Skip to main content

Disease Modeling of Hematological and Immunological Disorders Using Induced Pluripotent Stem Cells

  • Chapter
  • First Online:
  • 421 Accesses

Part of the book series: Current Human Cell Research and Applications ((CHCRA))

Abstract

Abnormalities in both mature hematopoietic cells and immature stem/progenitor cells can cause various diseases. In these disorders, because of limited availability of immature hematopoietic progenitor cells, induced pluripotent stem cells (iPSCs) have a great advantage for establishing their disease models. In this chapter, researches using iPSC-based disease models for hematological and immunological disorders are outlined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Paes B, Moco PD, Pereira CG, Porto GS, de Sousa Russo EM, Reis LCJ, et al. Ten years of iPSC: clinical potential and advances in vitro hematopoietic differentiation. Cell Biol Toxicol. 2017;33(3):233–50.

    Article  PubMed  Google Scholar 

  2. Lim WF, Inoue-Yokoo T, Tan KS, Lai MI, Sugiyama D. Hematopoietic cell differentiation from embryonic and induced pluripotent stem cells. Stem Cell Res Ther. 2013;4(3):71.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Slukvin II. Hematopoietic specification from human pluripotent stem cells: current advances and challenges toward de novo generation of hematopoietic stem cells. Blood. 2013;122(25):4035–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tan YT, Ye L, Xie F, Beyer AI, Muench MO, Wang J, et al. Respecifying human iPSC-derived blood cells into highly engraftable hematopoietic stem and progenitor cells with a single factor. Proc Natl Acad Sci U S A. 2018;115(9):2180–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sugimura R, Jha DK, Han A, Soria-Valles C, da Rocha EL, Lu YF, et al. Haematopoietic stem and progenitor cells from human pluripotent stem cells. Nature. 2017;545(7655):432–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Suzuki N, Yamazaki S, Yamaguchi T, Okabe M, Masaki H, Takaki S, et al. Generation of engraftable hematopoietic stem cells from induced pluripotent stem cells by way of teratoma formation. Mol Ther. 2013;21(7):1424–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Niwa A, Heike T, Umeda K, Oshima K, Kato I, Sakai H, et al. A novel serum-free monolayer culture for orderly hematopoietic differentiation of human pluripotent cells via mesodermal progenitors. PLoS One. 2011;6(7):e22261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yanagimachi MD, Niwa A, Tanaka T, Honda-Ozaki F, Nishimoto S, Murata Y, et al. Robust and highly-efficient differentiation of functional monocytic cells from human pluripotent stem cells under serum- and feeder cell-free conditions. PLoS One. 2013;8(4):e59243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kaufman DS, Hanson ET, Lewis RL, Auerbach R, Thomson JA. Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc Natl Acad Sci. 2001;98(19):10716–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vodyanik MA, Bork JA, Thomson JA, Slukvin II. Human embryonic stem cell–derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood. 2005;105(2):617–26.

    Article  CAS  PubMed  Google Scholar 

  11. Keller G, Kennedy M, Papayannopoulou T, Wiles MV. Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol Cell Biol. 1993;13(1):473–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ng ES, Davis RP, Azzola L, Stanley EG, Elefanty AG. Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. Blood. 2005;106(5):1601–3.

    Article  CAS  PubMed  Google Scholar 

  13. Nakamura S, Takayama N, Hirata S, Seo H, Endo H, Ochi K, et al. Expandable megakaryocyte cell lines enable clinically applicable generation of platelets from human induced pluripotent stem cells. Cell Stem Cell. 2014;14(4):535–48.

    Article  CAS  PubMed  Google Scholar 

  14. Doulatov S, Vo LT, Chou SS, Kim PG, Arora N, Li H, et al. Induction of multipotential hematopoietic progenitors from human pluripotent stem cells via respecification of lineage-restricted precursors. Cell Stem Cell. 2013;13(4):459–70.

    Article  CAS  PubMed  Google Scholar 

  15. Doulatov S, Vo LT, Macari ER, Wahlster L, Kinney MA, Taylor AM, et al. Drug discovery for Diamond-Blackfan anemia using reprogrammed hematopoietic progenitors. Sci Transl Med. 2017;9(376):eaah5645.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Haruta M, Tomita Y, Yuno A, Matsumura K, Ikeda T, Takamatsu K, et al. TAP-deficient human iPS cell-derived myeloid cell lines as unlimited cell source for dendritic cell-like antigen-presenting cells. Gene Ther. 2013;20(5):504–13.

    Article  CAS  PubMed  Google Scholar 

  17. Haga E, Endo Y, Haruta M, Koba C, Matsumura K, Takamatsu K, et al. Therapy of peritoneally disseminated colon cancer by TAP-deficient embryonic stem cell-derived macrophages in allogeneic recipients. J Immunol. 2014;193(4):2024–33.

    Article  CAS  PubMed  Google Scholar 

  18. Honda-Ozaki F, Terashima M, Niwa A, Saiki N, Kawasaki Y, Ito H, et al. Pluripotent stem cell model of Nakajo-Nishimura syndrome untangles proinflammatory pathways mediated by oxidative stress. Stem Cell Reports. 2018;10(6):1835–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Takata M, Ishiai M, Kitao H. The Fanconi anemia pathway: insights from somatic cell genetics using DT40 cell line. Mutat Res. 2009;668(1–2):92–102.

    Article  CAS  PubMed  Google Scholar 

  20. Mehta PA, Tolar J. Fanconi anemia. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al., editors. GeneReviews((R)). Seattle: University of Washington. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved; 1993.

    Google Scholar 

  21. Mamrak NE, Shimamura A, Howlett NG. Recent discoveries in the molecular pathogenesis of the inherited bone marrow failure syndrome Fanconi anemia. Blood Rev. 2017;31(3):93–9.

    Article  CAS  PubMed  Google Scholar 

  22. Gari K, Constantinou A. The role of the Fanconi anemia network in the response to DNA replication stress. Crit Rev Biochem Mol Biol. 2009;44(5):292–325.

    Article  CAS  PubMed  Google Scholar 

  23. Bagby G. Recent advances in understanding hematopoiesis in Fanconi Anemia. F1000Res. 2018;7:105.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Auerbach AD. Fanconi anemia and its diagnosis. Mutat Res. 2009;668(1–2):4–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Raya A, Rodriguez-Piza I, Guenechea G, Vassena R, Navarro S, Barrero MJ, et al. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature. 2009;460(7251):53–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Navarro S, Giorgetti A, Raya A, Tolar J. Induced pluripotency and gene editing in fanconi anemia. Curr Gene Ther. 2017;16(5):321–8.

    Article  PubMed  CAS  Google Scholar 

  27. Liu GH, Suzuki K, Li M, Qu J, Montserrat N, Tarantino C, et al. Modelling Fanconi anemia pathogenesis and therapeutics using integration-free patient-derived iPSCs. Nat Commun. 2014;5:4330.

    Article  CAS  PubMed  Google Scholar 

  28. Suzuki NM, Niwa A, Yabe M, Hira A, Okada C, Amano N, et al. Pluripotent cell models of fanconi anemia identify the early pathological defect in human hemoangiogenic progenitors. Stem Cells Transl Med. 2015;4(4):333–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pastores GM, Hughes DA. Gaucher disease. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al., editors. GeneReviews((R)). Seattle: University of Washington. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved; 1993.

    Google Scholar 

  30. Sgambato JA, Park TS, Miller D, Panicker LM, Sidransky E, Lun Y, et al. Gaucher disease-induced pluripotent stem cells display decreased erythroid potential and aberrant myelopoiesis. Stem Cells Transl Med. 2015;4(8):878–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Arai S, Miyauchi M, Kurokawa M. Modeling of hematologic malignancies by iPS technology. Exp Hematol. 2015;43(8):654–60.

    Article  CAS  PubMed  Google Scholar 

  32. Kumano K, Arai S, Hosoi M, Taoka K, Takayama N, Otsu M, et al. Generation of induced pluripotent stem cells from primary chronic myelogenous leukemia patient samples. Blood. 2012;119(26):6234–42.

    Article  CAS  PubMed  Google Scholar 

  33. Bedel A, Pasquet JM, Lippert E, Taillepierre M, Lagarde V, Dabernat S, et al. Variable behavior of iPSCs derived from CML patients for response to TKI and hematopoietic differentiation. PLoS One. 2013;8(8):e71596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ben-Neriah Y, Daley GQ, Mes-Masson AM, Witte ON, Baltimore D. The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. Science. 1986;233(4760):212–4.

    Article  CAS  PubMed  Google Scholar 

  35. Heisterkamp N, Stam K, Groffen J, de Klein A, Grosveld G. Structural organization of the bcr gene and its role in the Ph’ translocation. Nature. 1985;315(6022):758–61.

    Article  CAS  PubMed  Google Scholar 

  36. Chao MP, Gentles AJ, Chatterjee S, Lan F, Reinisch A, Corces MR, et al. Human AML-iPSCs reacquire leukemic properties after differentiation and model clonal variation of disease. Cell Stem Cell. 2017;20(3):329–44.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gomez Limia CE, Devalle S, Reis M, Sochacki J, Carneiro M, Madeiro da Costa R, et al. Generation and characterization of a human induced pluripotent stem (iPS) cell line derived from an acute myeloid leukemia patient evolving from primary myelofibrosis carrying the CALR 52bp deletion and the ASXL1 p.R693X mutation. Stem Cell Res. 2017;24:16–20.

    Article  CAS  PubMed  Google Scholar 

  38. Lee JH, Salci KR, Reid JC, Orlando L, Tanasijevic B, Shapovalova Z, et al. Brief report: human acute myeloid leukemia reprogramming to pluripotency is a rare event and selects for patient hematopoietic cells devoid of leukemic mutations. Stem Cells. 2017;35(9):2095–102.

    Article  CAS  PubMed  Google Scholar 

  39. Connelly JP, Kwon EM, Gao Y, Trivedi NS, Elkahloun AG, Horwitz MS, et al. Targeted correction of RUNX1 mutation in FPD patient-specific induced pluripotent stem cells rescues megakaryopoietic defects. Blood. 2014;124(12):1926–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Boiers C, Richardson SE, Laycock E, Zriwil A, Turati VA, Brown J, et al. A human IPS model implicates embryonic B-myeloid fate restriction as developmental susceptibility to B acute lymphoblastic leukemia-associated ETV6-RUNX1. Dev Cell. 2018;44(3):362–77.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mulero-Navarro S, Sevilla A, Roman AC, Lee DF, D'Souza SL, Pardo S, et al. Myeloid dysregulation in a human induced pluripotent stem cell model of PTPN11-associated juvenile myelomonocytic leukemia. Cell Rep. 2015;13(3):504–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bhatnagar N, Nizery L, Tunstall O, Vyas P, Roberts I. Transient abnormal myelopoiesis and AML in down syndrome: an update. Curr Hematol Malig Rep. 2016;11(5):333–41.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yoshida K, Toki T, Okuno Y, Kanezaki R, Shiraishi Y, Sato-Otsubo A, et al. The landscape of somatic mutations in down syndrome-related myeloid disorders. Nat Genet. 2013;45(11):1293–9.

    Article  CAS  PubMed  Google Scholar 

  44. Byrska-Bishop M, VanDorn D, Campbell AE, Betensky M, Arca PR, Yao Y, et al. Pluripotent stem cells reveal erythroid-specific activities of the GATA1 N-terminus. J Clin Invest. 2015;125(3):993–1005.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Banno K, Omori S, Hirata K, Nawa N, Nakagawa N, Nishimura K, et al. Systematic cellular disease models reveal synergistic interaction of trisomy 21 and GATA1 mutations in hematopoietic abnormalities. Cell Rep. 2016;15(6):1228–41.

    Article  CAS  PubMed  Google Scholar 

  46. Kotini AG, Chang CJ, Chow A, Yuan H, Ho TC, Wang T, et al. Stage-specific human induced pluripotent stem cells map the progression of myeloid transformation to transplantable leukemia. Cell Stem Cell. 2017;20(3):315–28.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Picard C, Al-Herz W, Bousfiha A, Casanova J-L, Chatila T, Conley ME, et al. Primary immunodeficiency diseases: an update on the classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency 2015. J Clin Immunol. 2015;35(8):696–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dale DC, Person RE, Bolyard AA, Aprikyan AG, Bos C, Bonilla MA, et al. Mutations in the gene encoding neutrophil elastase in congenital and cyclic neutropenia. Blood. 2000;96(7):2317–22.

    CAS  PubMed  Google Scholar 

  49. Nayak RC, Trump LR, Aronow BJ, Myers K, Mehta P, Kalfa T, et al. Pathogenesis of ELANE-mutant severe neutropenia revealed by induced pluripotent stem cells. J Clin Invest. 2015;125(8):3103–16.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hiramoto T, Ebihara Y, Mizoguchi Y, Nakamura K, Yamaguchi K, Ueno K, et al. Wnt3a stimulates maturation of impaired neutrophils developed from severe congenital neutropenia patient-derived pluripotent stem cells. Proc Natl Acad Sci U S A. 2013;110(8):3023–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Morishima T, Watanabe K, Niwa A, Hirai H, Saida S, Tanaka T, et al. Genetic correction of HAX1 in induced pluripotent stem cells from a patient with severe congenital neutropenia improves defective granulopoiesis. Haematologica. 2014;99(1):19–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pittermann E, Lachmann N, MacLean G, Emmrich S, Ackermann M, Gohring G, et al. Gene correction of HAX1 reversed Kostmann disease phenotype in patient-specific induced pluripotent stem cells. Blood Adv. 2017;1(14):903–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pannicke U, Honig M, Hess I, Friesen C, Holzmann K, Rump EM, et al. Reticular dysgenesis (aleukocytosis) is caused by mutations in the gene encoding mitochondrial adenylate kinase 2. Nat Genet. 2009;41(1):101–5.

    Article  CAS  PubMed  Google Scholar 

  54. Lagresle-Peyrou C, Six EM, Picard C, Rieux-Laucat F, Michel V, Ditadi A, et al. Human adenylate kinase 2 deficiency causes a profound hematopoietic defect associated with sensorineural deafness. Nat Genet. 2009;41(1):106–11.

    Article  CAS  PubMed  Google Scholar 

  55. Rissone A, Weinacht KG, la Marca G, Bishop K, Giocaliere E, Jagadeesh J, et al. Reticular dysgenesis-associated AK2 protects hematopoietic stem and progenitor cell development from oxidative stress. J Exp Med. 2015;212(8):1185–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Oshima K, Saiki N, Tanaka M, Imamura H, Niwa A, Tanimura A, et al. Human AK2 links intracellular bioenergetic redistribution to the fate of hematopoietic progenitors. Biochem Biophys Res Commun. 2018;497(2):719–25.

    Article  CAS  PubMed  Google Scholar 

  57. Neehus A-L, Lam J, Haake K, Merkert S, Schmidt N, Mucci A, et al. Impaired IFNγ-signaling and mycobacterial clearance in IFNγR1-deficient human iPSC-derived macrophages. Stem Cell Reports. 2018;10(1):7–16.

    Article  CAS  PubMed  Google Scholar 

  58. Nair JJ, Singh TP. Sjogren’s syndrome: review of the aetiology, pathophysiology & potential therapeutic interventions. J Clin Exp Dent. 2017;9(4):e584–e9.

    PubMed  PubMed Central  Google Scholar 

  59. Iizuka-Koga M, Asashima H, Ando M, Lai CY, Mochizuki S, Nakanishi M, et al. Functional analysis of dendritic cells generated from T-iPSCs from CD4+ T cell clones of Sjogren’s syndrome. Stem Cell Reports. 2017;8(5):1155–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kubara K, Yamazaki K, Ishihara Y, Naruto T, Lin H-T, Nishimura K, et al. Status of KRAS in iPSCs impacts upon self-renewal and differentiation propensity. Stem Cell Reports. 2018;11(2):380–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Crow YJ, Hayward BE, Parmar R, Robins P, Leitch A, Ali M, et al. Mutations in the gene encoding the 3′–5′ DNA exonuclease TREX1 cause Aicardi-Goutieres syndrome at the AGS1 locus. Nat Genet. 2006;38(8):917–20.

    Article  CAS  PubMed  Google Scholar 

  62. Thomas CA, Tejwani L, Trujillo CA, Negraes PD, Herai RH, Mesci P, et al. Modeling of TREX1-dependent autoimmune disease using human stem cells highlights L1 accumulation as a source of neuroinflammation. Cell Stem Cell. 2017;21(3):319–31.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. McDermott MF, Aksentijevich I, Galon J, McDermott EM, Ogunkolade BW, Centola M, et al. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell. 1999;97(1):133–44.

    Article  CAS  PubMed  Google Scholar 

  64. Masters SL, Simon A, Aksentijevich I, Kastner DL. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease (*). Annu Rev Immunol. 2009;27:621–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Goldbach-Mansky R. Immunology in clinic review series; focus on autoinflammatory diseases: update on monogenic autoinflammatory diseases: the role of interleukin (IL)-1 and an emerging role for cytokines beyond IL-1. Clin Exp Immunol. 2012;167(3):391–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Aksentijevich I, Putnam CD, Remmers EF, Mueller JL, Le J, Kolodner RD, et al. The clinical continuum of cryopyrinopathies: novel CIAS1 mutations in North American patients and a new cryopyrin model. Arthritis Rheum. 2007;56(4):1273–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Prieur AM, Griscelli C, Lampert F, Truckenbrodt H, Guggenheim MA, Lovell DJ, et al. A chronic, infantile, neurological, cutaneous and articular (CINCA) syndrome. A specific entity analysed in 30 patients. Scand J Rheumatol Suppl. 1987;66:57–68.

    Article  CAS  PubMed  Google Scholar 

  68. Aksentijevich I, Nowak M, Mallah M, Chae JJ, Watford WT, Hofmann SR, et al. De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): a new member of the expanding family of pyrin-associated autoinflammatory diseases. Arthritis Rheum. 2002;46(12):3340–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Feldmann J, Prieur AM, Quartier P, Berquin P, Certain S, Cortis E, et al. Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes. Am J Hum Genet. 2002;71(1):198–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tanaka N, Izawa K, Saito MK, Sakuma M, Oshima K, Ohara O, et al. High incidence of NLRP3 somatic mosaicism in patients with chronic infantile neurologic, cutaneous, articular syndrome: results of an International Multicenter Collaborative Study. Arthritis Rheum. 2011;63(11):3625–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Saito M, Nishikomori R, Kambe N, Fujisawa A, Tanizaki H, Takeichi K, et al. Disease-associated CIAS1 mutations induce monocyte death, revealing low-level mosaicism in mutation-negative cryopyrin-associated periodic syndrome patients. Blood. 2008;111(4):2132–41.

    Article  CAS  PubMed  Google Scholar 

  72. Hanna J, Markoulaki S, Schorderet P, Carey BW, Beard C, Wernig M, et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell. 2008;133(2):250–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tanaka T, Takahashi K, Yamane M, Tomida S, Nakamura S, Oshima K, et al. Induced pluripotent stem cells from CINCA syndrome patients as a model for dissecting somatic mosaicism and drug discovery. Blood. 2012;120(6):1299–308.

    Article  CAS  PubMed  Google Scholar 

  74. Kawasaki Y, Oda H, Ito J, Niwa A, Tanaka T, Hijikata A, et al. Pluripotent cell-based phenotypic dissection identifies a high-frequency somatic NLRC4 mutation as a cause of autoinflammation. Arthritis Rheumatol. 2016;69(2):447–59.

    Article  CAS  Google Scholar 

  75. Blau EB. Familial granulomatous arthritis, iritis, and rash. J Pediatr. 1985;107(5):689–93.

    Article  CAS  PubMed  Google Scholar 

  76. Miceli-Richard C, Lesage S, Rybojad M, Prieur AM, Manouvrier-Hanu S, Hafner R, et al. CARD15 mutations in Blau syndrome. Nat Genet. 2001;29(1):19–20.

    Article  CAS  PubMed  Google Scholar 

  77. Takada S, Kambe N, Kawasaki Y, Niwa A, Honda-Ozaki F, Kobayashi K, et al. Pluripotent stem cell models of Blau syndrome reveal an IFN-gamma-dependent inflammatory response in macrophages. J Allergy Clin Immunol. 2017;141(1):339–349.e11.

    Article  PubMed  CAS  Google Scholar 

  78. McDermott A, Jacks J, Kessler M, Emanuel PD, Gao L. Proteasome-associated autoinflammatory syndromes: advances in pathogeneses, clinical presentations, diagnosis, and management. Int J Dermatol. 2015;54(2):121–9.

    Article  PubMed  Google Scholar 

  79. Brehm A, Liu Y, Sheikh A, Marrero B, Omoyinmi E, Zhou Q, et al. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production. J Clin Invest. 2015;125(11):4196–211.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science. 2007;318(5858):1920–3.

    Article  CAS  PubMed  Google Scholar 

  81. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP, et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol. 2011;29(8):731–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, et al. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol. 2011;29(2):143–8.

    Article  CAS  PubMed  Google Scholar 

  85. Park S, Gianotti-Sommer A, Molina-Estevez FJ, Vanuytsel K, Skvir N, Leung A, et al. A comprehensive, ethnically diverse library of sickle cell disease-specific induced pluripotent stem cells. Stem Cell Reports. 2017;8(4):1076–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tangprasittipap A, Jittorntrum B, Wongkummool W, Kitiyanant N, Tubsuwan A. Generation of induced pluripotent stem cells from peripheral blood CD34+ hematopoietic progenitors of a 31 year old healthy woman. Stem Cell Res. 2017;20:91–3.

    Article  PubMed  Google Scholar 

  87. Song B, Fan Y, He W, Zhu D, Niu X, Wang D, et al. Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system. Stem Cells Dev. 2015;24(9):1053–65.

    Article  CAS  PubMed  Google Scholar 

  88. Gaspar HB, Parsley KL, Howe S, King D, Gilmour KC, Sinclair J, et al. Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet. 2004;364(9452):2181–7.

    Article  CAS  PubMed  Google Scholar 

  89. Cavazzana-Calvo M, Hacein-Bey S, de Saint BG, Gross F, Yvon E, Nusbaum P, et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science. 2000;288(5466):669–72.

    Article  CAS  PubMed  Google Scholar 

  90. Garate Z, Quintana-Bustamante O, Crane AM, Olivier E, Poirot L, Galetto R, et al. Generation of a high number of healthy erythroid cells from gene-edited pyruvate kinase deficiency patient-specific induced pluripotent stem cells. Stem Cell Reports. 2015;5(6):1053–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Brunetti P, Puxeddu A, Nenci G, Migliorini E. Congenital non spherocytic haemolytic anaemia due to pyruvate-kinase deficiency. Acta Haematol. 1963;30:88–102.

    Article  CAS  PubMed  Google Scholar 

  92. Oski FA, Diamond LK. Erythrocyte pyruvate kinase deficiency resulting in congenital nonspherocytic hemolytic anemia. N Engl J Med. 1963;269:763–70.

    Article  CAS  PubMed  Google Scholar 

  93. Dreyer AK, Hoffmann D, Lachmann N, Ackermann M, Steinemann D, Timm B, et al. TALEN-mediated functional correction of X-linked chronic granulomatous disease in patient-derived induced pluripotent stem cells. Biomaterials. 2015;69:191–200.

    Article  CAS  PubMed  Google Scholar 

  94. Flynn R, Grundmann A, Renz P, Hanseler W, James WS, Cowley SA, et al. CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells. Exp Hematol. 2015;43(10):838–48.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Laugsch M, Rostovskaya M, Velychko S, Richter C, Zimmer A, Klink B, et al. Functional restoration of gp91phox-oxidase activity by BAC transgenesis and gene targeting in X-linked chronic granulomatous disease iPSCs. Mol Ther. 2016;24(4):812–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

I thank Dr. Peter Karagiannis (CiRA, Kyoto University) for reading and editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megumu K. Saito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saito, M.K. (2019). Disease Modeling of Hematological and Immunological Disorders Using Induced Pluripotent Stem Cells. In: Inoue, H., Nakamura, Y. (eds) Medical Applications of iPS Cells . Current Human Cell Research and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-3672-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3672-0_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3671-3

  • Online ISBN: 978-981-13-3672-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics