Skip to main content

Application of Anthracene-Based Fluorescent Materials on Green Fluorescent Inkjet Ink

  • Conference paper
  • First Online:
Advances in Graphic Communication, Printing and Packaging

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 543))

  • 1324 Accesses

Abstract

Presently, the existing green fluorescent materials are rare earth luminescent material, which cannot reach the requirement of inkjet ink on dispersion and stability because of the inferior solubleness. In this paper, the fluorescent inkjet inks were prepared by anthracene-based derivatives, ink’s printability was tested and the relationship between molecular structure and ink’s printability was researched systematically. Finally, the optimal formula of green fluorescent inkjet ink was obtained. The results showed the photophysical properties of proofs a–c had obvious change comparing with inks ac and the contact angle of ink d was the biggest of all due to the planar construction of fluorescent material with large conjugate degree. The green fluorescent material: 9, 10-bis (4-methoxyphenylethynyl) anthracene with 0.5% and crylic acid B817 with 12% formed the optimal formula. The printing quality of ink prepared by the optimal formula can accord with the demand of digital printing quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hersch, R. D., Douzé, P., & Chosson S. (2007). Color images visible under UV light. In International Conference on Computer Graphics and Interactive Techniques, August 5, United states.

    Google Scholar 

  2. Rossier, R., &Hersch, R. D. (2011). Hiding patterns with daylight fluorescent inks. Switzerland: 19th Color Imaging Conference.

    Google Scholar 

  3. van Renesse, R. L. (2005). Printing inks and printing techniques. London: Optical Document Security.

    Google Scholar 

  4. Fatemeh, T., Farahnaz, N., & Saeed, B. (2014). Development of novel fluorescent offset ink based on coumarin dyes: Synthesis and properties. Progress in Organic Coatings, 77, 1351–1359.

    Article  Google Scholar 

  5. Coudray, M. A. (2004). Boosting process-color ink gamut with fluorescents. Screen Printing, 94(6), 28–32.

    Google Scholar 

  6. Lai, H. Y., Chen, T. H., & Chen, C. H. (2011). Optical and electrical properties of ink-jet printed indium–tin-oxide nanoparticle films. Materials Letters, 65, 3336–3339.

    Article  Google Scholar 

  7. Liu, H. M., Xu, W., Tan, W. Y., Zhu, X. H., Wang, J., Peng, J. B., & Cao, Y. (2016). Line printing solution-processable small molecules with uniform surface profile via ink-jet printer. Journal of Colloid and Interface Science, 465, 106–111.

    Google Scholar 

  8. Jafarifard, S., Bastani, S., Atasheh, S. G., & Morteza, G. S. (2016). The chemo-rheological behavior of an acrylic based UV-curable inkjetink: Effect of surface chemistry for hyperbranched polymers. Progress in Organic Coatings, 90, 399–406.

    Article  Google Scholar 

  9. Chang, C. J., Lin, Y. H., & Tsai, H. Y. (2011). Synthesis and properties of UV-curable hyperbranched polymers for ink-jet printing of color micropatterns on glass. Thin Solid Films, 519, 5243–5248.

    Article  Google Scholar 

  10. Park, J. Y., Hirata, Y. C., & Hamada, K. (2012). Relationship between the dye/additive interaction and inkjet ink droplet formation. Dyes and Pigments, 95, 502–511.

    Article  Google Scholar 

  11. Pan, Z. D., Wang, Y. M., Huang, H. N., Ling, Z. Y., Dai, Y. G., & Ke, S. J. (2015). Recent development on preparation of ceramic inks in ink-jet printing. Ceramics International, 41, 12515–12528.

    Article  Google Scholar 

  12. Karanikas, E. K., Nikolaidis, N. F., & Tsatsaroni, E. G. (2012). Novel digital printing ink-jet inks with “antifraud markers”used as additives. Progress in Organic Coatings, 75, 1–7.

    Article  Google Scholar 

  13. Stempien, Z., Rybicki, E., Rybicki, T., & Lesnikowski, J. (2016). Inkjet-printing deposition of silver electro-conductive layers on textile substrates at low sintering temperature by using an aqueous silver ions-containing ink for textronic applications. Sensors and Actuators B, 224, 714–725.

    Article  Google Scholar 

  14. Ahn, S., Kim, W. K., Ryu, S. H., Kim, K. J., Lee, S. E., Kim, S. H., et al. (2012). OLED with a controlled molecular weight of the PVK (poly(9-vinylcarbazole)) formed by a reactive ink-jet process. Organic Electronics, 13, 980–984.

    Article  Google Scholar 

  15. Peter, D., Rosanna, K., & Ramin, R. F. (2013). Synthesis and inkjet printing of aqueous ZnS: Mn nanoparticles. Journal of Luminescence, 136, 100–108.

    Article  Google Scholar 

  16. Cui, R. Z., Tang, Y. R., Ma, Y. Q., Yang, X. Y., Geng, L. H., & Li, Y. H. (2015). Research progress of investigation on organic blue-light-emitting materials and diodes. Chinese Journal of Applied Chemistry, 32(8), 855–872.

    Google Scholar 

  17. Lu, T. H., Huo, Y. P., Fang, X. M., & Ouyang, X. H. (2013). Progress of solution-processable organic small molecular for light emitting materials. Chinese Journal of Organic Chemistry, 33, 2063–2079.

    Article  Google Scholar 

  18. Kim, Y. D., Kim, J. P., Kwon, O. S., & Cho, I. H. (2009). The synthesis and application of thermally stable dyes for ink-jet printed LCD color filters. Dyes and Pigments, 81, 45–52.

    Article  Google Scholar 

  19. Maryam, A., & Farahnaz, N. (2015). Producing fluorescent digital printing ink: Investigating the effect of type and amount of coumarin derivative dyes on the quality of ink. Journal of Luminescence, 167, 254–260.

    Article  Google Scholar 

  20. Huang, B. Q, Zhang, W., & Wei, X. F. (2014). The preparation of red fluorescent inkjet ink Used in the additive method: ZL201210408556.5.

    Google Scholar 

  21. Wei, X. F, Zhang, & W., Huang, B. Q. (2014). The preparation of blue fluorescent inkjet ink Used in the additive method: ZL201210410173.1.

    Google Scholar 

  22. Ogi, D., Fujita, Y., Mori, S., Shirahata, T., & Misaki, Y. (2016). Bis- and tris-fused tetrathiafulvalenes extended with Anthracene-9,10-diylidene. Organic Letters, 18(22), 5868–5871.

    Article  Google Scholar 

  23. Peng, Z., Wang, Z., Tong, B., Ji, Y. C., Shi, J. B, Zhi, J. G., & Dong Y. P. (2016). Anthracene Modified by Aldehyde Groups Exhibiting Aggregation-Induced Emission Properties. Chinese Journal of Chemistry, 34(11), 1071-1075.

    Google Scholar 

  24. Zhang, W., Wang, Q., Feng, X., Yang, L., Wu, Y. K., & Wei, X. F. (2017). Anthracene-based derivatives: Synthesis, photophysical properties and electrochemical properties. Chemical Research in Chinese Universities, 33(4), 603–610.

    Article  Google Scholar 

  25. Miyaura, N., & Suzuki, A. (1995). Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chemical Reviews, 95(9), 2457–2483.

    Article  Google Scholar 

  26. Chinchilla, R., & Nájera, C. (2007). The sonogashira reaction: a booming methodology in synthetic organic chemistry. Chemical Reviews, 107(3), 874–922.

    Article  Google Scholar 

  27. Yang, L., Wei, X. F., & Huang, B. Q. (2014). The preparation of infrared fluorescent ink and the research of luminous performance. Printing technology, 1, 54–56.

    Google Scholar 

  28. Sara, P., Silva, M. D., Silva Lima, P., & Oliveira, J. M. (2016). Rheological behaviour of cork-polymer composites for injection moulding. Composites: Part B, 90, 172–178.

    Article  Google Scholar 

  29. Güngör, G. L., Kara, A., Gardini, D., Blosi, M., Dondi, M., & Zanelli, C. (2016). Ink-jet printability of aqueous ceramic inks for digital decoration of ceramic tiles. Dyes and Pigments, 127, 148–154.

    Article  Google Scholar 

Download references

Acknowledgements

This study is funded by the Scientific Research Common Program of Beijing Municipal Commission of Education of China (Nos. KM201810015012, KM201810015003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wan Zhang or Hui Kuang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, W., Kuang, H., Xu, Y., Wang, H., Huang, B., Wei, X. (2019). Application of Anthracene-Based Fluorescent Materials on Green Fluorescent Inkjet Ink. In: Zhao, P., Ouyang, Y., Xu, M., Yang, L., Ren, Y. (eds) Advances in Graphic Communication, Printing and Packaging. Lecture Notes in Electrical Engineering, vol 543. Springer, Singapore. https://doi.org/10.1007/978-981-13-3663-8_100

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3663-8_100

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3662-1

  • Online ISBN: 978-981-13-3663-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics