Skip to main content

Biophotonics in Disease Diagnosis and Therapy

  • Chapter
  • 1639 Accesses

Abstract

Biophotonics is the multidisciplinary domain of science that uses light, in the visible and near-visible range, to study biological materials. Most biological tissues are sensitive to light, and these interactions can be harnessed for their imaging, detection, and manipulation. With the advent of advanced lasers, optics, spectroscopy, and microscopy tools, biophotonics find widespread application in biological and clinical research. Here, we provide an overview of how the field has expanded in the area of disease diagnosis and therapy with particular emphasis on label-free harmonic generation imaging microscopy, label-free multiphoton fluorescence imaging microscopy, spectroscopy, and tomography tools for clinical use. We have discussed, in brief, the fundamentals and principles behind each of the biophotonics method, the specific advantages and disadvantages of the tools, and the latest development in its use for improving diagnosis and therapy of various disease conditions. We intend to motivate the readers to draw inspiration for research, development, and translation of biophotonics to address the unmet clinical needs of humanity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abhyankar, R., et al. Amyloid diagnostics: probing protein aggregation and conformation with ultrasensitive fluorescence detection. SPIE BiOS. 2012. SPIE

    Google Scholar 

  • Adler DG et al (2005) ASGE guideline: the role of ERCP in diseases of the biliary tract and the pancreas. Gastrointest Endosc 62(1):1–8

    Article  PubMed  Google Scholar 

  • Adler DG et al (2006) The role of endoscopy in ampullary and duodenal adenomas. Gastrointest Endosc 64(6):849–854

    Article  PubMed  Google Scholar 

  • Agarwal A et al (2007) Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J Appl Phys 102(6):064701

    Article  CAS  Google Scholar 

  • Bancelin S et al (2017) Probing microtubules polarity in mitotic spindles in situ using interferometric second harmonic generation microscopy. Sci Rep 7(1):6758–6758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barad Y et al (1997) Nonlinear scanning laser microscopy by third harmonic generation. Appl Phys Lett 70(8):922–924

    Article  CAS  Google Scholar 

  • Baumal CR (1999) Clinical applications of optical coherence tomography. Curr Opin Ophthalmol 10(3):182–188

    Article  CAS  PubMed  Google Scholar 

  • Bélisle JM et al (2008) Sensitive detection of malaria infection by third harmonic generation imaging. Biophys J 94(4):L26–L28

    Article  CAS  PubMed  Google Scholar 

  • Brown EB et al (2001) In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat Med 7(7):864–868

    Article  CAS  PubMed  Google Scholar 

  • Brown E et al (2003) Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation. Nat Med 9(6):796–800

    Article  CAS  PubMed  Google Scholar 

  • Bugarski M et al (2018) Multiphoton imaging reveals axial differences in metabolic autofluorescence signals along the kidney proximal tubule. Am J Physiol Ren Physiol 315(6):F1613–F1625

    Article  CAS  Google Scholar 

  • Campagnola P (2011) Second harmonic generation imaging microscopy: applications to diseases diagnostics. Anal Chem 83(9):3224–3231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canioni L et al (2001) Imaging of ca(2)+ intracellular dynamics with a third-harmonic generation microscope. Opt Lett 26(8):515–517

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee M et al (2017) Detection of contactin-2 in cerebrospinal fluid (CSF) of patients with Alzheimer's disease using fluorescence correlation spectroscopy (FCS). Clin Biochem 50(18):1061–1066

    Article  CAS  PubMed  Google Scholar 

  • Chen C-K, Liu T-M (2012) Imaging morphodynamics of human blood cells in vivo with video-rate third harmonic generation microscopy. Biomed Opt Express 3(11):2860–2865

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen S-Y, Hsu C-YS, Sun C-K (2008) Epi-third and second harmonic generation microscopic imaging of abnormal enamel. Opt Express 16(15):11670–11679

    PubMed  Google Scholar 

  • Chen Y-C et al (2015) Third-harmonic generation microscopy reveals dental anatomy in ancient fossils. Opt Lett 40(7):1354–1357

    Article  PubMed  Google Scholar 

  • Christie RH et al (2001) Growth arrest of individual senile plaques in a model of Alzheimer’s disease observed by in vivo multiphoton microscopy. J Neurosci 21(3):858–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cicchi R et al (2007) Multidimensional non-linear laser imaging of Basal Cell Carcinoma. Opt Express 15(16):10135–10148

    Article  CAS  PubMed  Google Scholar 

  • Cicchi R et al (2008) Nonlinear laser imaging of skin lesions. J Biophotonics 1(1):62–73

    Article  CAS  PubMed  Google Scholar 

  • Coda S et al (2015) Biophotonic endoscopy: a review of clinical research techniques for optical imaging and sensing of early gastrointestinal cancer. Endos Int Open 3(5):E380–E392

    Article  Google Scholar 

  • Das AK, Pandit R, Maiti S (2015) Effect of amyloids on the vesicular machinery: implications for somatic neurotransmission. Philos Trans R Soc Lond Ser B Biol Sci 370(1672):20140187

    Article  CAS  Google Scholar 

  • Das AK et al (2017) Label-free Ratiometric imaging of serotonin in live cells. ACS Chem Neurosci 8(11):2369–2373

    Article  CAS  PubMed  Google Scholar 

  • Davila RE et al (2005) ASGE guideline: the role of endoscopy in the patient with lower-GI bleeding. Gastrointest Endosc 62(5):656–660

    Article  PubMed  Google Scholar 

  • de la Zerda A et al (2010) Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice. Nano Lett 10(6):2168–2172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debarre D et al (2006) Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nat Methods 3(1):47–53

    Article  CAS  PubMed  Google Scholar 

  • Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248(4951):73–76

    Article  CAS  PubMed  Google Scholar 

  • Diekmann S, Hoischen C (2014) Biomolecular dynamics and binding studies in the living cell. Phys Life Rev 11(1):1–30

    Article  PubMed  Google Scholar 

  • Dombeck DA, Blanchard-Desce M, Webb WW (2004) Optical recording of action potentials with second-harmonic generation microscopy. J Neurosci 24(4):999–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dooley CP et al (1984) Double-contrast barium meal and upper gastrointestinal endoscopy: a comparative study. Ann Intern Med 101(4):538–545

    Article  CAS  PubMed  Google Scholar 

  • Enderlein J et al (2004) Art and artefacts of fluorescence correlation spectroscopy. Curr Pharm Biotechnol 5(2):155–161

    Article  CAS  PubMed  Google Scholar 

  • Farrar MJ et al (2011) In vivo imaging of myelin in the vertebrate central nervous system using third harmonic generation microscopy. Biophys J 100(5):1362–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fine S, Hansen WP (1971) Optical second harmonic generation in biological systems. Appl Opt 10(10):2350–2353

    Article  CAS  PubMed  Google Scholar 

  • Fittinghoff DN et al (1998) Collinear type II second-harmonic-generation frequency-resolved optical gating for use with high-numerical-aperture objectives. Opt Lett 23(13):1046–1048

    Article  CAS  PubMed  Google Scholar 

  • Freund I, Deutsch M (1986) Second-harmonic microscopy of biological tissue. Opt Lett 11(2):94

    Article  CAS  PubMed  Google Scholar 

  • Fujii F et al (2007) Detection of prion protein immune complex for bovine spongiform encephalopathy diagnosis using fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy. Anal Biochem 370(2):131–141

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto JG et al (2000a) Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia 2(1–2):9–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimoto JG et al (2000b) Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia 2(1):9–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson EA et al (2011) Multiphoton microscopy for ophthalmic imaging. J Ophthalmol 2011:11

    Google Scholar 

  • Hac AE et al (2005) Diffusion in two-component lipid membranes--a fluorescence correlation spectroscopy and Monte Carlo simulation study. Biophys J 88(1):317–333

    Article  CAS  PubMed  Google Scholar 

  • Hirota WK et al (2006) ASGE guideline: the role of endoscopy in the surveillance of premalignant conditions of the upper GI tract. Gastrointest Endosc 63(4):570–580

    Article  PubMed  Google Scholar 

  • Jacobson BC et al (2003) The role of endoscopy in the assessment and treatment of esophageal cancer. Gastrointest Endosc 57(7):817–822

    Article  PubMed  Google Scholar 

  • Jaffe GJ, Caprioli J (2004) Optical coherence tomography to detect and manage retinal disease and glaucoma. Am J Ophthalmol 137(1):156–169

    Article  PubMed  Google Scholar 

  • Jain M et al (2015) Multiphoton microscopy: a potential intraoperative tool for the detection of carcinoma in situ in human bladder. Arch Pathol Lab Med 139(6):796–804

    Article  PubMed  Google Scholar 

  • Jiang J et al (2018) Analysis of the concentrations and size distributions of cell-free DNA in schizophrenia using fluorescence correlation spectroscopy. Transl Psychiatry 8(1):104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jo J et al (2017) A functional study of human inflammatory arthritis using photoacoustic imaging. Sci Rep 7(1):15026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung Y, Zhi Z, Wang RK (2010) Three-dimensional optical imaging of microvascular networks within intact lymph node in vivo. J Biomed Opt 15(5):050501–050501

    Article  PubMed  PubMed Central  Google Scholar 

  • Kilpatrick LE, Hill SJ (2016) The use of fluorescence correlation spectroscopy to characterize the molecular mobility of fluorescently labelled G protein-coupled receptors. Biochem Soc Trans 44(2):624–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krafft C (2016) Modern trends in biophotonics for clinical diagnosis and therapy to solve unmet clinical needs. J Biophotonics 9(11–12):1362–1375

    Article  PubMed  Google Scholar 

  • Kumavor PD et al (2013) Co-registered pulse-echo/photoacoustic transvaginal probe for real time imaging of ovarian tissue. J Biophotonics 6(6–7):475–484

    Article  PubMed  PubMed Central  Google Scholar 

  • Le TT et al (2007) Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy. J Biomed Opt 12(5):054007

    Article  CAS  PubMed  Google Scholar 

  • Leighton JA et al (2006) ASGE guideline: endoscopy in the diagnosis and treatment of inflammatory bowel disease. Gastrointest Endosc 63(4):558–565

    Article  PubMed  Google Scholar 

  • Li P-C et al (2008) In vivo photoacoustic molecular imaging with simultaneous multiple selective targeting using antibody-conjugated gold nanorods. Opt Express 16(23):18605–18615

    Article  CAS  PubMed  Google Scholar 

  • Li M-L et al (2009) In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature. SPIE

    Google Scholar 

  • Lim H et al (2014) Label-free imaging of Schwann cell myelination by third harmonic generation microscopy. Proc Natl Acad Sci 111(50):18025–18030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lippitz M, van Dijk MA, Orrit M (2005) Third-harmonic generation from single gold nanoparticles. Nano Lett 5(4):799–802

    Article  CAS  PubMed  Google Scholar 

  • Machan R, Wohland T (2014) Recent applications of fluorescence correlation spectroscopy in live systems. FEBS Lett 588(19):3571–3584

    Article  CAS  PubMed  Google Scholar 

  • Magde D, Elson E, Webb WW (1972) Thermodynamic fluctuations in a reacting system---measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29(11):705–708

    Article  CAS  Google Scholar 

  • Maier C et al (2005) G-protein-coupled glucocorticoid receptors on the pituitary cell membrane. J Cell Sci 118(Pt 15):3353–3361

    Article  CAS  PubMed  Google Scholar 

  • Maiti S et al (1997a) Measuring serotonin distribution in live cells with three-photon excitation. Science 275(5299):530–532

    Article  CAS  PubMed  Google Scholar 

  • Maiti S, Haupts U, Webb WW (1997b) Fluorescence correlation spectroscopy: diagnostics for sparse molecules. Proc Natl Acad Sci U S A 94(22):11753–11757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcu L et al (2017) Biophotonics: the big picture. SPIE

    Google Scholar 

  • Marrocco M (2004) Fluorescence correlation spectroscopy: incorporation of probe volume effects into the three-dimensional Gaussian approximation. Appl Opt 43(27):5251–5262

    Article  CAS  PubMed  Google Scholar 

  • Martin T, Schwab K, Singh S (2014) Principles of gastrointestinal endoscopy. Surgery (Oxford) 32(3):139–144

    Article  Google Scholar 

  • Matsui T et al (2017) Non-labeling multiphoton excitation microscopy as a novel diagnostic tool for discriminating normal tissue and colorectal cancer lesions. Sci Rep 7(1):6959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matteini P et al (2009) Photothermally-induced disordered patterns of corneal collagen revealed by SHG imaging. Opt Express 17(6):4868–4878

    Article  CAS  PubMed  Google Scholar 

  • Millard AC et al (1999) Third-harmonic generation microscopy by use of a compact, femtosecond fiber laser source. Appl Opt 38(36):7393–7397

    Article  CAS  PubMed  Google Scholar 

  • Miri AK et al (2012) Nonlinear laser scanning microscopy of human vocal folds. Laryngoscope 122(2):356–363

    Article  PubMed  PubMed Central  Google Scholar 

  • Miri AK et al (2013) Microstructural characterization of vocal folds toward a strain-energy model of collagen remodeling. Acta Biomater 9(8):7957–7967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore LE (2003) The advantages and disadvantages of endoscopy. Clin Tech Small Anim Pract 18(4):250–253

    Article  PubMed  Google Scholar 

  • Nadiarnykh O, Campagnola PJ (2009) Retention of polarization signatures in SHG microscopy of scattering tissues through optical clearing. Opt Express 17(7):5794–5806

    Article  CAS  PubMed  Google Scholar 

  • Nadiarnykh O et al (2007) Second harmonic generation imaging microscopy studies of osteogenesis imperfecta, vol 12. SPIE, p 051805

    Google Scholar 

  • Nadiarnykh O et al (2010) Alterations of the extracellular matrix in ovarian cancer studied by second harmonic generation imaging microscopy. BMC Cancer 10:94–94

    Article  PubMed  PubMed Central  Google Scholar 

  • Negwer I et al (2018) Monitoring drug nanocarriers in human blood by near-infrared fluorescence correlation spectroscopy. Nat Commun 9(1):5306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimura G, Kinjo M (2004) Systematic error in fluorescence correlation measurements identified by a simple saturation model of fluorescence. Anal Chem 76(7):1963–1970

    Article  CAS  PubMed  Google Scholar 

  • Nuriya M et al (2006) Imaging membrane potential in dendritic spines. Proc Natl Acad Sci U S A 103(3):786–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oertel FC et al (2018) Optical coherence tomography in neuromyelitis optica spectrum disorders: potential advantages for individualized monitoring of progression and therapy. EPMA J 9(1):21–33

    Article  PubMed  Google Scholar 

  • Oron D et al (2004) Depth-resolved structural imaging by third-harmonic generation microscopy. J Struct Biol 147(1):3–11

    Article  PubMed  Google Scholar 

  • Paoli J et al (2008) Multiphoton laser scanning microscopy on non-melanoma skin cancer: morphologic features for future non-invasive diagnostics. J Investig Dermatol 128(5):1248–1255

    Article  CAS  PubMed  Google Scholar 

  • Pitschke M et al (1998) Detection of single amyloid beta-protein aggregates in the cerebrospinal fluid of Alzheimer's patients by fluorescence correlation spectroscopy. Nat Med 4(7):832–834

    Article  CAS  PubMed  Google Scholar 

  • Plotnikov S et al (2006) Optical clearing for improved contrast in second harmonic generation imaging of skeletal muscle. Biophys J 90(1):328–339

    Article  CAS  PubMed  Google Scholar 

  • Provenzano PP et al (2006) Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med 4(1):38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Provenzano PP et al (2008) Collagen density promotes mammary tumor initiation and progression. BMC Med 6:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehberg M et al (2011) Label-free 3D visualization of cellular and tissue structures in intact muscle with second and third harmonic generation microscopy. PLoS One 6(11):e28237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiser KM et al (2007) Quantitative analysis of structural disorder in intervertebral disks using second harmonic generation imaging: comparison with morphometric analysis. SPIE

    Google Scholar 

  • Ricard-Blum S, Baffet G, Théret N (2018) Molecular and tissue alterations of collagens in fibrosis. Matrix Biol 68-69:122–149

    Article  CAS  PubMed  Google Scholar 

  • Roy HK et al (2008) Spectral slope from the endoscopically-normal mucosa predicts concurrent colonic neoplasia: a pilot ex-vivo clinical study. Dis Colon Rectum 51(9):1381–1386

    Article  PubMed  PubMed Central  Google Scholar 

  • Sacconi L, Dombeck DA, Webb WW (2006) Overcoming photodamage in second-harmonic generation microscopy: real-time optical recording of neuronal action potentials. Proc Natl Acad Sci U S A 103(9):3124–3129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandoval RM, Molitoris BA (2017) Intravital multiphoton microscopy as a tool for studying renal physiology and pathophysiology. Methods (San Diego, Calif) 128:20–32

    Article  CAS  Google Scholar 

  • Sarkar B et al (2012) The dynamics of somatic exocytosis in monoaminergic neurons. Front Physiol 3:414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar B et al (2014) Label-free dopamine imaging in live rat brain slices. ACS Chem Neurosci 5(5):329–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schürmann S et al (2010) Second harmonic generation microscopy probes different states of motor protein interaction in myofibrils. Biophys J 99(6):1842–1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schürmann S et al (2013) Label-free imaging of inflammatory bowel disease using multiphoton microscopy. Gastroenterology 145(3):514–516

    Article  PubMed  Google Scholar 

  • Shahzad A, Köhler G (2011) Fluorescence correlation spectroscopy (FCS): a promising tool for biological research. Appl Spectrosc Rev 46(2):166–173

    Article  CAS  Google Scholar 

  • Shahzad A et al (2009) Emerging applications of fluorescence spectroscopy in medical microbiology field. J Transl Med 7(7):99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Bradley LT (1964) Three-photon absorption in Napthalene crystals by laser excitation. Phys Rev Lett 12(22):612–614

    Article  CAS  Google Scholar 

  • Singh AP, Wohland T (2014) Applications of imaging fluorescence correlation spectroscopy. Curr Opin Chem Biol 20:29–35

    Article  CAS  PubMed  Google Scholar 

  • Stanciu SG et al (2014) Experimenting liver fibrosis diagnostic by two photon excitation microscopy and bag-of-features image classification. Sci Rep (4):4636

    Google Scholar 

  • Sun TY, Haberman AM, Greco V (2017) Preclinical advances with multiphoton microscopy in live imaging of skin cancers. J Invest Dermatol 137(2):282–287

    Article  CAS  PubMed  Google Scholar 

  • Svoboda K et al (1997) In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385(6612):161–165

    Article  CAS  PubMed  Google Scholar 

  • Swanson EA et al (1993) In vivo retinal imaging by optical coherence tomography. Opt Lett 18(21):1864–1866

    Article  CAS  PubMed  Google Scholar 

  • Torres R, Genzen JR, Levene MJ (2012) Clinical measurement of von Willebrand factor by fluorescence correlation spectroscopy. Clin Chem 58(6):1010–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathy U et al (2013) Optimization of malaria detection based on third harmonic generation imaging of hemozoin. Anal Bioanal Chem 405(16):5431–5440

    Article  CAS  PubMed  Google Scholar 

  • Tsai M-R, Chen C-H, Sun C-K (2009) Third and second harmonic generation imaging of human articular cartilage. 40

    Google Scholar 

  • Tsai M-R et al (2011) In vivo optical virtual biopsy of human oral mucosa with harmonic generation microscopy. Biomed Opt Express 2(8):2317–2328

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsai C-K et al (2012) Virtual optical biopsy of human adipocytes with third harmonic generation microscopy. Biomed Opt Express 4(1):178–186

    Article  PubMed  PubMed Central  Google Scholar 

  • Tserevelakis GJ et al (2014) Label-free imaging of lipid depositions in C. elegans using third-harmonic generation microscopy. PLoS One 9(1):e84431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Utino FL et al (2018) Second-harmonic generation imaging analysis can help distinguish sarcoidosis from tuberculoid leprosy. SPIE 23:1

    Google Scholar 

  • Vakoc BJ et al (2009) Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat Med 15:1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Virgili, G., et al., Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy. The Cochrane database of systematic reviews, 2015. 1: p. CD008081-CD008081

    Google Scholar 

  • Wallace SJ et al (2008) Second-harmonic generation and two-photon-excited autofluorescence microscopy of cardiomyocytes: quantification of cell volume and myosin filaments. J Biomed Opt 13(6):064018

    Article  CAS  PubMed  Google Scholar 

  • Wang X et al (2003) Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat Biotechnol 21:803

    Article  CAS  PubMed  Google Scholar 

  • Wang X et al (2006) Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography, vol 11. SPIE, p 024015

    Google Scholar 

  • Weigelin B, Bakker G-J, Friedl P (2012) Intravital third harmonic generation microscopy of collective melanoma cell invasion: principles of interface guidance and microvesicle dynamics. Intravital 1(1):32–43

    Article  PubMed  Google Scholar 

  • Wruss J et al (2007) Attachment of VLDL receptors to an icosahedral virus along the 5-fold symmetry axis: multiple binding modes evidenced by fluorescence correlation spectroscopy. Biochemistry 46(21):6331–6339

    Article  CAS  PubMed  Google Scholar 

  • Wu Z et al (2017) Multi-photon microscopy in cardiovascular research. Methods 130:79–89

    Article  CAS  PubMed  Google Scholar 

  • Xie Z et al (2011) Evaluation of bladder microvasculature with high-resolution photoacoustic imaging. Opt Lett 36(24):4815–4817

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao K et al (2008) Clinical application of magnification endoscopy and narrow-band imaging in the upper gastrointestinal tract: new imaging techniques for detecting and characterizing gastrointestinal neoplasia. Gastrointest Endosc Clin N Am 18(3):415–433

    Article  PubMed  Google Scholar 

  • Yao J et al (2011) Label-free oxygen-metabolic photoacoustic microscopy in vivo. J Biomed Opt 16(7):076003–076003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh AT et al (2004) Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model. J Biomed Opt 9(2):248–253

    Article  PubMed  Google Scholar 

  • Yelin D, Silberberg Y (1999) Laser scanning third-harmonic-generation microscopy in biology. Opt Express 5(8):169–175

    Article  CAS  PubMed  Google Scholar 

  • Yew E, Rowlands C, So PTC (2014) Application of multiphoton microscopy in dermatological studies: a mini-review. J Innov Opt Health Sci 7(5):1330010–1330010

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuste R, Denk W (1995) Dendritic spines as basic functional units of neuronal integration. Nature 375(6533):682–684

    Article  CAS  PubMed  Google Scholar 

  • Zagaynova E, et al Metabolic imaging of tumor for diagnosis and response for therapy. SPIE BiOS. 2018. SPIE

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anand Kant Das or Umakanta Tripathy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Biswas, S., Gavra, V.B., Das, A.K., Tripathy, U. (2019). Biophotonics in Disease Diagnosis and Therapy. In: Paul, S. (eds) Biomedical Engineering and its Applications in Healthcare. Springer, Singapore. https://doi.org/10.1007/978-981-13-3705-5_3

Download citation

Publish with us

Policies and ethics