Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSCOMPUTAT))

  • 440 Accesses

Abstract

To model the functionally graded piezoelectric material (FGPM), the theoretical concepts of piezoelectric material and functionally graded material (FGM) both are needed. The basic introduction of piezoelectric material along with the fundamentals of FGM is needed before carrying out the study of FGPM. This chapter deals with the introduction of FGM and the concept of FGPM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2012) Functionally graded material: an overview. In: Proceedings of the World congress on engineering, WCE 2012

    Google Scholar 

  2. Craig B (1989) Limitations of alloying to improve the threshold for hydrogen stress cracking of steels. Hydrog Eff Mater Behav 955-963

    Google Scholar 

  3. Rajput RK (2008) Manufacturing technology. Laxmi Publication, India

    Google Scholar 

  4. Wang SS (1983) Fracture mechanics for delamination problems in composite materials. J Compos Mater 17(3):210–223

    Article  CAS  Google Scholar 

  5. Hirai T (1996) Functional gradient materials. Mater Sci Technol

    Google Scholar 

  6. Shanmugavel P, Bhaskar GB, Chandrasekaran M, Mani PS, Srinivasan SP (2012) An overview of fracture analysis in functionally graded materials. Eur J Sci Res 68(3):412–439

    Google Scholar 

  7. Atai AA, Nikranjbar A, Kasiri R (2012) Buckling and post-buckling behavior of semicircular functionally gradient material arches: a theoretical study. J Mech Sci 226:607–614

    Article  Google Scholar 

  8. Knoppers GE, Gunnink JW, Van den Hout J, Van Wliet WP (2005) The reality of functionally graded material products. In: Intelligent production machines and systems: first I* PROMS virtual conference, pp 467–474. Elsevier, Amsterdam

    Google Scholar 

  9. Jin ZH, Paulino GH (2001) Transient thermal stress analysis of an edge crack in a functionally graded material. Int J Fract 107(1):73–98

    Article  CAS  Google Scholar 

  10. Yung YY, Munz D (1996) Stress analysis in a two materials joint with a functionally graded material. Funct Graded Mater 41–46

    Google Scholar 

  11. Delale F, Erdogan F (1983) The crack problem for a nonhomogeneous plane. J Appl Mech 50(3):609–614

    Article  Google Scholar 

  12. Jin ZH, Batra RC (1996) Stress intensity relaxation at the tip of an edge crack in a functionally graded material subjected to a thermal shock. J Therm Stress 19(4):317–339

    Article  Google Scholar 

  13. Chung YL, Chi SH (2001) The residual stress of functionally graded materials. J Chin Inst Civ Hydraul Eng 13:1–9

    Google Scholar 

  14. Chi SH, Chung YL (2002) Cracking in sigmoid functionally graded coating. J Mech 18:41–53

    CAS  Google Scholar 

  15. Chi SH, Chung YL (2006) Mechanical behavior of functionally graded material plates under transverse load—part i: analysis. Int J Solids Struct 43(13):3657–3674

    Article  Google Scholar 

  16. Uchino K (1996) Piezoelectric actuators and ultrasonic motors. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  17. Zhu XH, Meng ZY (1995) Operational principle, fabrication and displacement characteristic of a functionally gradient piezoelectric ceramic actuator. Sens Actuators 48:169–176

    Article  CAS  Google Scholar 

  18. Almajid A, Taya M, Takagi K, Li JF, Watanabe R (2002) Fabrication and modeling of porous FGM piezoelectric actuators. Smart Mater Struct 4701:467–476

    Google Scholar 

  19. Rubio WM, Vatanabe SL, Paulino GH, Silva EC (2011) Functionally graded piezoelectric material systems–a multiphysics perspective. Advanced computational materials modeling: from classical to multi-scale techniques, pp 301–39

    Chapter  Google Scholar 

  20. Pandey VB, Parashar SK (2016) Investigation of static and dynamic behavior of functionally graded piezoelectric actuated Poly-Si micro cantilever probe. In: AIP conference proceedings 2016, vol 1724, No 1. AIP Publishing, New York, p 020112

    Google Scholar 

  21. Yamada K, Yamazaki D, Nakamura K (2001) A functionally graded piezoelectric material created by an internal temperature gradient. Jpn J Appl Phys 40(1A):L49

    Article  CAS  Google Scholar 

  22. Pandey VB, Parashar SK (2015) Static and dynamic analysis of functionally graded piezoelectric material beam. Shaker

    Google Scholar 

  23. Samadhiya R, Mukherjee A (2006) Functionally graded piezoceramic ultrasonic transducers. Smart Mater Struct 15(6):1627

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Sharma .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, P. (2019). Basics of FGM and FGPM. In: Vibration Analysis of Functionally Graded Piezoelectric Actuators. SpringerBriefs in Applied Sciences and Technology(). Springer, Singapore. https://doi.org/10.1007/978-981-13-3717-8_3

Download citation

Publish with us

Policies and ethics