Skip to main content

Abstract

Artificial phantoms or bio-models are the replicas of human body tissues, which are utilized for modeling of microwave propagation in tissues. These phantoms are highly needed while developing, optimizing, and evaluating microwave imaging systems. Such tissue imitations should ideally reflect the 3D structure of the human tissues. Overall, the phantoms play a key factor for initial design and development of systems. The phantoms/models act as a bridge for transferring the microwave-based lab setups to the commercial systems. This chapter includes all the aspects of the phantoms: dielectric properties, types of tissues, materials, structural properties, prospect of durability and reproducibility of phantoms with complementary properties, and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bakar AA, Abbosh A, Sharpe P, Bialkowski ME, Wang Y (2011a) Heterogeneous breast phantom for ultra-wideband microwave imaging. Microw Opt Technol Lett 53(7):1595–1598

    Article  Google Scholar 

  • Bakar AA, Abbosh A, Bialkowski M (2011b) Fabrication and characterization of a heterogeneous breast phantom for testing an ultrawideband microwave imaging system. In: Proceedings of Asia-Pacific Microw Conference, Dec. 2011, pp 1414–1417

    Google Scholar 

  • Barbara OL, Declan LO, Martin HO, Porter E (2018) Microwave breast imaging: experimental tumour phantoms for the evaluation of new breast cancer diagnosis systems. Biomed Phys Eng Express 4(2):1–13

    Google Scholar 

  • Bini MG, Ignesti A, Millanta L, Olmi R, Rubino N, Vanni R (1984) The polyacrylamide as a phantom material for electromagnetic hyperthermia studies. IEEE Trans Biomed Eng 3:317–322

    Article  Google Scholar 

  • Bourqui J, Campbell MA, Williams T, Fear EC (2010) Antenna evaluation for ultra-wideband microwave imaging. Int J Antennas Propag 2010:1–8

    Article  Google Scholar 

  • Bourqui J, Sill JM, Fear EC (2012) A prototype system for measuring microwave frequency reflections from the breast. J Biomed Imaging 2012:1–12

    Google Scholar 

  • Burfeindt MJ, Colgan TJ, Mays RO, Shea JD, Behdad N, Veen BDV, Hagness SC (2012) MRI-derived 3D printed breast phantom for microwave breast imaging validation. IEEE Antennas Wireless Propag Lett 11:1610–1613

    Article  Google Scholar 

  • Castelló-palacios S, Garcia-pardo C, Fornes-leal A, Cardona N, Vallés-lluch A (2016) Tailor-made tissue phantoms based on acetonitrile solutions for microwave applications up to 18 ghz. IEEE Trans Microw Theory Technol 64(11):3987–3994

    Article  Google Scholar 

  • Chahat N, Zhadobov M, Sauleau R (2012) Broadband tissue-equivalent phantom for BAN applications at millimeter waves. IEEE Trans Microw Theory Technnol 60(7):2259–2266

    Article  Google Scholar 

  • Chahat N, Leduc C, Zhadobov M, Sauleau R (2013) Antennas and interaction with the body for body-centric wireless communications at millimeter-waves. In: Proceedings of European Conference on Antennas and Propagation, Apr. 2013, pp 772–775

    Google Scholar 

  • Chen ZN, Liu GC, See TS (2009) Transmission of RF signals between MICS loop antennas in free space and implanted in the human head. IEEE Trans Antennas Propag 57(6):1850–1854

    Article  Google Scholar 

  • Chou CK, Mcdougall JA, Chan KW, Luk KH (1991) Heating patterns of microwave applicators in inhomogeneous arm and thigh phantoms. Med Phys 18(6):1164–1170

    Article  CAS  PubMed  Google Scholar 

  • Craddock J, Nilavalan R, Leendertz J, Preece A, Benjamin R (2005) Experimental investigation of real aperture synthetically organised radar for breast cancer detection. In: Proceedings of IEEE Antennas Propagation Society International Symposium, July 2005, pp 179–182

    Chapter  Google Scholar 

  • Croteau J, Sill J, Williams T, Fear E (2009) Phantoms for testing radar-based microwave breast imaging. In: Proceedings of ANTEM/URSI International Symposium on Antenna Technology Application Electromagnetic Canadian Rad. Sci. Meeting, Feb. 2009, pp 1–4

    Google Scholar 

  • Cuyckens T (2010) Influence of the human body on the behaviour of monopole and patch antennas, Ph.D. dissertation, University Gent. [online]. Available: http://lib.ugent.be/fulltxt/RUG01/001/418/705/RUG01-001418705_2010_0001_AC.pdf

  • Davis CC, Balzano Q (2009) The international intercomparison of SAR measurements on cellular telephones. IEEE Trans Electromag Compat 51(2):210–216

    Article  Google Scholar 

  • Faenger B, Ley S, Helbig M, Sachs J, Hilger I, Jena F (2017) Breast phantom with a conductive skin layer and conductive 3D-printed anatomical structures for microwave imaging. In: 11th European Conference on Antennas and Propagation March 2017, pp 1065–1068

    Chapter  Google Scholar 

  • Fiaschetti G, Browne JE, Cavagnaro M, Farina L, Ruvio G (2018) Tissue mimicking materials for multi-modality breast phantoms. In: 2018 2nd URSI Atl. Radio Sci. Meet.(International Union of Radio Science URSI, 2018), pp 1–6

    Google Scholar 

  • Filho RHC, Oliveira RMD, Sobrinho CLSSD, Almeida AMD (2009) Parallel-FDTD and experimental results of SAR for flat and head phantoms@ 900 MHz. In: Proceedings of SBMO/IEEE MTT-S International Microwave and. Optoelectronics Conference, pp 373–378

    Google Scholar 

  • Gabriel C (2007) Tissue-equivalent material for hand phantoms. Phys Med Biol 52(14):4205–4210

    Article  CAS  PubMed  Google Scholar 

  • Gabriel S, Lau RW, Gabriel C (1996a) The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41(11):2251–2269

    Article  CAS  PubMed  Google Scholar 

  • Gabriel S, Lau RW, Gabriel C (1996b) The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys Med Biol 41(11):2271–2293

    Article  CAS  PubMed  Google Scholar 

  • Gajda G, Stuchly MA, Stuchly SS (1979) Mapping of the near-field pattern in simulated biological tissues. Electron Lett 15(4):120–121

    Article  Google Scholar 

  • Garrett J, Fear E (2014) Stable and flexible materials to mimic the dielectric properties of human soft tissues. IEEE Antennas Wireless Propag Lett 13:599–602

    Article  Google Scholar 

  • Garrett J, Member S, Fear E, Member S (2015) A new breast phantom with a durable skin layer for microwave breast imaging. IEEE Trans Antennas Propag 63(4):1693–1700

    Article  Google Scholar 

  • Guy AW, Chou C-K (1986) Specific absorption rates of energy in man models exposed to cellular UHF mobile-antenna fields. IEEE Trans Microw Theory Technol 34(6):671–680

    Article  Google Scholar 

  • Hahn C, Noghanian S (2012) Heterogeneous breast phantom development for microwave imaging using regression models. J Biomed Imaging 2012:1–12

    Article  Google Scholar 

  • Henriksson T, Joachimowicz N, Conessa C, Bolomey J-C (2010) Quantitative microwave imaging for breast cancer detection using a planar 2.45 GHz system. IEEE Trans Instrument Meas 59(10):2691–2699

    Article  Google Scholar 

  • Hombach V, Meier K, Burkhardt M, Kuhn E, Kuster N (1996) The dependence of EM energy absorption upon human head modeling at 900 MHz. IEEE Trans Microw Theory Technol 44(10):1865–1873

    Article  Google Scholar 

  • Ishido R, Onishi T, Saito K, Uebayashi S, Ito K (2004) A study on the solid phantoms for 3–6 GHz and evaluation of SAR distributions based on the thermographic method. In: Proceedings of IEEE International Symposium on Electromagnetic Compatibility, pp 577–580

    Google Scholar 

  • Islam MT, Samsuzzaman M, Kibria S, Singh MJ (2018) A homogeneous breast phantom measurement system with an improved modified microwave imaging antenna sensor. Sensors 18(9):1–23

    Article  Google Scholar 

  • Ito K, Okano Y, Hase A, Ida I (1998) A tissue-equivalent solid phantom for estimation of interaction between human head and handset antenna. In: Proceedings of IEEE-APS Conference Antennas and Propagation for Wireless Communications, Nov. 1998, pp 89–92

    Google Scholar 

  • Ito K, Furuya K, Okano Y, Hamada L (2001) Development and characteristics of a biological tissue-equivalent phantom for microwaves. Electron Commun Japan (Part I: Commun) 84:67–77

    Article  Google Scholar 

  • Joachimowicz N, Conessa C, Henriksson T, Duchene B (2014) Breast phantoms for microwave imaging. IEEE Antennas Wireless Propag Lett 13:1333–1336

    Article  Google Scholar 

  • Joachimowicz N, Duchêne B, Conessa C, Meyer O (2017) Reference phantoms for microwave imaging. In: 2017 11th European Conference on Antennas and Propagation Ref, pp 2719–2722

    Chapter  Google Scholar 

  • Jofre L, Hawley MS, Broquetas A, Reyes EDL, Ferrando M, Elias-Fuste AR (1990) Medical imaging with a microwave tomographic scanner. IEEE Trans Biomed Eng 37(3):303–312

    Article  CAS  PubMed  Google Scholar 

  • Johnson CC, Guy AW (1972) Nonionizing electromagnetic wave effects in biological materials and systems. Proc IEEE 60(6):692–718

    Article  Google Scholar 

  • Karathanasis KT, Gouzouasis IA, Karanasiou IS, Uzunoglu NK (2012) Experimental study of a hybrid microwave radiometry hyperthermia apparatus with the use of an anatomical head phantom. IEEE Trans Inf Technol Biomed 16(2):241–247

    Article  PubMed  Google Scholar 

  • Kawai H, Tanaka S, Wake K, Watanabe S, Taki M, Uno T (2007) Localized exposure using an 8-shaped loop antenna system with a director for animal study in 1.5 GHz band. In: Proceedings of IEEE Asia-Pacific Microwave Conference, Dec. 2007, pp 1–4

    Google Scholar 

  • Kawamura T, Saito K, Kikuchi S, Takahashi M, Ito K (2009) Specific absorption rate measurement of birdcage coil for 3.0-T magnetic resonance imaging system employing thermographic method. IEEE Trans Microw Theory Technol 57(10):2508–2514

    Article  Google Scholar 

  • Kiarashi N, Nolte AC, Sturgeon GM, Segars WP, Ghate SV, Nolte LW, Samei E, Lo JY (2015) Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data. Med Phys 42(7):4116–4126

    Article  PubMed  Google Scholar 

  • Klemm M, Craddock IJ, Leendertz JA, Preece A, Benjamin R (2009) Radar-based breast cancer detection using a hemispherical antenna array experimental result. IEEE Trans Antennas Propag 57(6):1692–1704

    Article  Google Scholar 

  • Klemm M, Leendertz JA, Gibbins D, Craddock IJ, Preece A, Benjamin R (2010) Microwave radar-based breast cancer detection: imaging in inhomogeneous breast phantoms. IEEE Antennas Wireless Propag Lett 8:1349–1352

    Article  Google Scholar 

  • Kobayashi T, Nojima T, Yamada K, Uebayashi S (1993) Dry phantom composed of ceramics and its application to SAR estimation. IEEE Trans Microw Theory Technol 41(1):136–140

    Article  Google Scholar 

  • Koichi I (2007) Human body phantoms for evaluation of wearable and implantable antennas. In Second European Conference on Antennas and Propagation, EuCAP 2007, pp 1–6

    Google Scholar 

  • Kumari V, Sheoran G, Tirupathiraju K, Vyas R, Rao SA (2018) Development and analysis of anatomically real breast phantoms using different dispersion models. J Electron Imaging 27(5):051208(1–12)

    Article  Google Scholar 

  • Lazebnik M, Madsen EL, Frank GR, Hagness SC (2005) Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications. Phys Med Biol 50(18):4245–4258

    Article  PubMed  Google Scholar 

  • Lazebnik M, McCartney L, Popovic D, Watkins CB, Lindstrom MJ, Harter J, Hagness SC (2007) A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries. Phys Med Biol 52(10):2637–2656

    Article  PubMed  Google Scholar 

  • Lee J, Bang J, Choi J (2016) Realistic head phantom for evaluation of brain stroke localization methods using 3D printer. J Electromagn Eng Sci 16(4):254–258

    Article  Google Scholar 

  • Levick A, Land D, Hand J (2011) Validation of microwave radiometry for measuring the internal temperature profile of human tissue. Meas Sci Technol 22(6):1–8

    Article  CAS  Google Scholar 

  • Li X, Davis SK, Hagness SC, Weide DWVD, Veen BDV (2004) Microwave imaging via space-time beamforming: experimental investigation of tumor detection in multilayer breast phantoms. IEEE Trans Microw Theory Technol 52(8):1856–1865

    Article  Google Scholar 

  • Loh TH, Cheadle D, Rosenfeld L (2014) Radiation pattern measurement of a low-profile wearable antenna using an optical fibre and a solid anthropomorphic phantom. Electronics 3(3):462–473

    Article  Google Scholar 

  • Looi CK, Chen ZN (2005) Design of a human head equivalent phantom for ISM 2.4-GHz applications. Microw Opt Technol Lett 47(2):163–166

    Article  Google Scholar 

  • Looi CK, See TSP, Chen ZN (2005) Study of human head effects on the planar inverted-F antenna. In: Proceedings of IEEE International Workshop on Antenna Technology, Mar. 2005, pp 223–226

    Google Scholar 

  • Mashal A, Gao F, Hagness SC (2011) Heterogeneous anthropomorphic phantoms with realistic dielectric properties for microwave breast imaging experiments. Microw Opt Technol Lett 53:1896–1902

    Article  PubMed  PubMed Central  Google Scholar 

  • Massoudi H, Durney CH, Barbar PW, Iskander MF (1979) Electromagnetic absorption in multi-layered cylindrical models of man. IEEE Trans Microwave Theory Tech 27(10):825–830

    Article  Google Scholar 

  • Mcdermott B, Porter E, Santorelli A, Divilly B, Morris L, Jones M, McGinley B, O’Halloran M (2017) Anatomically and dielectrically realistic microwave head phantom with circulation and reconfigurable lesions. Prog Electromagn Res B 78:47–60

    Article  Google Scholar 

  • Mobashsher AT, Abbosh A (2014) Three-dimensional human head phantom with realistic electrical properties and anatomy. IEEE Antennas Wireless Propag Lett 13:1401–1404

    Article  Google Scholar 

  • Mobashsher AT, Amin AM (2015) Artificial human phantoms. IEEE Microw Mag 16(6):42–62

    Article  Google Scholar 

  • Mobashsher AT, Abbosh AM, Wang Y (2014) Microwave system to detect traumatic brain injuries using compact unidirectional antenna and wideband transceiver with verification on realistic head phantom. IEEE Trans Microw Theory Technol 62(9):1826–1836

    Article  Google Scholar 

  • Mochizuki S, Wakayanagi H, Hamada T, Watanabe S, Taki M, Yamanaka Y, Shirai H (2007) Effects of ear shape and head size on simulated head exposure to a cellular phone. IEEE Trans Electromag Compat 49(3):512–518

    Article  Google Scholar 

  • Modiri A, Kiasaleh K (2013) Experimental results for a novel microwave radiator structure targeting non-invasive breast cancer detection. In: Proceedings of IEEE Global Hum Technology Conference., Oct. 2013, pp 203–208

    Google Scholar 

  • Mohammed BJ, Abbosh AM (2014) Realistic head phantom to test microwave systems for brain imaging. Microw Opt Technol Lett 56(4):979–982

    Article  Google Scholar 

  • Mohammed B, Abbosh A, Henin B, Sharpe P (2012) Head phantom for testing microwave systems for head imaging. In: Cairo International Biomedical Engineering Conference, pp 191–193

    Google Scholar 

  • Mohammed BJ, Abbosh AM, Mustafa S, Ireland D (2014) Microwave system for head imaging. IEEE Trans Instrument Meas 63(1):117–123

    Article  Google Scholar 

  • Mohd SMS, Norhudah S, Noor SR, Tharek RA (2015) Modeling of gelatin-based head phantom based on its electrical properties for wideband microwave imaging application. Appl Mech Mater 781:608–611

    Article  Google Scholar 

  • Monebhurrun V (2010) Conservativeness of the SAM phantom for the SAR evaluation in the child's head. IEEE Trans Magn 46(8):3477–3480

    Article  Google Scholar 

  • Moon KS, Choi HD, Lee AK, Cho KY, Yoon HG, Suh KS (2000) Dielectric properties of epoxy dielectrics carbon black composite for phantom materials at radio frequencies. J App Poly Sci 7(6):1294–1302

    Article  Google Scholar 

  • Mustafa S, Mohammed B, Abbosh A (2013) Novel preprocessing techniques for accurate microwave imaging of human brain. IEEE Antennas Wireless Propag Lett 12:460–463

    Article  Google Scholar 

  • Nadine J, Bernard D, Conessa C, Olivier M (2018) Anthropomorphic breast and head phantoms for microwave imaging. Diagnostics 8(4):1–12

    Google Scholar 

  • Nagaoka T, Togashi T, Saito K, Takahashi M, Ito K, Watanabe S (2007) An anatomically realistic whole-body pregnant-woman model and specific absorption rates for pregnant woman exposure to electromagnetic plane wave from 10 MHz to 2 GHz. Phys Med Biol 52:6731–6745

    Article  PubMed  Google Scholar 

  • Nishizawa S, Hashimoto O (1999) Effective shielding analysis for three-layered human models. IEEE Trans. Microwave Theory Technol 47(3):277–283

    Article  Google Scholar 

  • O’Halloran M, Lohfeld S, Ruvio G, Browne J, Krewer F, Ribeiro CO, Pita VCI, Conceicao RC, Jones E, Glavin M (2014) Development of anatomically and dielectrically accurate breast phantoms for microwave breast imaging applications. In: Proceedings of SPIE 9077 Radar Sensor Technology May 2014, pp 1–7

    Google Scholar 

  • Ogawa K, Matsuyoshi T (2001) An analysis of the performance of a handset diversity antenna influenced by head, hand, and shoulder effects at 900 MHz: part I – effective gain characteristics. IEEE Trans Vehic Technol 50(3):830–844

    Article  Google Scholar 

  • Okano Y, Ito K, Ida I, Takahashi M (2000) The SAR evaluation method by a combination of thermographic experiments and biological tissue-equivalent phantoms. IEEE Trans Microw Theory Technol 48(11):2094–2103

    Article  Google Scholar 

  • Omer M, Fear EC (2017) Automated 3D method for the construction of flexible and reconfigurable numerical breast models from MRI scans. Med Biol Eng Comput 56(6):1027–1040

    Article  PubMed  Google Scholar 

  • Ostadrahimi M, Reopelle R, Noghanian S, Pistorius S, Vahedi A, Safari F (2009) A heterogeneous breast phantom for microwave breast imaging. In: Proceedings of IEEE Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Sept. 2009, pp 2727–2730

    Chapter  Google Scholar 

  • Picher C, Anguera J, Andujar A, Puente C, Kahng S (2012) Analysis of the human head interaction in handset antennas with slotted ground planes. IEEE Antennas Propag Mag 54(2):36–56

    Article  Google Scholar 

  • Porter E, Fakhoury J, Oprisor R, Coates M, Popovic M (2010) Improved tissue phantoms for experimental validation of microwave breast cancer detection. In: Proceedings of Fourth European Conf. Antennas Propag., Apr. 2010, pp 1–5

    Google Scholar 

  • Porter E, Santorelli A, Bourdon A, Coulibaly D, Coates M, Popovi M (2011) Time-domain microwave breast cancer detection: experiments with comprehensive glandular phantoms. In: Proceedings of IEEE Asia-Pacific Microw Conference, Dec. 2011, pp 203–206

    Google Scholar 

  • Rodrigues DB, Maccarini PF, Salahi S, Oliveira TR, Pereira PJS, Limao-Vieira P, Snow BW, Reudink D, Stauffer PR (2014) Design and optimization of an ultra-wideband and compact microwave antenna for radiometric monitoring of brain temperature. IEEE Trans Biomed Eng 61(7):2154–2160

    Article  PubMed  PubMed Central  Google Scholar 

  • Romeo S, Donato LD, Bucci OM, Catapano I, Crocco L, Scarfì MR, Massa R (2011) Dielectric characterization study of liquid-based materials for mimicking breast tissues. Microw Opt Technol Lett 53(6):1276–1280

    Article  Google Scholar 

  • Saraereh OA, Jayawardene M, McEvoy P, Vardaxoglou JC (2004) Simulation and experimental SAR and efficiency study for a dual-band PIFA handset antenna (GSM 900/DCS 1800) at varied distances from a phantom head. In: Proceedings of IEE Antenna Meas. SAR, May 2004, pp 5–8

    Google Scholar 

  • Scapaticci R, Bellizzi G, Catapano I, Crocco L, Bucci OM (2014) An effective procedure for MNP-enhanced breast Cancer microwave imaging. IEEE Trans Biomed Eng 61(4):1071–1079

    Article  PubMed  Google Scholar 

  • Schwerdt HN, Miranda FA, Chae J (2012a) A fully passive wireless backscattering neurorecording microsystem embedded in dispersive human-head phantom medium. IEEE Electron Device Lett 33(6):908–910

    Article  Google Scholar 

  • Schwerdt HN, Chae J, Miranda FA (2012b) Wireless performance of a fully passive neurorecording microsystem embedded in dispersive human head phantom. In: Proceedings of IEEE Antennas Propagation Society International Symposium., July 2012, pp 1–2

    Google Scholar 

  • Takimoto T, Onishi T, Saito K, Takahashi M, Uebayashi S, Ito K (2007) Characteristics of biological tissue equivalent phantoms applied to UWB communications. Electron Commun. Japan (Part I: Commun.) 90(5):48–55

    Article  Google Scholar 

  • Tamura H, Ishikawa Y, Kobayashi T (1997) A dry phantom material composed of ceramic and graphite powder. IEEE Trans Electromag Compat 39(2):132–137

    Article  Google Scholar 

  • Tell RA (1972) Microwave energy absorption in tissue, Twinbrook Research Laboratory technical report. EPA, Washington, DC

    Google Scholar 

  • Tunçay AH, Akduman I (2015) Realistic microwave breast models through T1-weighted 3-D MRI data. IEEE Trans Biomed Eng 62(2):688–698

    Article  PubMed  Google Scholar 

  • Vrba J, Karch J, Vrba D (2015) Phantoms for development of microwave sensors for noninvasive blood glucose monitoring. Int J Antennas Propag 2015:1

    Article  Google Scholar 

  • Wang L, Niu J (2017) Development of a biological tissue-like phantom for microwave imaging systems. Int J Sci Eng Appl Sci 3(4):62–69

    Google Scholar 

  • Watanabe S, Taki M, Nojima T, Fujiwara O (1996) Characteristics of the SAR distributions in an head exposed to electromagnetic fields radiated by a hand-held portable radio. IEEE Trans Microw Theory Technol 44(10):1874–1883

    Article  Google Scholar 

  • Weil CM (1975) Absorption characteristics of multi-layered sphere models exposed to UHF/microwave radiation. IEEE Trans Biomed Eng 22(6):468–476

    Article  CAS  PubMed  Google Scholar 

  • Youngs IJ, Treen AS, Fixter G, Holden S (2002) Design of solid broadband human tissue simulant materials. IEEE Proc Sci Meas Technol 149(6):323–328

    Article  Google Scholar 

  • Yuan Y, Wyatt C, Maccarini P, Stauffer P, Craciunescu O, MacFall J, Dewhirst M, Das SK (2012) A heterogeneous human tissue mimicking phantom for RF heating and MRI thermal monitoring verification. Phys Med Biol 57(7):2021–2037

    Article  PubMed  PubMed Central  Google Scholar 

  • Zastrow E, Davis SK, Lazebnik M, Kelcz F, Van Veen BD, Hagness SC (2008) Development of anatomically realistic numerical breast phantoms with accurate dielectric properties for modeling microwave interactions with the human breast. IEEE Trans Biomed Eng 55(12):2792–2800

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Liu X, Hackworth SA, Sclabassi RJ, Sun M (2009) In vitro and in vivo studies on wireless powering of medical sensors and implantable devices. In: Proceeding of IEEE/NIH Life Sci. Syst. Appl. Work, Apr. 2009, pp 84–87

    Google Scholar 

  • Zhou H (2009) A breast imaging model using microwaves and a time domain three dimensional reconstruction method. Prog Electromagn Res 93:57–70

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge the assistance of Ms. Neelam Barak and Mr. Aijaz Ahmed of NIT Delhi in writing the book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyanendra Sheoran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sheoran, G., Kumari, V. (2019). Anatomically Real Microwave Tissue Phantoms. In: Paul, S. (eds) Biomedical Engineering and its Applications in Healthcare. Springer, Singapore. https://doi.org/10.1007/978-981-13-3705-5_2

Download citation

Publish with us

Policies and ethics