Skip to main content

Algorithms for Discrete Areal Feature Generalization

  • Chapter
  • First Online:
  • 304 Accesses

Abstract

Discrete areal features refer to the features on maps that are symbolized using polygons and the same type of features are topologically separated. Such examples are common on large or intermediate scale maps, e.g. lakes, ponds, seas, islands, buildings/settlements, parks, squares, playgrounds etc. (Fig. 7.1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Change history

  • 13 October 2019

    The original version of this book was inadvertently published without citations to “Cetinkaya S., Basaraner M., Burghardt D., 2015, Proximity-based grouping of buildings in urban blocks: a comparison of four algorithms, Geocarto International, 30(6): 618–632”.

References

  • Bader M., Barrault M., Weibel R., 2005, Building displacement over a ductile truss, International Journal of Geographical Information Science, 19(8–9): 915–936

    Article  Google Scholar 

  • Bader M., Weibel R., 1997, Detecting and resolving size and proximity conflicts in the generalization of polygon maps, in the Proceedings of the 18th International Cartographic Conference, Stockholm, Sweden, pp.1525–1532

    Google Scholar 

  • Boffet A., Rocca S., 2001, Identification of spatial structures within urban blocks for town characterization, in the Proceedings of the 20th International Cartographic Conference, Beijing, China, 2001 (CD-ROM)

    Google Scholar 

  • Cetinkaya S., Basaraner M., Burghardt D., 2015, Proximity-based grouping of buildings in urban blocks: a comparison of four algorithms, Geocarto International, 30(6): 618–632

    Google Scholar 

  • Christophe S., Ruas A., 2002, Detecting building alignments for generalisation purposes, In: DE Richardson, and P van Oosterom (eds.). Advances in Spatial Data Handling (10th International Symposium on Spatial Data Handling), Berlin: Springer-Verlag, pp.419–432

    Google Scholar 

  • Duchêne C., Bard S., Barillot X., 2003, Quantitative and qualitative description of building orientation, in The 5th ICA workshop on progress in automated map generalization, Paris, France

    Google Scholar 

  • Goyal R.K., 2000, Similarity assessment for cardinal directions between extended spatial objects, PhD thesis, The University of Maine

    Google Scholar 

  • Jones C.B., Bundy G.L., Ware J.M., 1995, Map generalization with a triangulated data structure, Cartography and Geographic Information Systems, 22(4): 317–331

    Google Scholar 

  • Jones C.B., Ware J.M., 2005, Map generalization in the Web age, International Journal of Geographical Information Science, 19 (8–9):859–870

    Article  Google Scholar 

  • Li Z., Yan H., Ai T., Chen J., 2004, Automated building generalization based on urban morphology and gestalt theory, International Journal of Geographical Information Science, 18(5):513–534.

    Article  Google Scholar 

  • McMaster R.B., Shea K.S., 1992, Generalization in digital cartography, Washington DC: Association of American Cartographers

    Google Scholar 

  • Palmer S.E., 1992, Common region: a new principle of perceptual grouping, Cognitive Psychology, 24(2): 436–447, 1992.

    Article  Google Scholar 

  • Palmer S.E., Rock I., 1994, Rethinking perceptual organization: the role of uniform connectedness. Psychonomic Bulletin and Review, 1:515–519

    Article  Google Scholar 

  • Papadias D., Sellis T., 1994, The qualitative representation of spatial knowledge in two-dimensional space, Very Large Database Journal, 3(4): 479–516

    Article  Google Scholar 

  • Peuquet D., Zhan C.X., 1987, An algorithm to determine the directional relationship between arbitrarily-shaped polygons in the plane, Pattern Recognition, 20(1): 65–74

    Article  Google Scholar 

  • Rainsford D., Mackaness W., 2002, Template matching in support of generalization of rural buildings, In: DE Richardson, and P van Oosterom (eds.). Advances in Spatial Data Handling (10th International Symposium on Spatial Data Handling), Berlin: Springer-Verlag, pp. 137–151.

    Google Scholar 

  • Regnauld N., 2001, Contextual building typification in automated map generalization, Algorithmica, 30(2): 312–333

    Article  Google Scholar 

  • Rock I., 1996, Indirect Perception. London: MIT Press

    Google Scholar 

  • Ruas A., 1998, A method for building displacement in automated map generalization, International Journal of Geographical Information Science, 12(8):789–803

    Article  Google Scholar 

  • Ruas A., Plazanet C., 1996, Strategies for automated generalization, in the Proceedings of Spatial Data Handling, pp.6.1–6.18

    Google Scholar 

  • Shekhar S, Liu X., Chawla S., 1999, An object model of direction and its application, Geoinformatica, 3(4):357–379

    Article  Google Scholar 

  • Steinhauer J.H., Wiese T., Freksa C., Barkowsky T., 2001, Recognition of abstract regions in cartographic maps, in: Montello DR, ed, Spatial Information Theory, Springer, Berlin, pp.306–321.

    Google Scholar 

  • SSC, 2005, Topographic Maps: Map Graphics and Generalization, Cartographic Publication Series No. 17. Swiss Society of Cartography (CD-ROM)

    Google Scholar 

  • Weibel R., 1996, A typology of constraints to line simplification, Advances on GIS II. M. J. Kraak and M. Molenaar (ed.), London: Taylor & Francis, pp. 9A.1–9A.14

    Google Scholar 

  • Yan H., Chu Y., Li Z., Guo R., 2006, A quantitative description model for directional relations based on direction groups, Geoinformatica, 10(2):177–195

    Article  Google Scholar 

  • Sadahiro Y., 1997, Cluster perception in the distribution of point objects, Cartographica, Vol.34(1):49–61

    Google Scholar 

  • Wertheimer M., 1923, Law of organization in perceptual forms. In A Source Book of Gestalt Psychology, edited by W. D. Ellis (Kegan Paul, Trench, Trubner), pp.71–88

    Google Scholar 

  • Yan H., Weibel R., Yang B., 2008, A multi-parameter approach to automated building grouping and generalization, Geoinformatica, 12:73–89

    Article  Google Scholar 

  • Patricios N.N., 2002, Urban design principles of the original neighbourhood concepts, Urban Morphology, 6(1), 21–32

    Google Scholar 

  • Gold C.M., 1991, Problems with handling spatial data-the Voronoi Approach, CISM Journal, 45(1): 65–80

    Google Scholar 

  • Christensen, A.H.J., 1999, Cartographic line generalization with waterlines and medial axes. Cartography and Geographic Information Science, 26:19–32

    Article  Google Scholar 

  • Klein R.M., Meiser S., 1993, Randomized incremental construction of abstract Voronoi diagrams. International Journal of Computational Geometry and Applications, 3:157–184

    Article  Google Scholar 

  • Li Z.L., Su B., 1995, From phenomena to essence: envisioning the nature of digital map generalization, Cartographic Journal, 32:45–47

    Article  Google Scholar 

  • Rauber T., Rünger G., 2013, Parallel Programming: for Multicore and Cluster Systems. Springer Science & Business Media

    Google Scholar 

  • McCool M., Reinders J., Robison A., 2013, Structured Parallel Programming: Patterns for Efficient Computation, Elsevier

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yan, H. (2019). Algorithms for Discrete Areal Feature Generalization. In: Description Approaches and Automated Generalization Algorithms for Groups of Map Objects. Springer, Singapore. https://doi.org/10.1007/978-981-13-3678-2_7

Download citation

Publish with us

Policies and ethics