Skip to main content

Introduction to Ideal Characteristics and Advanced Biomedical Applications of Biomaterials

  • Chapter
Biomedical Engineering and its Applications in Healthcare

Abstract

Biomaterial intervention in healthcare is inevitable, rather required for a better life. They are well practiced from ancient times, and the successive evolution made them more potent, versatile, and easy for clinical practice. However, the mimicking of the materials is not at all absolute, and in some cases it is very minimal as compared to the native tissues. The course of development of a biomaterial needs a strong understanding of the basic characteristics of the material behavior in bioenvironmental. The chapter discusses the various types of biomaterials starting from polymers to composites, and it presents the detailed information about the required ideal characteristics of a biomaterial like biocompatibility, bio-inertness, bioactivity, bioabsorbable pattern, bio-adaptability, sterilization, etc. In contemporary medical technology, biomaterials play a major role to answer many complications with high accuracy. The chapter primarily focuses on the latest advancements in biomaterials for major areas like orthopedics, cardiovascular, ophthalmology, neuronal, etc. Further, the chapter gives special emphasis on tissue engineering aspect of biomaterials to the regeneration of tissues and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal CM (1998) Reconstructing the human body using biomaterials. JOM 50:31–35

    Article  CAS  Google Scholar 

  • Aguzzi C, Sandri G, Bonferoni C, Cerezo P, Rossi S, Ferrari F, Caramella C, Viseras C (2014) Solid state characterisation of silver sulfadiazine loaded on montmorillonite/chitosan nanocomposite for wound healing. Colloids Surf B: Biointerfaces 113:152–157

    Article  CAS  PubMed  Google Scholar 

  • Ahmad M, Manzoor K, Ikram S (2019) Chitosan nanocomposites for bone and cartilage regeneration. In: Applications of nanocomposite materials in dentistry. Elsevier

    Google Scholar 

  • Akturk O, Kismet K, Yasti AC, Kuru S, Duymus ME, Kaya F, Caydere M, Hucumenoglu S, Keskin D (2016) Collagen/gold nanoparticle nanocomposites: a potential skin wound healing biomaterial. J Biomater Appl 31:283–301

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Lorenzo C, Anguiano-Igea S, Varela-García A, Vivero-Lopez M, Concheiro A (2018) Bioinspired hydrogels for drug-eluting contact lenses. Acta Biomater

    Google Scholar 

  • Archana D, Singh BK, Dutta J, Dutta P (2013) In vivo evaluation of chitosan–PVP–titanium dioxide nanocomposite as wound dressing material. Carbohydr Polym 95:530–539

    Article  CAS  PubMed  Google Scholar 

  • Arora M, Chan EK, Gupta S, Diwan AD (2013) Polymethylmethacrylate bone cements and additives: a review of the literature. World J Orthop 4:67

    Article  PubMed  PubMed Central  Google Scholar 

  • Arumugam R, Srinadhu ES, Subramanian B, Nallani S (2019) β-PVDF based electrospun nanofibers–a promising material for developing cardiac patches. Med Hypotheses 122:31–34

    Article  CAS  PubMed  Google Scholar 

  • Augustine R, Dominic EA, Reju I, Kaimal B, Kalarikkal N, Thomas S (2014) Electrospun polycaprolactone membranes incorporated with ZnO nanoparticles as skin substitutes with enhanced fibroblast proliferation and wound healing. RSC Adv 4:24777–24785

    Article  CAS  Google Scholar 

  • Baino F, Perero S, Ferraris S, Miola M, Balagna C, Verné E, Vitale-Brovarone C, Coggiola A, Dolcino D, Ferraris M (2014) Biomaterials for orbital implants and ocular prostheses: overview and future prospects. Acta Biomater 10:1064–1087

    Article  CAS  PubMed  Google Scholar 

  • Bandyopadhyay A, Bose S (2013) Characterization of biomaterials. Newnes

    Google Scholar 

  • Bejleri D, Streeter BW, Nachlas AL, Brown ME, Gaetani R, Christman KL, Davis ME (2018) A bioprinted cardiac patch composed of cardiac-specific extracellular matrix and progenitor cells for heart repair. Adv Healthc Mater 7:1800672

    Article  CAS  Google Scholar 

  • Bhong SY, More N, Choppadandi M, Kapusetti G (2019) Review on carbon nanomaterials as typical candidates for orthopaedic coatings. SN Appl Sci 1:76

    Article  CAS  Google Scholar 

  • Bilezikian JP, Raisz LG, Martin TJ (2008) Principles of bone biology. Academic Press

    Google Scholar 

  • Bissen-Miyajima H (2008) Ophthalmic viscosurgical devices. Curr Opin Ophthalmol 19:50–54

    Article  PubMed  Google Scholar 

  • Bohner M (2008) Bioresorbable ceramics. Elsevier, Degradation rate of bioresorbable materials

    Book  Google Scholar 

  • Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 30:546–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradl H (2005) Sources and origins of heavy metals. Elsevier, Interface Science and Technology

    Google Scholar 

  • Bukka M, Rednam PJ, Sinha M (2018) Drug-eluting balloon: design, technology and clinical aspects. Biomed Mater 13:032001

    Article  PubMed  Google Scholar 

  • Burg KJ, Porter S, Kellam JF (2000) Biomaterial developments for bone tissue engineering. Biomaterials 21:2347–2359

    Article  CAS  PubMed  Google Scholar 

  • Burt HM, Hunter WL (2006) Drug-eluting stents: a multidisciplinary success story. Adv Drug Deliv Rev 58:350–357

    Article  CAS  PubMed  Google Scholar 

  • Cancedda R, Dozin B, Giannoni P, Quarto R (2003) Tissue engineering and cell therapy of cartilage and bone. Matrix Biol 22:81–91

    Article  CAS  PubMed  Google Scholar 

  • Centeno RF (2009) Surgisis acellular collagen matrix in aesthetic and reconstructive plastic surgery soft tissue applications. Clin Plast Surg 36:229–240

    Article  PubMed  Google Scholar 

  • Chaudhuri R, Ramachandran M, Moharil P, Harumalani M, Jaiswal AK (2017) Biomaterials and cells for cardiac tissue engineering: current choices. Mater Sci Eng C 79:950–957

    Article  CAS  Google Scholar 

  • Chen MS, John JM, Chew DP, Lee DS, Ellis SG, Bhatt DL (2006) Bare metal stent restenosis is not a benign clinical entity. Am Heart J 151:1260–1264

    Article  PubMed  Google Scholar 

  • Cheng M (2003) Medical device regulations: global overview and guiding principles. World Health Organization

    Google Scholar 

  • Chi N-H, Yang M-C, Chung T-W, Chou N-K, Wang S-S (2013) Cardiac repair using chitosan-hyaluronan/silk fibroin patches in a rat heart model with myocardial infarction. Carbohydr Polym 92:591–597

    Article  CAS  PubMed  Google Scholar 

  • Choi JH, Kim DK, Song JE, Oliveira JM, Reis RL, Khang G (2018) Silk fibroin-based scaffold for bone tissue engineering. Springer, Novel Biomaterials for Regenerative Medicine

    Book  Google Scholar 

  • Chong E, Phan T, Lim I, Zhang Y, Bay B, Ramakrishna S, Lim C (2007) Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater 3:321–330

    Article  CAS  PubMed  Google Scholar 

  • Claiborne TE, Slepian MJ, Hossainy S, Bluestein D (2012) Polymeric trileaflet prosthetic heart valves: evolution and path to clinical reality. Expert Rev Med Devices 9:577–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui Z, Yang B, Li R-K (2016) Application of biomaterials in cardiac repair and regeneration. Engineering 2:141–148

    Article  CAS  Google Scholar 

  • D’Amore A, Yoshizumi T, Luketich SK, Wolf MT, Gu X, Cammarata M, Hoff R, Badylak SF, Wagner WR (2016) Bi-layered polyurethane–extracellular matrix cardiac patch improves ischemic ventricular wall remodeling in a rat model. Biomaterials 107:1–14

    Article  CAS  PubMed  Google Scholar 

  • Dai T, Tanaka M, Huang Y-Y, Hamblin MR (2011) Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects. Expert Rev Anti-Infect Ther 9:857–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dainiak MB, Allan IU, Savina IN, Cornelio L, James ES, James SL, Mikhalovsky SV, Jungvid H, Galaev IY (2010) Gelatin–fibrinogen cryogel dermal matrices for wound repair: preparation, optimisation and in vitro study. Biomaterials 31:67–76

    Article  CAS  PubMed  Google Scholar 

  • Díez-Pascual AM, Díez-Vicente AL (2015) Wound healing bionanocomposites based on castor oil polymeric films reinforced with chitosan-modified ZnO nanoparticles. Biomacromolecules 16:2631–2644

    Article  CAS  PubMed  Google Scholar 

  • Dodla MC, Bellamkonda RV (2008) Differences between the effect of anisotropic and isotropic laminin and nerve growth factor presenting scaffolds on nerve regeneration across long peripheral nerve gaps. Biomaterials 29:33–46

    Article  CAS  PubMed  Google Scholar 

  • DOS Santos V, Brandalise RN, Savaris M (2017) Biomaterials: characteristics and properties. Springer, Engineering of Biomaterials

    Google Scholar 

  • Dvir T, Timko BP, Brigham MD, Naik SR, Karajanagi SS, Levy O, Jin H, Parker KK, Langer R, Kohane DS (2011) Nanowired three-dimensional cardiac patches. Nat Nanotechnol 6:720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fagien S (2010) Variable reconstitution of injectable hyaluronic acid with local anesthetic for expanded applications in facial aesthetic enhancement. Dermatol Surg 36:815–821

    Article  CAS  Google Scholar 

  • Fan Z, Liu B, Wang J, Zhang S, Lin Q, Gong P, Ma L, Yang S (2014) A novel wound dressing based on ag/graphene polymer hydrogel: effectively kill bacteria and accelerate wound healing. Adv Funct Mater 24:3933–3943

    Article  CAS  Google Scholar 

  • Ferreira AM, Gentile P, Chiono V, Ciardelli G (2012) Collagen for bone tissue regeneration. Acta Biomater 8:3191–3200

    Article  CAS  PubMed  Google Scholar 

  • Galante R, Oliveira AS, Topete A, Ghisleni D, Braga M, Pinto TJ, Colaço R, Serro AP (2018) Drug-eluting silicone hydrogel for therapeutic contact lenses: impact of sterilization methods on the system performance. Colloids Surf B: Biointerfaces 161:537–546

    Article  CAS  PubMed  Google Scholar 

  • Ghanavati S, Shishesaz MR, Farzam M, Danaee I (2016) Effects of surface treatment on corrosion resistance of 304L and 316L stainless steel implants in Hank’s solution. Iran J Oil Gas Sci Technol 5:65–72

    Google Scholar 

  • Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Baharvand H, Kiani S, Al-Deyab SS, Ramakrishna S (2011) Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. J Tissue Eng Regen Med 5:e17–e35

    Article  CAS  PubMed  Google Scholar 

  • Gong T, Xie J, Liao J, Zhang T, Lin S, Lin Y (2015) Nanomaterials and bone regeneration. Bone Res 3:15029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez JS, Ludueña LN, Ponce A, Alvarez VA (2014) Poly (vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings. Mater Sci Eng C 34:54–61

    Article  CAS  Google Scholar 

  • Gopal A, Kant V, Gopalakrishnan A, Tandan SK, Kumar D (2014) Chitosan-based copper nanocomposite accelerates healing in excision wound model in rats. Eur J Pharmacol 731:8–19

    Article  CAS  PubMed  Google Scholar 

  • Grill A (2003) Diamond-like carbon coatings as biocompatible materials—an overview. Diam Relat Mater 12:166–170

    Article  CAS  Google Scholar 

  • Grosfeld E-C, Hoekstra JWM, Herber R-P, Ulrich DJ, Jansen JA, VAN DEN Beucken JJ (2016) Long-term biological performance of injectable and degradable calcium phosphate cement. Biomed Mater 12:015009

    Article  PubMed  Google Scholar 

  • Guo H-F, Li Z-S, Dong S-W, Chen W-J, Deng L, Wang Y-F, Ying D-J (2012) Piezoelectric PU/PVDF electrospun scaffolds for wound healing applications. Colloids Surf B: Biointerfaces 96:29–36

    Article  CAS  PubMed  Google Scholar 

  • Hadlock T, Sundback C, Hunter D, Cheney M, Vacanti JP (2000) A polymer foam conduit seeded with Schwann cells promotes guided peripheral nerve regeneration. Tissue Eng 6:119–127

    Article  CAS  PubMed  Google Scholar 

  • Hajiali F, Tajbakhsh S, Shojaei A (2018) Fabrication and properties of polycaprolactone composites containing calcium phosphate-based ceramics and bioactive glasses in bone tissue engineering: a review. Polym Rev 58:164–207

    Article  CAS  Google Scholar 

  • Hara H, Nakamura M, Palmaz JC, Schwartz RS (2006) Role of stent design and coatings on restenosis and thrombosis. Adv Drug Deliv Rev 58:377–386

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Hayashi H, Nakao F, Hayashi F (1997) Reduction in the area of the anterior capsule opening after polymethylmethacrylate, silicone, and soft acrylic intraocular lens implantation. Am J Ophthalmol 123:441–447

    Article  CAS  PubMed  Google Scholar 

  • Hench LL (2006) The story of bioglass®. J Mater Sci Mater Med 17:967–978

    Article  CAS  PubMed  Google Scholar 

  • Hendrick AM, Kahook MY (2008) Ex-PRESS™ mini glaucoma shunt: surgical technique and review of clinical experience. Expert Rev Med Devices 5:673–677

    Article  PubMed  Google Scholar 

  • Hermawan H, Ramdan D, Djuansjah JR (2011) Metals for biomedical applications. Biomedical engineering-from theory to applications. InTech

    Google Scholar 

  • Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4:518

    Article  CAS  PubMed  Google Scholar 

  • Hosseinzadeh HRS, Emami M, Lahiji F, Shahi AS, Masoudi A, Emami S (2013) The acrylic bone cement in arthroplasty. Arthroplasty-Update, InTech

    Book  Google Scholar 

  • Hubbell JA (1995) Biomaterials in tissue engineering. Biotechnology 13:565

    Google Scholar 

  • Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. The Biomaterials: Silver Jubilee Compendium. Elsevier

    Google Scholar 

  • Ide C, Tohyama K, Yokota R, Nitatori T, Onodera S (1983) Schwann cell basal lamina and nerve regeneration. Brain Res 288:61–75

    Article  CAS  PubMed  Google Scholar 

  • Inzana JA, Olvera D, Fuller SM, Kelly JP, Graeve OA, Schwarz EM, Kates SL, Awad HA (2014) 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 35:4026–4034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal J, Gunn J, Serruys PW (2013) Coronary stents: historical development, current status and future directions. Br Med Bull 106:193–211

    Article  CAS  PubMed  Google Scholar 

  • Izadifar M, Chapman D, Babyn P, Chen X, Kelly ME (2018) UV-assisted 3D bioprinting of nanoreinforced hybrid cardiac patch for myocardial tissue engineering. Tissue Eng Part C Methods 24:74–88

    Article  CAS  PubMed  Google Scholar 

  • Jacob J, More N, Kalia K, Kapusetti G (2018) Piezoelectric smart biomaterials for bone and cartilage tissue engineering. Inflammation and Regeneration 38:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson EO, Zoubos AB, Soucacos PN (2005) Regeneration and repair of peripheral nerves. Injury 36:S24–S29

    Article  PubMed  Google Scholar 

  • Kapnisi M, Mansfield C, Marijon C, Guex AG, Perbellini F, Bardi I, Humphrey EJ, Puetzer JL, Mawad D, Koutsogeorgis DC (2018) Auxetic cardiac patches with tunable mechanical and conductive properties toward treating myocardial infarction. Adv Funct Mater 28:1800618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim K-H, Jeong L, Park H-N, Shin S-Y, Park W-H, Lee S-C, Kim T-I, Park Y-J, Seol Y-J, Lee Y-M (2005) Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration. J Biotechnol 120:327–339

    Article  CAS  PubMed  Google Scholar 

  • Kohane DS, Langer R (2010) Biocompatibility and drug delivery systems. Chem Sci 1:441–446

    Article  CAS  Google Scholar 

  • Kokabi M, Sirousazar M, Hassan ZM (2007) PVA–clay nanocomposite hydrogels for wound dressing. Eur Polym J 43:773–781

    Article  CAS  Google Scholar 

  • Kokubo T (1991) Bioactive glass ceramics: properties and applications. Biomaterials 12:155–163

    Article  CAS  PubMed  Google Scholar 

  • Kulinets I (2015) Biomaterials and their applications in medicine. Regulatory affairs for biomaterials and medical devices. Elsevier

    Google Scholar 

  • Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B: Biointerfaces 75:1–18

    Article  CAS  PubMed  Google Scholar 

  • Langer R, Peppas NA (2003) Advances in biomaterials, drug delivery, and bionanotechnology. AICHE J 49:2990–3006

    Article  CAS  Google Scholar 

  • Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428:487

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Silva EA, Mooney DJ (2010) Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface 8:153–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leppik L, Zhihua H, Mobini S, Parameswaran VT, Eischen-Loges M, Slavici A, Helbing J, Pindur L, Oliveira KM, Bhavsar MB (2018) Combining electrical stimulation and tissue engineering to treat large bone defects in a rat model. Sci Rep 8:6307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Zhai D, Lv F, Yu Q, Ma H, Yin J, Yi Z, Liu M, Chang J, Wu C (2016) Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing. Acta Biomater 36:254–266

    Article  CAS  PubMed  Google Scholar 

  • Liang S, Zhang Y, Wang H, Xu Z, Chen J, Bao R, Tan B, Cui Y, Fan G, Wang W (2018) Paintable and rapidly bondable conductive hydrogels as therapeutic cardiac patches. Adv Mater 30:1704235

    Article  CAS  Google Scholar 

  • Liu X, Ma PX (2004) Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32:477–486

    Article  PubMed  Google Scholar 

  • Liu S-J, Kau Y-C, Chou C-Y, Chen J-K, Wu R-C, Yeh W-L (2010) Electrospun PLGA/collagen nanofibrous membrane as early-stage wound dressing. J Membr Sci 355:53–59

    Article  CAS  Google Scholar 

  • Liu M, Duan X-P, Li Y-M, Yang D-P, Long Y-Z (2017) Electrospun nanofibers for wound healing. Mater Sci Eng C 76:1413–1423

    Article  CAS  Google Scholar 

  • Lloyd AW, Faragher RG, Denyer SP (2001) Ocular biomaterials and implants. Biomaterials 22:769–785

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Descamps M, Dejou J, Koubi G, Hardouin P, Lemaitre J, Proust JP (2002) The biodegradation mechanism of calcium phosphate biomaterials in bone. J Biomed Mater Res 63:408–412

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Gao J, He Q, Wu J, Liang D, Yang H, Chen R (2017) Enhanced antibacterial and wound healing activities of microporous chitosan-Ag/ZnO composite dressing. Carbohydr Polym 156:460–469

    Article  CAS  PubMed  Google Scholar 

  • Lutolf M, Hubbell J (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23:47

    Google Scholar 

  • Malki M, Fleischer S, Shapira A, Dvir T (2018) Gold Nanorod-based engineered cardiac patch for suture-free engraftment by near IR. Nano Lett 18:4069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansour HM, Sohn M, Al-Ghananeem A, Deluca PP (2010) Materials for pharmaceutical dosage forms: molecular pharmaceutics and controlled release drug delivery aspects. Int J Mol Sci 11:3298–3322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthews JA, Wnek GE, Simpson DG, Bowlin GL (2002) Electrospinning of collagen nanofibers. Biomacromolecules 3:232–238

    Article  CAS  PubMed  Google Scholar 

  • Mehrabani D, Mehrabani G, Zare S, Manafi A (2013) Adipose-derived stem cells (ADSC) and aesthetic surgery: a mini review. World J Plast Surg 2:65

    PubMed  PubMed Central  Google Scholar 

  • Meijer GJ, DE Bruijn JD, Koole R, VAN Blitterswijk CA (2007) Cell-based bone tissue engineering. PLoS Med 4:e9

    Article  PubMed  PubMed Central  Google Scholar 

  • Meroni D, Ardizzone S (2018) Preparation and application of hybrid nanomaterials. Multidisciplinary Digital Publishing Institute

    Google Scholar 

  • Mieszawska AJ, Fourligas N, Georgakoudi I, Ouhib NM, Belton DJ, Perry CC, Kaplan DL (2010) Osteoinductive silk–silica composite biomaterials for bone regeneration. Biomaterials 31:8902–8910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittal S, Miranda O (2018) Recent advancements in biodegradable ocular implants. Curr Drug Deliv 15:144–154

    Article  CAS  PubMed  Google Scholar 

  • Mohan H (2005) Textbook of pathology. Jaypee Brothers Medical Publishers, New Delhi

    Book  Google Scholar 

  • More N, Kapusetti G (2017) Piezoelectric material–a promising approach for bone and cartilage regeneration. Med Hypotheses 108:10–16

    Article  CAS  PubMed  Google Scholar 

  • Myung D, Duhamel PE, Cochran JR, Noolandi J, Ta CN, Frank CW (2008) Development of hydrogel-based keratoprostheses: A materials perspective. Biotechnol Prog 24:735–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naahidi S, Jafari M, Logan M, Wang Y, Yuan Y, Bae H, Dixon B, Chen P (2017) Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol Adv 35:530–544

    Article  CAS  PubMed  Google Scholar 

  • Niamtu J (2006) Advanta ePTFE facial implants in cosmetic facial surgery. J Oral Maxillofac Surg 64:543–549

    Article  PubMed  Google Scholar 

  • Niinomi M (2002) Recent metallic materials for biomedical applications. Metall Mater Trans A 33:477

    Article  Google Scholar 

  • Numata K, Kaplan D (2011) Biologically derived scaffolds. Advanced wound repair therapies. Elsevier

    Google Scholar 

  • Oberhoff M, Herdeg C, Baumbach A, Karsch KR (2002) Stent-based antirestenotic coatings (sirolimus/paclitaxel). Catheter Cardiovasc Interv 55:404–408

    Article  PubMed  Google Scholar 

  • O’brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14:88–95

    Google Scholar 

  • Ogueri KS, Jafari T, Ivirico JLE, Laurencin CT (2018) Polymeric biomaterials for scaffold-based bone regenerative engineering. In: Regenerative engineering and translational medicine. Springer, New York, pp 1–27

    Google Scholar 

  • Ong S-Y, Wu J, Moochhala SM, Tan M-H, Lu J (2008) Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials 29:4323–4332

    Article  CAS  PubMed  Google Scholar 

  • Park J, Kim J, Kim S-Y, Cheong WH, Jang J, Park Y-G, Na K, Kim Y-T, Heo JH, Lee CY (2018) Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Science Adv 4:eaap9841

    Article  CAS  Google Scholar 

  • Pattanashetti NA, Heggannavar GB, Kariduraganavar MY (2017) Smart biopolymers and their biomedical applications. Procedia Manufacturing 12:263–279

    Article  Google Scholar 

  • Peppas NA, Huang Y (2002) Polymers and gels as molecular recognition agents. Pharm Res 19:578–587

    Article  CAS  PubMed  Google Scholar 

  • Pérez JAC, Sosa-Hernández JE, Hussain SM, Bilal M, Parra-Saldivar R, Iqbal HM (2018) Bioinspired biomaterials and enzyme-based biosensors for point-of-care applications with reference to cancer and bio-imaging. Biocatal Agric Biotechnol 17:168–176

    Article  Google Scholar 

  • Petite H, Viateau V, Bensaid W, Meunier A, DE Pollak C, Bourguignon M, Oudina K, Sedel L, Guillemin G (2000) Tissue-engineered bone regeneration. Nat Biotechnol 18:959

    Article  CAS  PubMed  Google Scholar 

  • Pino M, Stingelin N, Tanner K (2008) Nucleation and growth of apatite on NaOH-treated PEEK, HDPE and UHMWPE for artificial cornea materials. Acta Biomater 4:1827–1836

    Article  CAS  PubMed  Google Scholar 

  • Quarles LD (2008) Endocrine functions of bone in mineral metabolism regulation. J Clin Invest 118:3820–3828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajabi AH, Jaffe M, Arinzeh TL (2015) Piezoelectric materials for tissue regeneration: a review. Acta Biomater 24:12–23

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 61:1189–1224

    Article  CAS  Google Scholar 

  • Ramalingam M, Kumar TS, Ramakrishna S, Soboyejo WO (2016) Biomaterials: a nano approach. CRC Press

    Google Scholar 

  • Rezwan K, Chen Q, Blaker J, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431

    Article  CAS  PubMed  Google Scholar 

  • Riehle N, Thude S, Götz T, Kandelbauer A, Thanos S, Tovar GE, Lorenz G (2018) Influence of PDMS molecular weight on transparency and mechanical properties of soft polysiloxane-urea-elastomers for intraocular lens application. Eur Polym J 101:190–201

    Article  CAS  Google Scholar 

  • Robling AG, Castillo AB, Turner CH (2006) Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng 8:455–498

    Article  CAS  PubMed  Google Scholar 

  • Roeder RK (2013) Mechanical characterization of biomaterials. In: Characterization of biomaterials. Elsevier, Amsterdam

    Chapter  Google Scholar 

  • Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti I, Grigolo B (2017) Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater Sci Eng C 78:1246–1262

    Article  CAS  Google Scholar 

  • Sabate M, Cequier A, Iñiguez A, Serra A, Hernandez-Antolin R, Mainar V, Valgimigli M, Tespili M, Den Heijer P, Bethencourt A (2012) Everolimus-eluting stent versus bare-metal stent in ST-segment elevation myocardial infarction (EXAMINATION): 1 year results of a randomised controlled trial. Lancet 380:1482–1490

    Article  CAS  PubMed  Google Scholar 

  • Sadiasa A, Sarkar SK, Franco RA, Min YK, Lee BT (2014) Bioactive glass incorporation in calcium phosphate cement-based injectable bone substitute for improved in vitro biocompatibility and in vivo bone regeneration. J Biomater Appl 28:739–756

    Article  CAS  PubMed  Google Scholar 

  • Samavedi S, Poindexter LK, van Dyke M, Goldstein AS (2014) Synthetic biomaterials for regenerative medicine applications. In: Regenerative medicine applications in organ transplantation. Elsevier, London

    Google Scholar 

  • Sandri G, Aguzzi C, Rossi S, Bonferoni MC, Bruni G, Boselli C, Cornaglia AI, Riva F, Viseras C, Caramella C (2017) Halloysite and chitosan oligosaccharide nanocomposite for wound healing. Acta Biomater 57:216–224

    Article  CAS  PubMed  Google Scholar 

  • Santos JCC, Mansur AA, Ciminelli VS, Mansur HS (2014) Nanocomposites of poly (vinyl alcohol)/functionalized-multiwall carbon nanotubes conjugated with glucose oxidase for potential application as scaffolds in skin wound healing. Int J Polym Mater Polym Biomater 63:185–196

    Article  CAS  Google Scholar 

  • Schneider A, Wang X, Kaplan D, Garlick J, Egles C (2009) Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound healing. Acta Biomater 5:2570–2578

    Article  CAS  PubMed  Google Scholar 

  • Schoen FJ (2013) Introduction: “biological responses to biomaterials”. Biomaterials Science, 3rd edn. Elsevier

    Google Scholar 

  • Sharma R, Kapusetti G, Bhong SY, Roy P, Singh SK, Singh S, Balavigneswaran CK, Mahato KK, Ray B, Maiti P (2017) Osteoconductive amine-functionalized graphene–poly (methyl methacrylate) bone cement composite with controlled exothermic polymerization. Bioconjug Chem 28:2254–2265

    Article  CAS  PubMed  Google Scholar 

  • Shevach M, Maoz BM, Feiner R, Shapira A, Dvir T (2013) Nanoengineering gold particle composite fibers for cardiac tissue engineering. J Mater Chem B 1:5210–5217

    Article  CAS  PubMed  Google Scholar 

  • Siggelkow W, Faridi A, Spiritus K, Klinge U, Rath W, Klosterhalfen B (2003) Histological analysis of silicone breast implant capsules and correlation with capsular contracture. Biomaterials 24:1101–1109

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Agrawal K (1992) Polymeric materials for contact lenses. J Macromol Sci Polym Rev 32:521–534

    Article  Google Scholar 

  • Society, T. A. C. 2018. The American Ceramic Society [online]. Available: https://ceramics.org/about/what-are-engineered-ceramics-and-glass/structure-and-properties-of-ceramics

  • Souza MT, Tansaz S, Zanotto ED, Boccaccini AR (2017) Bioactive glass Fiber-reinforced PGS matrix composites for cartilage regeneration. Materials (Basel, Switzerland) 10:83

    Article  CAS  Google Scholar 

  • Stapleton F, Stretton S, Papas E, Skotnitsky C, Sweeney DF (2006) Silicone hydrogel contact lenses and the ocular surface. Ocul Surf 4:24–43

    Article  PubMed  Google Scholar 

  • Stout DA, Basu B, Webster TJ (2011) Poly (lactic–co-glycolic acid): carbon nanofiber composites for myocardial tissue engineering applications. Acta Biomater 7:3101–3112

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Qian B, Uto K, Chen J, Liu X, Minari T (2018) Functional biomaterials towards flexible electronics and sensors. Biosens Bioelectron 119:237

    Article  CAS  PubMed  Google Scholar 

  • Sung JH, Hwang M-R, Kim JO, Lee JH, Kim YI, Kim JH, Chang SW, Jin SG, Kim JA, Lyoo WS (2010) Gel characterisation and in vivo evaluation of minocycline-loaded wound dressing with enhanced wound healing using polyvinyl alcohol and chitosan. Int J Pharm 392:232–240

    Article  CAS  PubMed  Google Scholar 

  • Swetha M, Sahithi K, Moorthi A, Srinivasan N, Ramasamy K, Selvamurugan N (2010) Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int J Biol Macromol 47:1–4

    Article  CAS  PubMed  Google Scholar 

  • Tandon B, Blaker JJ, Cartmell SH (2018) Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair. Acta Biomater 73:1

    Article  CAS  PubMed  Google Scholar 

  • Tarun K, Gobi N (2012) Calcium alginate/PVA blended nano fibre matrix for wound dressing. Indian J Fibre Text Res 37:127–132

    CAS  Google Scholar 

  • Teo AJ, Mishra A, Park I, Kim Y-J, Park W-T, Yoon Y-J (2016) Polymeric biomaterials for medical implants and devices. ACS Biomater Sci Eng 2:454–472

    Article  CAS  PubMed  Google Scholar 

  • Teoh SH (2004) Introduction to biomaterials engineering and processing—an overview. In: Engineering materials for biomedical applications. World Scientific, Singapore

    Chapter  Google Scholar 

  • Ubelaker, D. 1984. Human skeletal remains. Excavation, analysis, interpretation. Taraxacum. Federation Dentaire Internnationale (1982). Nouveau Système de Dèsignation des dents. Bulletin Et Memoires de la Sociedad d’Antropologie de Paris. Serie, 12, 83–85

    Google Scholar 

  • Vasquez-Sancho F, Abdollahi A, Damjanovic D, Catalan G (2018) Flexoelectricity in bones. Adv Mater 30:1705316

    Article  CAS  Google Scholar 

  • Vedakumari WS, Prabu P, Sastry TP (2015) Chitosan-fibrin nanocomposites as drug delivering and wound healing materials. J Biomed Nanotechnol 11:657–667

    Article  CAS  PubMed  Google Scholar 

  • Vedakumari WS, Ayaz N, Karthick AS, Senthil R, Sastry TP (2017) Quercetin impregnated chitosan–fibrin composite scaffolds as potential wound dressing materials—fabrication, characterization and in vivo analysis. Eur J Pharm Sci 97:106–112

    Article  CAS  PubMed  Google Scholar 

  • Velde B, Druc IC (2012) Archaeological ceramic materials: origin and utilization. Springer, London

    Google Scholar 

  • Velnar T, Bailey T, Smrkolj V (2009) The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res 37:1528–1542

    Article  CAS  PubMed  Google Scholar 

  • Vimala K, Yallapu MM, Varaprasad K, Reddy NN, Ravindra S, Naidu NS, Raju KM (2011) Fabrication of curcumin encapsulated chitosan-PVA silver nanocomposite films for improved antimicrobial activity. J Biomater Nanobiotechnol 2:55

    Article  CAS  Google Scholar 

  • Wache H, Tartakowska D, Hentrich A, Wagner M (2003) Development of a polymer stent with shape memory effect as a drug delivery system. J Mater Sci Mater Med 14:109–112

    Article  CAS  PubMed  Google Scholar 

  • Wang Y (2016) Bioadaptability: an innovative concept for biomaterials. J Mater Sci Technol 32:801–809

    Article  Google Scholar 

  • Wang CC, Su CH, Chen CC (2008) Water absorbing and antibacterial properties of N-isopropyl acrylamide grafted and collagen/chitosan immobilized polypropylene nonwoven fabric and its application on wound healing enhancement. J Biomed Mater Res Part A 84:1006–1017

    Article  CAS  Google Scholar 

  • Wang X, Wang L, Wu Q, Bao F, Yang H, Qiu X, Chang J (2018) Chitosan/calcium silicate cardiac patch stimulates Cardiomyocyte activity and myocardial performance after infarction by synergistic effect of bioactive ions and aligned nanostructure. ACS Appl Mater Interfaces 11:1449–1468

    Article  CAS  PubMed  Google Scholar 

  • Wanna D, Alam C, Toivola DM, Alam P (2013) Bacterial cellulose–kaolin nanocomposites for application as biomedical wound healing materials. Adv Nat Sci Nanosci Nanotechnol 4:045002

    Article  CAS  Google Scholar 

  • Wei Y, Zhang X, Song Y, Han B, Hu X, Wang X, Lin Y, Deng X (2011) Magnetic biodegradable Fe3O4/CS/PVA nanofibrous membranes for bone regeneration. Biomed Mater 6:055008

    Article  CAS  PubMed  Google Scholar 

  • Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29:2941–2953

    Article  CAS  PubMed  Google Scholar 

  • Williams DF (2009) On the nature of biomaterials. Biomaterials 30:5897–5909

    Article  CAS  PubMed  Google Scholar 

  • Willoughby CE, Ponzin D, Ferrari S, Lobo A, Landau K, Omidi Y (2010) Anatomy and physiology of the human eye: effects of mucopolysaccharidoses disease on structure and function–a review. Clin Exp Ophthalmol 38:2–11

    Article  Google Scholar 

  • Wood MD, Moore AM, Hunter DA, Tuffaha S, Borschel GH, Mackinnon SE, Sakiyama-Elbert SE (2009) Affinity-based release of glial-derived neurotrophic factor from fibrin matrices enhances sciatic nerve regeneration. Acta Biomater 5:959–968

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Paras CB, Weng H, Punnakitikashem P, Su L-C, Vu K, Tang L, Yang J, Nguyen KT (2013) Dual growth factor releasing multi-functional nanofibers for wound healing. Acta Biomater 9:9351–9359

    Article  CAS  PubMed  Google Scholar 

  • Xu HH, Wang P, Wang L, Bao C, Chen Q, Weir MD, Chow LC, Zhao L, Zhou X, Reynolds MA (2017) Calcium phosphate cements for bone engineering and their biological properties. Bone Res 5:17056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang F, Murugan R, Wang S, Ramakrishna S (2005) Electrospinning of nano/micro scale poly (L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26:2603–2610

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Xia T, Chen F, Wei W, Liu C, He S, Li X (2011) Electrospun fibers with plasmid bFGF polyplex loadings promote skin wound healing in diabetic rats. Mol Pharm 9:48–58

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Wu X, Chen J, Lin K (2018) The development of collagen based composite scaffolds for bone regeneration. Bioactive Mater 3:129–138

    Article  Google Scholar 

  • Zhong S, Zhang Y, Lim C (2010) Tissue scaffolds for skin wound healing and dermal reconstruction. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:510–525

    Article  CAS  PubMed  Google Scholar 

  • Ziats NP, Miller KM, Anderson JM (1988) In vitro and in vivo interactions of cells with biomaterials. Biomaterials 9:5–13

    Article  CAS  PubMed  Google Scholar 

  • Zine R, Sinha M (2017) Nanofibrous poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/collagen/graphene oxide scaffolds for wound coverage. Mater Sci Eng C 80:129–134

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kapusetti, G., More, N., Choppadandi, M. (2019). Introduction to Ideal Characteristics and Advanced Biomedical Applications of Biomaterials. In: Paul, S. (eds) Biomedical Engineering and its Applications in Healthcare. Springer, Singapore. https://doi.org/10.1007/978-981-13-3705-5_8

Download citation

Publish with us

Policies and ethics