Skip to main content

Precision Genome Editing in Human-Induced Pluripotent Stem Cells

  • Chapter
  • First Online:
Medical Applications of iPS Cells

Part of the book series: Current Human Cell Research and Applications ((CHCRA))

  • 434 Accesses

Abstract

The advent of human-induced pluripotent stem cell (hiPSC) technology enabled researchers to gain access to the various somatic cell types that comprise the human body, along with the underlying genetic code which details their function or dysfunction in normal and disease states, respectively. In vitro disease models based on patient-specific hiPSCs have already demonstrated great potential for elucidating disease mechanisms, drug discovery, and validation of cell replacement therapies. In certain cases, accurate recapitulation or rectification of the genetic causes of disease requires the ability to precisely modify just a single base of DNA among the billions present in the human genome. Together with recent advances in gene editing technologies such as programmable endonucleases, we are now able to re-create pathogenic mutations with base precision for more reliable disease models. Moreover, these combined methods have opened the door to scarless repair of disease alleles for the future of personal stem cell therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takahashi K, Yamanaka S. A decade of transcription factor-mediated reprogramming to pluripotency. Nat Rev Mol Cell Biol. 2016;17(3):183–93.

    Article  CAS  PubMed  Google Scholar 

  2. Clevers H. Modeling development and disease with organoids. Cell. 2016;165:1586–97.

    Article  CAS  PubMed  Google Scholar 

  3. Kim J-H, Kurtz A, Yuan B-Z, Zeng F, Lomax G, Loring JF, Crook J, Ju JH, Clarke L, Inamdar MS, et al. Report of the international stem cell banking initiative workshop activity: current hurdles and progress in seed-stock banking of human pluripotent stem cells. Stem Cells Transl Med. 2017;6:1956–62.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sakuma T, Woltjen K. Nuclease-mediated genome editing: at the front-line of functional genomics technology. Develop Growth Differ. 2014;56:2–13.

    Article  CAS  Google Scholar 

  5. Zeltner N, Studer L. Pluripotent stem cell-based disease modeling: current hurdles and future promise. Curr Opin Cell Biol. 2015;37:102–10.

    Article  CAS  PubMed  Google Scholar 

  6. Kim HS, Bernitz JM, Lee D-F, Lemischka IR. Genomic editing tools to model human diseases with isogenic pluripotent stem cells. Stem Cells Dev. 2014;23:2673–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jasin M. Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet. 1996;12:224–8.

    Article  CAS  PubMed  Google Scholar 

  8. Pavletich NP, Pabo CO. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science. 1991;252:809–17.

    Article  CAS  PubMed  Google Scholar 

  9. Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A. 1996;93:1156–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Smith J, Bibikova M, Whitby FG, Reddy AR, Chandrasegaran S, Carroll D. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res. 2000;28:3361–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Elrod-Erickson M, Rould MA, Nekludova L, Pabo CO. Zif268 protein-DNA complex refined at 1.6 A: a model system for understanding zinc finger-DNA interactions. Structure. 1996;4:1171–80.

    Article  CAS  PubMed  Google Scholar 

  12. Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, Dekelver RC, Katibah GE, Amora R, Boydston EA, Zeitler B, et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol. 2009;27:851–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U. Breaking the code of DNA binding specificity of TAL-type III effectors. Science. 2009;326:1509–12.

    Article  CAS  PubMed  Google Scholar 

  14. Moscou MJ, Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors. Science. 2009;326:1501.

    Article  CAS  PubMed  Google Scholar 

  15. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 2010;186:757–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP, Cost GJ, Zhang L, Santiago Y, Miller JC, et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol. 2011;29(8):731–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pattanayak V, Guilinger JP, Liu DR. Determining the specificities of TALENs, Cas9, and other genome-editing enzymes. Methods Enzymol. 2014;546:47–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. RNA-guided human genome engineering via Cas9. Science. 2013;339(6121):823–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Koonin EV, Makarova KS, Zhang F. Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol. 2017;37:67–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee JK, Jeong E, Lee J, Jung M, Shin E, Kim Y-H, Lee K, Jung I, Kim D, Kim S, et al. Directed evolution of CRISPR-Cas9 to increase its specificity. Nat Commun. 2018;9:3048.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Hirano S, Nishimasu H, Ishitani R, Nureki O. Structural basis for the altered PAM specificities of engineered CRISPR-Cas9. Mol Cell. 2016;61:886–94.

    Article  CAS  PubMed  Google Scholar 

  24. Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 2016;529:490–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, Gonzales APW, Li Z, Peterson RT, Yeh J-RJ, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. 2015;523:481–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Ceccaldi R, Rondinelli B, D’Andrea AD. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol. 2016;26:52–64.

    Article  CAS  PubMed  Google Scholar 

  27. Mansour SL, Thomas KR, Capecchi MR. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature. 1988;336:348–52.

    Article  CAS  PubMed  Google Scholar 

  28. Smithies O, Gregg RG, Boggs SS, Koralewski MA, Kucherlapati RS. Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature. 1985;317:230–4.

    Article  CAS  PubMed  Google Scholar 

  29. Thomas KR, Folger KR, Capecchi MR. High frequency targeting of genes to specific sites in the mammalian genome. Cell. 1986;44:419–28.

    Article  CAS  PubMed  Google Scholar 

  30. Shibata A, Moiani D, Arvai AS, Perry J, Harding SM, Genois M-M, Maity R, van Rossum-Fikkert S, Kertokalio A, Romoli F, et al. DNA double-Strand break repair pathway choice is directed by distinct MRE11 nuclease activities. Mol Cell. 2014;53:7–18.

    Article  CAS  PubMed  Google Scholar 

  31. Song F, Stieger K. Optimizing the DNA donor template for homology-directed repair of double-strand breaks. Mol Ther Nucleic Acid. 2017;7:53–60.

    Article  CAS  Google Scholar 

  32. Nakajima K, Zhou Y, Tomita A, Hirade Y, Gurumurthy CB, Nakada S. Precise and efficient nucleotide substitution near genomic nick via noncanonical homology-directed repair. Genome Res. 2018;28:223–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Miura H, Quadros RM, Gurumurthy CB, Ohtsuka M. Easi-CRISPR for creating knock-in and conditional knockout mouse models using long ssDNA donors. Nat Protoc. 2017;13:195–215.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Chen F, Pruett-Miller SM, Huang Y, Gjoka M, Duda K, Taunton J, Collingwood TN, Frodin M, Davis GD. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat Meth. 2011;8:753–5.

    Article  CAS  Google Scholar 

  35. Merkert S, Wunderlich S, Bednarski C, Beier J, Haase A, Dreyer A-K, Schwanke K, Meyer J, Göhring G, Cathomen T, et al. Efficient designer nuclease-based homologous recombination enables direct PCR screening for footprintless targeted human pluripotent stem cells. Stem Cell Reports. 2014;2:107–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Orlando SJ, Santiago Y, Dekelver RC, Freyvert Y, Boydston EA, Moehle EA, Choi VM, Gopalan SM, Lou JF, Li J, et al. Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology. Nucleic Acids Res. 2010;38:e152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Radecke S, Radecke F, Cathomen T, Schwarz K. Zinc-finger nuclease-induced gene repair with oligodeoxynucleotides: wanted and unwanted target locus modifications. Mol Ther. 2010;18:743–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Soldner F, Laganière J, Cheng AW, Hockemeyer D, Gao Q, Alagappan R, Khurana V, Golbe LI, Myers RH, Lindquist S, et al. Generation of isogenic pluripotent stem cells differing exclusively at two early onset parkinson point mutations. Cell. 2011;146:318–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Richardson CD, Ray GJ, DeWitt MA, Curie GL, Corn JE. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol. 2016;34(3):339–44.

    Article  CAS  PubMed  Google Scholar 

  40. Liang X, Potter J, Kumar S, Ravinder N, Chesnut JD. Enhanced CRISPR/Cas9-mediated precise genome editing by improved design and delivery of gRNA, Cas9 nuclease, and donor DNA. J Biotechnol. 2017;241:136–46.

    Article  CAS  PubMed  Google Scholar 

  41. Liu Z, Hui Y, Shi L, Chen Z, Xu X, Chi L, Fan B, Fang Y, Liu Y, Ma L, et al. Efficient CRISPR/Cas9-mediated versatile, predictable, and donor-free gene knockout in human pluripotent stem cells. Stem Cell Reports. 2016;7:496–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Deng SK, Gibb B, de Almeida MJ, Greene EC, Symington LS. RPA antagonizes microhomology-mediated repair of DNA double-strand breaks. Nat Struct Mol Biol. 2014;21:405–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kent T, Chandramouly G, McDevitt SM, Ozdemir AY, Pomerantz RT. Mechanism of microhomology-mediated end-joining promoted by human DNA polymerase θ. Nat Struct Mol Biol. 2015;22:230–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. McVey M, Lee SE. MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends Genet. 2008;24:529–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. van Overbeek M, Capurso D, Carter MM, Thompson MS, Frias E, Russ C, Reece-Hoyes JS, Nye C, Gradia S, Vidal B, et al. DNA repair profiling reveals nonrandom outcomes at Cas9-mediated breaks. Mol Cell. 2016;63(4):633–46.

    Article  PubMed  CAS  Google Scholar 

  46. Allen FR, Crepaldi LR, Alsinet-Armengol C, Strong A, Kleshchevnikov V, De Angeli P, Palenikova P, Kosicki M, Bassett AR, Harding H, et al. Mutations generated by repair of Cas9-induced double strand breaks are predictable from surrounding sequence. bioRxiv. 2018:400341. https://doi.org/10.1101/400341.

  47. Taheri-Ghahfarokhi A, Taylor BJM, Nitsch R, Lundin A, Cavallo A-L, Madeyski-Bengtson K, Karlsson F, Clausen M, Hicks R, Mayr LM, et al. Decoding non-random mutational signatures at Cas9 targeted sites. Nucleic Acids Res. 2018;46:8417–34.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ata H, Ekstrom TL, Martínez-Gálvez G, Mann CM, Dvornikov AV, Schaefbauer KJ, Ma AC, Dobbs D, Clark KJ, Ekker SC. Robust activation of microhomology-mediated end joining for precision gene editing applications. PLoS Genet. 2018;14:e1007652.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Bae S, Kweon J, Kim HS, Kim J-S. Microhomology-based choice of Cas9 nuclease target sites. Nat Methods. 2014;11:705–6.

    Article  CAS  PubMed  Google Scholar 

  50. Hindley C, Philpott A. The cell cycle and pluripotency. Biochem J. 2013;451:135–43.

    Article  CAS  PubMed  Google Scholar 

  51. Lin S, Staahl BT, Alla RK, Doudna JA. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. elife. 2014;3:e04766.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yu C, Liu Y, Ma T, Liu K, Xu S, Zhang Y, Liu H, La Russa M, Xie M, Ding S, et al. Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell. 2015;16:142–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Canny MD, Moatti N, Wan LCK, Fradet-Turcotte A, Krasner D, Mateos-Gomez PA, Zimmermann M, Orthwein A, Juang Y-C, Zhang W, et al. Inhibition of 53BP1 favors homology-dependent DNA repair and increases CRISPR–Cas9 genome-editing efficiency. Nat Biotechnol. 2017;36:95–102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, Kühn R. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol. 2015;33:543–8.

    Article  CAS  PubMed  Google Scholar 

  55. Gutschner T, Haemmerle M, Genovese G, Draetta GF, Chin L. Post-translational regulation of Cas9 during G1 enhances homology-directed repair. Cell Rep. 2016;14:1555–66.

    Article  CAS  PubMed  Google Scholar 

  56. Charpentier M, Khedher AHY, Menoret S, Brion A, Lamribet K, Dardillac E, Boix C, Perrouault L, Tesson L, Geny S, et al. CtIP fusion to Cas9 enhances transgene integration by homology-dependent repair. Nat Commun. 2018;9(1):1133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nakade S, Mochida K, Kunii A, Nakamae K, Aida T, Tanaka K, Sakamoto N, Sakuma T, Yamamoto T. Biased genome editing using the local accumulation of DSB repair molecules system. Nat Commun. 2018;9(1):3270.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Liang X, Potter J, Kumar S, Zou Y, Quintanilla R, Sridharan M, Carte J, Chen W, Roark N, Ranganathan S, et al. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J Biotechnol. 2015;208:44–53.

    Article  CAS  PubMed  Google Scholar 

  59. Gonzalez F, Zhu Z, Shi Z-D, Lelli K, Verma N, Li QV, Huangfu D. An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell. 2014;15(2):215–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhu Z, Verma N, Gonzalez F, Shi Z-D, Huangfu D. A CRISPR/Cas-mediated selection-free knockin strategy in human embryonic stem cells. Stem Cell Reports. 2015;4:1103–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Oceguera-Yanez F, Kim S-I, Matsumoto T, Tan GW, Xiang L, Hatani T, Kondo T, Ikeya M, Yoshida Y, Inoue H, et al. Engineering the AAVS1 locus for consistent and scalable transgene expression in human iPSCs and their differentiated derivatives. Methods. 2016;101:43–55.

    Article  CAS  PubMed  Google Scholar 

  62. Wang G, Yang L, Grishin D, Rios X, Ye LY, Hu Y, Li K, Zhang D, Church GM, Pu WT. Efficient, footprint-free human iPSC genome editing by consolidation of Cas9/CRISPR and piggyBac technologies. Nat Protoc. 2017;12:88–103.

    Article  CAS  PubMed  Google Scholar 

  63. Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hämäläinen R, Cowling R, Wang W, Liu P, Gertsenstein M, et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature. 2009;458:766–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Steyer B, Bu Q, Cory E, Jiang K, Duong S, Sinha D, Steltzer S, Gamm D, Chang Q, Saha K. Scarless genome editing of human pluripotent stem cells via transient puromycin selection. Stem Cell Reports. 2018;10(2):642–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lonowski LA, Narimatsu Y, Riaz A, Delay CE, Yang Z, Niola F, Duda K, Ober EA, Clausen H, Wandall HH, et al. Genome editing using FACS enrichment of nuclease-expressing cells and indel detection by amplicon analysis. Nat Protoc. 2017;12:581–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Arribere JA, Bell RT, Fu BXH, Artiles KL, Hartman PS, Fire AZ. Efficient marker-free recovery of custom genetic modifications with CRISPR/Cas9 in Caenorhabditis elegans. Genetics. 2014;198:837–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liao S, Tammaro M, Yan H. Enriching CRISPR-Cas9 targeted cells by co-targeting the HPRT gene. Nucleic Acids Res. 2015;43:e134.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Mitzelfelt KA, McDermott-Roe C, Grzybowski MN, Marquez M, Kuo C-T, Riedel M, Lai S, Choi MJ, Kolander KD, Helbling D, et al. Efficient precision genome editing in iPSCs via genetic co-targeting with selection. Stem Cell Reports. 2017;8:491–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Agudelo D, Duringer A, Bozoyan L, Huard CC, Carter S, Loehr J, Synodinou D, Drouin M, Salsman J, Dellaire G, et al. Marker-free coselection for CRISPR-driven genome editing in human cells. Nat Methods. 2017;14(6):615–20.

    Article  CAS  PubMed  Google Scholar 

  70. Findlay SD, Vincent KM, Berman JR, Postovit L-M. A digital PCR-based method for efficient and highly specific screening of genome edited cells. PLoS One. 2016;11:e0153901.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Miyaoka Y, Chan AH, Judge LM, Yoo J, Huang M, Nguyen TD, Lizarraga PP, So P-L, Conklin BR. Isolation of single-base genome-edited human iPS cells without antibiotic selection. Nat Methods. 2014;11:291–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Capecchi MR. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet. 2005;6:507–12.

    Article  CAS  PubMed  Google Scholar 

  73. Hatada S, Arnold LW, Hatada T, Cowhig JE, Ciavatta D, Smithies O. Isolating gene-corrected stem cells without drug selection. Proc Natl Acad Sci U S A. 2005;102:16357–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Deyle DR, Li LB, Ren G, Russell DW. The effects of polymorphisms on human gene targeting. Nucleic Acids Res. 2014;42:3119–24.

    Article  CAS  PubMed  Google Scholar 

  75. Yang L, Güell M, Byrne S, Yang JL, De Los Angeles A, Mali P, Aach J, Kim-Kiselak C, Briggs AW, Rios X, et al. Optimization of scarless human stem cell genome editing. Nucleic Acids Res. 2013;41:9049–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Iiizumi S, Nomura Y, So S, Uegaki K, Aoki K, Shibahara K-i, Adachi N, Koyama H. Simple one-week method to construct gene-targeting vectors: application to production of human knockout cell lines. BioTechniques. 2006;41:311–6.

    Article  CAS  PubMed  Google Scholar 

  77. Pham CT, MacIvor DM, Hug BA, Heusel JW, Ley TJ. Long-range disruption of gene expression by a selectable marker cassette. Proc Natl Acad Sci U S A. 1996;93:13090–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Araki K, Imaizumi T, Okuyama K, Oike Y, Yamamura K. Efficiency of recombination by Cre transient expression in embryonic stem cells: comparison of various promoters. J Biochem. 1997;122:977–82.

    Article  CAS  PubMed  Google Scholar 

  79. Davis RP, Costa M, Grandela C, Holland AM, Hatzistavrou T, Micallef SJ, Li X, Goulburn AL, Azzola L, Elefanty AG, et al. A protocol for removal of antibiotic resistance cassettes from human embryonic stem cells genetically modified by homologous recombination or transgenesis. Nat Protoc. 2008;3:1550–8.

    Article  CAS  PubMed  Google Scholar 

  80. Crane AM, Kramer P, Bui JH, Chung WJ, Li XS, Gonzalez-Garay ML, Hawkins F, Liao W, Mora D, Choi S, et al. Targeted correction and restored function of the CFTR gene in cystic fibrosis induced pluripotent stem cells. Stem Cell Reports. 2015;4:569–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zou J, Mali P, Huang X, Dowey SN, Cheng L. Site-specific gene correction of a point mutation in human iPS cells derived from an adult patient with sickle cell disease. Blood. 2011;118:4599–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sebastiano V, Zhen HH, Haddad B, Derafshi BH, Bashkirova E, Melo SP, Wang P, Leung TL, Siprashvili Z, Tichy A, et al. Human COL7A1-corrected induced pluripotent stem cells for the treatment of recessive dystrophic epidermolysis bullosa. Sci Transl Med. 2014;6:264ra163.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Kondo T, Imamura K, Funayama M, Tsukita K, Miyake M, Ohta A, Woltjen K, Nakagawa M, Asada T, Arai T, et al. iPSC-based compound screening and in vitro trials identify a synergistic anti-amyloid β combination for Alzheimer’s disease. Cell Rep. 2017;21(8):2304–12.

    Article  CAS  PubMed  Google Scholar 

  84. Meier ID, Bernreuther C, Tilling T, Neidhardt J, Wong YW, Schulze C, Streichert T, Schachner M. Short DNA sequences inserted for gene targeting can accidentally interfere with off-target gene expression. FASEB J. 2010;24:1714–24.

    Article  CAS  PubMed  Google Scholar 

  85. Li X, Lobo N, Bauser CA, Fraser MJ Jr. The minimum internal and external sequence requirements for transposition of the eukaryotic transformation vector piggyBac. Mol Gen Genomics. 2001;266:190–8.

    Article  CAS  Google Scholar 

  86. Yusa K, Zhou L, Li MA, Bradley A, Craig NL. A hyperactive piggyBac transposase for mammalian applications. Proc Natl Acad Sci. 2011;108:1531–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yusa K, Rashid ST, Strick-Marchand H, Varela I, Liu P-Q, Paschon DE, Miranda E, Ordóñez A, Hannan NRF, Rouhani FJ, et al. Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. Nature. 2011;478:391–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Imamura K, Izumi Y, Watanabe A, Tsukita K, Woltjen K, Yamamoto T, Hotta A, Kondo T, Kitaoka S, Ohta A, et al. The Src/c-Abl pathway is a potential therapeutic target in amyotrophic lateral sclerosis. Sci Transl Med. 2017;9(391):eaaf3962.

    Article  PubMed  Google Scholar 

  89. Xie F, Ye L, Chang JC, Beyer AI, Wang J, Muench MO, Kan YW. Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res. 2014;24:1526–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Li X, Burnight ER, Cooney AL, Malani N, Brady T, Sander JD, Staber J, Wheelan SJ, Joung JK, McCray PB, et al. piggyBac transposase tools for genome engineering. Proc Natl Acad Sci. 2013;110:E2279–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kim S-I, Matsumoto T, Kagawa H, Nakamura M, Hirohata R, Ueno A, Ohishi M, Sakuma T, Soga T, Yamamoto T, et al. Microhomology-assisted scarless genome editing in human iPSCs. Nat Commun. 2018;9:939.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Sakuma T, Hosoi S, Woltjen K, Suzuki K-I, Kashiwagi K, Wada H, Ochiai H, Miyamoto T, Kawai N, Sasakura Y, et al. Efficient TALEN construction and evaluation methods for human cell and animal applications. Genes Cells. 2013;18:315–26.

    Article  CAS  PubMed  Google Scholar 

  93. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 2011;39:e82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kamatani N, Kuroshima S, Hakoda M, Palella TD, Hidaka Y. Crossovers within a short DNA sequence indicate a long evolutionary history of the APRT*J mutation. Hum Genet. 1990;85(6):600–4.

    Article  CAS  PubMed  Google Scholar 

  95. Lee S, Huh JY, Turner DM, Lee S, Robinson J, Stein JE, Shim SH, Hong CP, Kang MS, Nakagawa M, et al. Repurposing the cord blood Bank for haplobanking of HLA-homozygous iPSCs and their usefulness to multiple populations. Stem Cells. 2018;126:663.

    Google Scholar 

  96. Warren CR, O’Sullivan JF, Friesen M, Becker CE, Zhang X, Liu P, Wakabayashi Y, Morningstar JE, Shi X, Choi J, et al. Induced pluripotent stem cell differentiation enables functional validation of GWAS variants in metabolic disease. Cell Stem Cell. 2017;20:547–57.

    Article  CAS  PubMed  Google Scholar 

  97. Hibaoui Y, Grad I, Letourneau A, Sailani MR, Dahoun S, Santoni FA, Gimelli S, Guipponi M, Pelte MF, Béna F, et al. Modelling and rescuing neurodevelopmental defect of Down syndrome using induced pluripotent stem cells from monozygotic twins discordant for trisomy 21. EMBO Mol Med. 2014;6:259–77.

    CAS  PubMed  Google Scholar 

  98. Zhang X-H, Tee LY, Wang X-G, Huang Q-S, Yang S-H. Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acid. 2015;4:e264.

    Article  CAS  Google Scholar 

  99. Lessard S, Francioli L, Alfoldi J, Tardif J-C, Ellinor PT, MacArthur DG, Lettre G, Orkin SH, Canver MC. Human genetic variation alters CRISPR-Cas9 on- and off-targeting specificity at therapeutically implicated loci. Proc Natl Acad Sci. 2017;114:E11257–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kim D, Bae S, Park J, Kim E, Kim S, Yu HR, Hwang J, Kim J-I, Kim J-S. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods. 2015;12:237–43.

    Article  CAS  PubMed  Google Scholar 

  101. Christie KA, Courtney DG, DeDionisio LA, Shern CC, Majumdar S, Mairs LC, Nesbit MA, Moore CBT. Towards personalised allele-specific CRISPR gene editing to treat autosomal dominant disorders. Sci Rep. 2017;7(1):16174.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Smith C, Abalde-Atristain L, He C, Brodsky BR, Braunstein EM, Chaudhari P, Jang Y-Y, Cheng L, Ye Z. Efficient and allele-specific genome editing of disease loci in human iPSCs. Mol Ther. 2015;23:570–7.

    Article  CAS  PubMed  Google Scholar 

  103. Hess GT, Tycko J, Yao D, Bassik MC. Methods and applications of CRISPR-mediated base editing in eukaryotic genomes. Mol Cell. 2017;68:26–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533:420–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, Mochizuki M, Miyabe A, Araki M, Hara KY, et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science. 2016;353(6305):aaf8729.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I would like to acknowledge all those who have contributed to the rapid growth in the fields of induced pluripotency and gene editing and recognize their important works not cited here for the sake of brevity. This manuscript was funded in part by a grant to K.W. from the Japan Agency for Medical Research and Development (AMED, no. 18bm0804001h0002).

Competing Financial Interests

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Knut Woltjen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Woltjen, K. (2019). Precision Genome Editing in Human-Induced Pluripotent Stem Cells. In: Inoue, H., Nakamura, Y. (eds) Medical Applications of iPS Cells . Current Human Cell Research and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-3672-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3672-0_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3671-3

  • Online ISBN: 978-981-13-3672-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics