubMed  Google Scholar 

  • Slama I, Abdelly C, Bouchereau A, Flowers T, Savoure A (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115(3):433–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suprasanna P, Teixeira da Silva JA, Bapat VA (2005) Plant abiotic stress, sugars and transgenic: a perspective. In: Teixcira da Silva JA (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues. Global Science Publishers, London, pp 86–93

    Google Scholar 

  • Szabados L, Savoure A (2009) Proline: a multifunctinal amino acid. Trends Plant Sci 15(2):89–97

    Article  CAS  PubMed  Google Scholar 

  • Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135:1697–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tennstedt P, Peisker D, Bottcher C, Trampczynska A, Clemens S (2009) Phytochelatin synthesis is essential for the detoxification of excess zinc and contributes significantly to the accumulation of zinc. Plant Physiol 149:938–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuteja N (2007) Abscisic acid and abiotic stress signaling. Plant Signal Behav 2:135–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Xing Y, Jia WS, Zhang JH (2008) AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis. Plant J 54:440–451

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Zhu JK (2003) Regulation of abscisic acid biosynthesis. Plant Physiol 133:29–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav SK (2010) Heavy metal toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179

    Article  CAS  Google Scholar 

  • Zabłudowska E, Kowalska J, Jedynak L, Wojas S, Skłodowska A, Antosiewicz DM (2009) Search for a plant for phytoremediation – what can we learn from field and hydroponic studies? Chemosphere 77:501–507

    Article  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, A. et al. (2019). Behavior of Halophytes and Their Tolerance Mechanism Under Different Abiotic Stresses. In: Hasanuzzaman, M., Nahar, K., Öztürk , M. (eds) Ecophysiology, Abiotic Stress Responses and Utilization of Halophytes. Springer, Singapore. https://doi.org/10.1007/978-981-13-3762-8_2

Download citation

Publish with us

Policies and ethics