Skip to main content

Modeling Cardiomyopathies with iPSCs

  • Chapter
  • First Online:
Book cover Medical Applications of iPS Cells

Part of the book series: Current Human Cell Research and Applications ((CHCRA))

  • 413 Accesses

Abstract

Cardiomyopathies are disorders with primary defect of the cardiac muscle, typically presenting in a familial context and associated with mutations in major determinants of the electrical or contractile properties of cardiomyocytes. This chapter reviews the main advances in the physiopathological and pharmacological understanding of cardiomyopathies using iPSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Report of the WHO/ISFC task force on the definition and classification of cardiomyopathies. Br Heart J. 1980;44:672–3.

    Google Scholar 

  2. Elliott P, et al. Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2008;29:270–6.

    Article  PubMed  Google Scholar 

  3. Chen IY, Matsa E, Wu JC. Induced pluripotent stem cells: at the heart of cardiovascular precision medicine. Nat Rev Cardiol. 2016;13:333–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jeziorowska D, Korniat A, Salem JE, Fish K, Hulot JS. Generating patient-specific induced pluripotent stem cells-derived cardiomyocytes for the treatment of cardiac diseases. Expert Opin Biol Ther. 2015;15:1399–409.

    Article  PubMed  CAS  Google Scholar 

  5. Matsa E, Ahrens JH, Wu JC. Human induced pluripotent stem cells as a platform for personalized and precision cardiovascular medicine. Physiol Rev. 2016;96:1093–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shi Y, Inoue H, Wu JC, Yamanaka S. Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov. 2017;16:115–30.

    Article  CAS  PubMed  Google Scholar 

  7. Kattman SJ, Huber TL, Keller GM. Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell. 2006;11:723–32.

    Article  CAS  PubMed  Google Scholar 

  8. Kouskoff V, Lacaud G, Schwantz S, Fehling HJ, Keller G. Sequential development of hematopoietic and cardiac mesoderm during embryonic stem cell differentiation. Proc Natl Acad Sci U S A. 2005;102:13170–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Burridge PW, Holmstrom A, Wu JC. Chemically defined culture and cardiomyocyte differentiation of human pluripotent stem cells. Curr Protoc Hum Genet. 2015;87:21.3.1–15.

    Article  Google Scholar 

  10. Burridge PW, et al. Chemically defined generation of human cardiomyocytes. Nat Methods. 2014;11:855–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jeziorowska D, et al. Differential sarcomere and electrophysiological maturation of human iPSC-derived cardiac myocytes in monolayer vs. aggregation-based differentiation protocols. Int J Mol Sci. 2017;18:E1173.

    Article  PubMed  CAS  Google Scholar 

  12. Dubois NC, et al. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat Biotechnol. 2011;29:1011–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Karakikes I, et al. Small molecule-mediated directed differentiation of human embryonic stem cells toward ventricular cardiomyocytes. Stem Cells Transl Med. 2014;3:18–31.

    Article  CAS  PubMed  Google Scholar 

  14. Mazzotta S, Neves C, Bonner RJ, Bernardo AS, Docherty K, Hoppler S. Distinctive roles of canonical and noncanonical Wnt signaling in human embryonic cardiomyocyte development. Stem Cell Reports. 2016;7:764–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ma D, et al. Characterization of a novel KCNQ1 mutation for type 1 long QT syndrome and assessment of the therapeutic potential of a novel IKs activator using patient-specific induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther. 2015;6:39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Moretti A, et al. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med. 2010;363:1397–409.

    Article  CAS  PubMed  Google Scholar 

  17. Sala L, et al. A new hERG allosteric modulator rescues genetic and drug-induced long-QT syndrome phenotypes in cardiomyocytes from isogenic pairs of patient induced pluripotent stem cells. EMBO Mol Med. 2016;8:1065–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang Y, et al. Genome editing of isogenic human induced pluripotent stem cells recapitulates long QT phenotype for drug testing. J Am Coll Cardiol. 2014b;64:451–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bellin M, et al. Isogenic human pluripotent stem cell pairs reveal the role of a KCNH2 mutation in long-QT syndrome. EMBO J. 2013;32:3161–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Caballero R, et al. Tbx20 controls the expression of the KCNH2 gene and of hERG channels. Proc Natl Acad Sci U S A. 2017;114:E416–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Duncan G, Firth K, George V, Hoang MD, Staniforth A, Smith G, Denning C. Drug-mediated shortening of action potentials in LQTS2 human induced pluripotent stem cell-derived cardiomyocytes. Stem Cells Dev. 2017;26(23):1695–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Itzhaki I, et al. Modelling the long QT syndrome with induced pluripotent stem cells. Nature. 2011;471:225–9.

    Article  CAS  PubMed  Google Scholar 

  23. Jouni M, et al. Toward personalized medicine: using cardiomyocytes differentiated from urine-derived pluripotent stem cells to recapitulate electrophysiological characteristics of type 2 long QT syndrome. J Am Heart Assoc. 2015;4:e002159.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Lahti AL, et al. Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture. Dis Model Mech. 2012;5:220–30.

    Article  CAS  PubMed  Google Scholar 

  25. Liu QN, Trudeau MC. Eag domains regulate LQT mutant hERG channels in human induced pluripotent stem cell-derived cardiomyocytes. PLoS One. 2015;10:e0123951.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Matsa E, Rajamohan D, Dick E, Young L, Mellor I, Staniforth A, Denning C. Drug evaluation in cardiomyocytes derived from human induced pluripotent stem cells carrying a long QT syndrome type 2 mutation. Eur Heart J. 2011;32:952–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fatima A, et al. The disease-specific phenotype in cardiomyocytes derived from induced pluripotent stem cells of two long QT syndrome type 3 patients. PLoS One. 2013;8:e83005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Ma D, et al. Modeling type 3 long QT syndrome with cardiomyocytes derived from patient-specific induced pluripotent stem cells. Int J Cardiol. 2013b;168:5277–86.

    Article  PubMed  Google Scholar 

  29. Malan D, et al. Human iPS cell model of type 3 long QT syndrome recapitulates drug-based phenotype correction. Basic Res Cardiol. 2016;111:14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Paci M, Passini E, Severi S, Hyttinen J, Rodriguez B. Phenotypic variability in LQT3 human induced pluripotent stem cell-derived cardiomyocytes and their response to antiarrhythmic pharmacologic therapy: an in silico approach. Heart Rhythm. 2017;14(11):1704–12.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Terrenoire C, et al. Induced pluripotent stem cells used to reveal drug actions in a long QT syndrome family with complex genetics. J Gen Physiol. 2013;141:61–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gelinas R, et al. Characterization of a human induced pluripotent stem cell-derived cardiomyocyte model for the study of variant pathogenicity: validation of a KCNJ2 mutation. Circ Cardiovasc Genet. 2017;10:e001755.

    Article  CAS  PubMed  Google Scholar 

  33. Kuroda Y, et al. Flecainide ameliorates arrhythmogenicity through NCX flux in Andersen-Tawil syndrome-iPS cell-derived cardiomyocytes. Biochem Biophys Rep. 2017;9:245–56.

    PubMed  PubMed Central  Google Scholar 

  34. Yazawa M, Hsueh B, Jia X, Pasca AM, Bernstein JA, Hallmayer J, Dolmetsch RE. Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature. 2011;471:230–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Limpitikul WB, et al. A precision medicine approach to the rescue of function on malignant calmodulinopathic long-QT syndrome. Circ Res. 2017;120:39–48.

    Article  CAS  PubMed  Google Scholar 

  36. Pipilas DC, et al. Novel calmodulin mutations associated with congenital long QT syndrome affect calcium current in human cardiomyocytes. Heart Rhythm. 2016;13:2012–9.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rocchetti M, et al. Elucidating arrhythmogenic mechanisms of long-QT syndrome CALM1-F142L mutation in patient-specific induced pluripotent stem cell-derived cardiomyocytes. Cardiovasc Res. 2017;113:531–41.

    Article  CAS  PubMed  Google Scholar 

  38. Yamamoto Y, et al. Allele-specific ablation rescues electrophysiological abnormalities in a human iPS cell model of long-QT syndrome with a CALM2 mutation. Hum Mol Genet. 2017;26:1670–7.

    Article  CAS  PubMed  Google Scholar 

  39. Di Pasquale E, et al. CaMKII inhibition rectifies arrhythmic phenotype in a patient-specific model of catecholaminergic polymorphic ventricular tachycardia. Cell Death Dis. 2013;4:e843.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Fatima A, et al. In vitro modeling of ryanodine receptor 2 dysfunction using human induced pluripotent stem cells. Cell Physiol Biochem. 2011;28:579–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Itzhaki I, et al. Modeling of catecholaminergic polymorphic ventricular tachycardia with patient-specific human-induced pluripotent stem cells. J Am Coll Cardiol. 2012;60:990–1000.

    Article  CAS  PubMed  Google Scholar 

  42. Jung CB, et al. Dantrolene rescues arrhythmogenic RYR2 defect in a patient-specific stem cell model of catecholaminergic polymorphic ventricular tachycardia. EMBO Mol Med. 2012;4:180–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kujala K, et al. Cell model of catecholaminergic polymorphic ventricular tachycardia reveals early and delayed afterdepolarizations. PLoS One. 2012;7:e44660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Novak A, et al. Functional abnormalities in iPSC-derived cardiomyocytes generated from CPVT1 and CPVT2 patients carrying ryanodine or calsequestrin mutations. J Cell Mol Med. 2015;19:2006–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Preininger MK, et al. A human pluripotent stem cell model of catecholaminergic polymorphic ventricular tachycardia recapitulates patient-specific drug responses. Dis Model Mech. 2016;9:927–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sasaki K, et al. Patient-specific human induced pluripotent stem cell model assessed with electrical pacing validates S107 as a potential therapeutic agent for Catecholaminergic polymorphic ventricular tachycardia. PLoS One. 2016;11:e0164795.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Zhang XH, et al. Ca2+ signaling in human induced pluripotent stem cell-derived cardiomyocytes (iPS-CM) from normal and catecholaminergic polymorphic ventricular tachycardia (CPVT)-afflicted subjects. Cell Calcium. 2013;54:57–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lodola F, et al. Adeno-associated virus-mediated CASQ2 delivery rescues phenotypic alterations in a patient-specific model of recessive catecholaminergic polymorphic ventricular tachycardia. Cell Death Dis. 2016;7:e2393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Novak A, et al. Cardiomyocytes generated from CPVTD307H patients are arrhythmogenic in response to beta-adrenergic stimulation. J Cell Mol Med. 2012;16:468–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liang P, et al. Patient-specific and genome-edited induced pluripotent stem cell-derived cardiomyocytes elucidate single-cell phenotype of Brugada syndrome. J Am Coll Cardiol. 2016;68:2086–96.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Selga E, et al. Sodium channel current loss of function in induced pluripotent stem cell-derived cardiomyocytes from a Brugada syndrome patient. J Mol Cell Cardiol. 2017;114:10–9.

    Article  PubMed  CAS  Google Scholar 

  52. Ross SB, Fraser ST, Semsarian C. Induced pluripotent stem cell technology and inherited arrhythmia syndromes. Heart Rhythm. 2018;15(1):137–44.

    Article  PubMed  Google Scholar 

  53. Caballero R, et al. Flecainide increases Kir2.1 currents by interacting with cysteine 311, decreasing the polyamine-induced rectification. Proc Natl Acad Sci U S A. 2010;107:15631–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pasca SP, et al. Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nat Med. 2011;17:1657–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tian Y, et al. Alteration in basal and depolarization induced transcriptional network in iPSC derived neurons from Timothy syndrome. Genome Med. 2014;6:75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Gomez-Hurtado N, Blackwell DJ, Knollmann BC. Modelling human calmodulinopathies with induced pluripotent stem cells: progress and challenges. Cardiovasc Res. 2017;113:437–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang M, et al. Recessive cardiac phenotypes in induced pluripotent stem cell models of Jervell and Lange-Nielsen syndrome: disease mechanisms and pharmacological rescue. Proc Natl Acad Sci U S A. 2014;111:E5383–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gray B, Semsarian C, Sy RW. Brugada syndrome: a heterogeneous disease with a common ECG phenotype? J Cardiovasc Electrophysiol. 2014;25:450–6.

    Article  PubMed  Google Scholar 

  59. Veerman CC, et al. hiPSC-derived cardiomyocytes from Brugada syndrome patients without identified mutations do not exhibit clear cellular electrophysiological abnormalities. Sci Rep. 2016;6:30967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Davis J, et al. A tension-based model distinguishes hypertrophic versus dilated cardiomyopathy. Cell. 2016;165:1147–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Broughton KM, et al. A myosin activator improves actin assembly and sarcomere function of human-induced pluripotent stem cell-derived cardiomyocytes with a troponin T point mutation. Am J Physiol Heart Circ Physiol. 2016;311:H107–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sun N, et al. Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Sci Transl Med. 2012;4:130ra147.

    Article  Google Scholar 

  63. Wu H, et al. Epigenetic regulation of phosphodiesterases 2A and 3A underlies compromised beta-adrenergic signaling in an iPSC model of dilated cardiomyopathy. Cell Stem Cell. 2015;17:89–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hinson JT, et al. HEART DISEASE. Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science. 2015;349:982–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Karakikes I, et al. Correction of human phospholamban R14del mutation associated with cardiomyopathy using targeted nucleases and combination therapy. Nat Commun. 2015;6:6955.

    Article  CAS  PubMed  Google Scholar 

  66. Stillitano F, et al. Genomic correction of familial cardiomyopathy in human engineered cardiac tissues. Eur Heart J. 2016;37:3282–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lee YK, et al. Modeling treatment response for lamin A/C related dilated cardiomyopathy in human induced pluripotent stem cells. J Am Heart Assoc. 2017;6:e005677.

    PubMed  PubMed Central  Google Scholar 

  68. Siu CW, et al. Modeling of lamin A/C mutation premature cardiac aging using patient-specific induced pluripotent stem cells. Aging (Albany NY). 2012;4:803–22.

    Article  CAS  Google Scholar 

  69. Judge LM, et al. A BAG3 chaperone complex maintains cardiomyocyte function during proteotoxic stress. JCI Insight. 2017;2:94623.

    Article  PubMed  Google Scholar 

  70. Streckfuss-Bomeke K, et al. Severe DCM phenotype of patient harboring RBM20 mutation S635A can be modeled by patient-specific induced pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol. 2017;113:9–21.

    Article  PubMed  CAS  Google Scholar 

  71. Wyles SP, Hrstka SC, Reyes S, Terzic A, Olson TM, Nelson TJ. Pharmacological modulation of calcium homeostasis in familial dilated cardiomyopathy: an in vitro analysis from an RBM20 patient-derived iPSC model. Clin Transl Sci. 2016a;9:158–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wyles SP, et al. Modeling structural and functional deficiencies of RBM20 familial dilated cardiomyopathy using human induced pluripotent stem cells. Hum Mol Genet. 2016b;25:254–65.

    Article  CAS  PubMed  Google Scholar 

  73. Tse HF, et al. Patient-specific induced-pluripotent stem cells-derived cardiomyocytes recapitulate the pathogenic phenotypes of dilated cardiomyopathy due to a novel DES mutation identified by whole exome sequencing. Hum Mol Genet. 2013;22:1395–403.

    Article  CAS  PubMed  Google Scholar 

  74. Han L, et al. Study familial hypertrophic cardiomyopathy using patient-specific induced pluripotent stem cells. Cardiovasc Res. 2014;104:258–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lan F, et al. Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells. Cell Stem Cell. 2013;12:101–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Birket MJ, et al. Contractile defect caused by mutation in MYBPC3 revealed under conditions optimized for human PSC-cardiomyocyte function. Cell Rep. 2015;13:733–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ojala M, et al. Mutation-specific phenotypes in hiPSC-derived Cardiomyocytes carrying either myosin-binding protein C or alpha-Tropomyosin mutation for hypertrophic cardiomyopathy. Stem Cells Int. 2016;2016:1684792.

    Article  PubMed  CAS  Google Scholar 

  78. Prondzynski M, et al. Evaluation of MYBPC3 trans-splicing and gene replacement as therapeutic options in human iPSC-derived cardiomyocytes. Mol Ther Nucleic Acids. 2017;7:475–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tanaka A, et al. Endothelin-1 induces myofibrillar disarray and contractile vector variability in hypertrophic cardiomyopathy-induced pluripotent stem cell-derived cardiomyocytes. J Am Heart Assoc. 2014;3:e001263.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Ben Jehuda R, et al. CRISPR correction of the PRKAG2 gene mutation in a patient's induced pluripotent stem cell-derived cardiomyocytes eliminates electrophysiological and structural abnormalities. Heart Rhythm. 2018;15(2):267–76.

    Article  PubMed  Google Scholar 

  81. Cashman TJ, Josowitz R, Johnson BV, Gelb BD, Costa KD. Human engineered cardiac tissues created using induced pluripotent stem cells reveal functional characteristics of BRAF-mediated hypertrophic cardiomyopathy. PLoS One. 2016;11:e0146697.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Josowitz R, et al. Autonomous and non-autonomous defects underlie hypertrophic cardiomyopathy in BRAF-mutant hiPSC-derived cardiomyocytes. Stem Cell Reports. 2016;7:355–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Carvajal-Vergara X, et al. Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature. 2010;465:808–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lee YK, et al. Modeling of Friedreich ataxia-related iron overloading cardiomyopathy using patient-specific-induced pluripotent stem cells. Pflugers Arch. 2014;466:1831–44.

    Article  CAS  PubMed  Google Scholar 

  85. Lee YK, et al. Efficient attenuation of Friedreich's ataxia (FRDA) cardiomyopathy by modulation of iron homeostasis-human induced pluripotent stem cell (hiPSC) as a drug screening platform for FRDA. Int J Cardiol. 2016;203:964–71.

    Article  PubMed  Google Scholar 

  86. Caspi O, Huber I, Gepstein A, Arbel G, Maizels L, Boulos M, Gepstein L. Modeling of arrhythmogenic right ventricular cardiomyopathy with human induced pluripotent stem cells. Circ Cardiovasc Genet. 2013;6:557–68.

    Article  CAS  PubMed  Google Scholar 

  87. Kim C, et al. Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs. Nature. 2013;494:105–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ma D, et al. Generation of patient-specific induced pluripotent stem cell-derived cardiomyocytes as a cellular model of arrhythmogenic right ventricular cardiomyopathy. Eur Heart J. 2013a;34:1122–33.

    Article  CAS  PubMed  Google Scholar 

  89. Lin B, et al. Modeling and study of the mechanism of dilated cardiomyopathy using induced pluripotent stem cells derived from individuals with Duchenne muscular dystrophy. Dis Model Mech. 2015;8:457–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Drawnel FM, et al. Disease modeling and phenotypic drug screening for diabetic cardiomyopathy using human induced pluripotent stem cells. Cell Rep. 2014;9:810–21.

    Article  CAS  PubMed  Google Scholar 

  91. Dudek J, et al. Cardiolipin deficiency affects respiratory chain function and organization in an induced pluripotent stem cell model of Barth syndrome. Stem Cell Res. 2013;11:806–19.

    Article  CAS  PubMed  Google Scholar 

  92. Wang G, et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat Med. 2014a;20:616–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Huang HP, et al. Human Pompe disease-induced pluripotent stem cells for pathogenesis modeling, drug testing and disease marker identification. Hum Mol Genet. 2011;20:4851–64.

    Article  CAS  PubMed  Google Scholar 

  94. Raval KK, et al. Pompe disease results in a Golgi-based glycosylation deficit in human induced pluripotent stem cell-derived cardiomyocytes. J Biol Chem. 2015;290:3121–36.

    Article  CAS  PubMed  Google Scholar 

  95. Sato Y, et al. Disease modeling and lentiviral gene transfer in patient-specific induced pluripotent stem cells from late-onset Pompe disease patient. Mol Ther Methods Clin Dev. 2015;2:15023.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Sato Y, Kobayashi H, Higuchi T, Shimada Y, Ida H, Ohashi T. Metabolomic profiling of pompe disease-induced pluripotent stem cell-derived cardiomyocytes reveals that oxidative stress is associated with cardiac and skeletal muscle pathology. Stem Cells Transl Med. 2017;6:31–9.

    Article  CAS  PubMed  Google Scholar 

  97. Chou SJ, et al. Energy utilization of induced pluripotent stem cell-derived cardiomyocyte in Fabry disease. Int J Cardiol. 2017;232:255–63.

    Article  PubMed  Google Scholar 

  98. Itier JM, et al. Effective clearance of GL-3 in a human iPSC-derived cardiomyocyte model of Fabry disease. J Inherit Metab Dis. 2014;37:1013–22.

    Article  CAS  PubMed  Google Scholar 

  99. Hulot JS, Jouven X, Empana JP, Frank R, Fontaine G. Natural history and risk stratification of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circulation. 2004;110:1879–84.

    Article  PubMed  Google Scholar 

  100. Mehta A, et al. Identification of a targeted and testable antiarrhythmic therapy for long-QT syndrome type 2 using a patient-specific cellular model. Eur Heart J. 2017;39(16):1446–55.

    Article  CAS  Google Scholar 

  101. Roden DM. Cardiovascular pharmacogenomics: current status and future directions. J Hum Genet. 2016;61:79–85.

    Article  CAS  PubMed  Google Scholar 

  102. Roden DM. Long QT syndrome: reduced repolarization reserve and the genetic link. J Intern Med. 2006;259:59–69.

    Article  CAS  PubMed  Google Scholar 

  103. Stillitano F, et al. Modeling susceptibility to drug-induced long QT with a panel of subject-specific induced pluripotent stem cells. elife. 2017;6:e19406.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Burridge PW, et al. Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat Med. 2016;22:547–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bedada FB, Wheelwright M, Metzger JM. Maturation status of sarcomere structure and function in human iPSC-derived cardiac myocytes. Biochim Biophys Acta. 2016;1863:1829–38.

    Article  CAS  PubMed  Google Scholar 

  106. Eder A, Vollert I, Hansen A, Eschenhagen T. Human engineered heart tissue as a model system for drug testing. Adv Drug Deliv Rev. 2016;96:214–24.

    Article  CAS  PubMed  Google Scholar 

  107. Tiburcy M, et al. Defined engineered human myocardium with advanced maturation for applications in heart failure modeling and repair. Circulation. 2017;135:1832–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Turnbull IC, et al. Advancing functional engineered cardiac tissues toward a preclinical model of human myocardium. FASEB J. 2014;28:644–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lu J, et al. An abnormal TRPV4-related cytosolic Ca2+ rise in response to uniaxial stretch in induced pluripotent stem cells-derived cardiomyocytes from dilated cardiomyopathy patients. Biochim Biophys Acta. 2017;1863:2964–72.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Sébastien Hulot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hulot, JS. (2019). Modeling Cardiomyopathies with iPSCs. In: Inoue, H., Nakamura, Y. (eds) Medical Applications of iPS Cells . Current Human Cell Research and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-3672-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3672-0_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3671-3

  • Online ISBN: 978-981-13-3672-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics