Skip to main content

Functions of Metabolism-Related Signaling Pathways in the Regulation of Toxicity of Environmental Toxicants or Stresses

  • Chapter
  • First Online:
Molecular Toxicology in Caenorhabditis elegans
  • 269 Accesses

Abstract

We here selected the fat metabolism as an example to discuss the potential involvement of metabolism-related signaling pathways in the regulation of toxicity of environmental toxicants or stresses. We first introduced and discussed the functions of fat metabolic sensors (SBP-1, NHR-49, MDT-15, and NHR-80) and related signaling pathways in regulating the toxicity of environmental toxicants or stresses. Moreover, we discussed the roles of different components of the fat metabolic pathways during the regulation of toxicity of environmental toxicants or stresses. We also discussed the important function of fatty acid transport protein ACS-22 in regulating the toxicity of environmental toxicants or stresses. The described information in this chapter will help us to establish a connection between certain metabolism(s) and toxicity induction of environmental toxicants and stresses in nematodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang D-Y (2018) Nanotoxicology in Caenorhabditis elegans. Springer, Singapore

    Book  Google Scholar 

  2. Ren M-X, Zhao L, Ding X-C, Krasteva N, Rui Q, Wang D-Y (2018) Developmental basis for intestinal barrier against the toxicity of graphene oxide. Part Fibre Toxicol 15:26

    Article  PubMed  PubMed Central  Google Scholar 

  3. Xiao G-S, Chen H, Krasteva N, Liu Q-Z, Wang D-Y (2018) Identification of interneurons required for the aversive response of Caenorhabditis elegans to graphene oxide. J Nanbiotechnol 16:45

    Article  Google Scholar 

  4. Ding X-C, Rui Q, Wang D-Y (2018) Functional disruption in epidermal barrier enhances toxicity and accumulation of graphene oxide. Ecotoxicol Environ Saf 163:456–464

    Article  CAS  PubMed  Google Scholar 

  5. Zhao L, Kong J-T, Krasteva N, Wang D-Y (2018) Deficit in epidermal barrier induces toxicity and translocation of PEG modified graphene oxide in nematodes. Toxicol Res 7(6):1061–1070. https://doi.org/10.1039/C8TX00136G

    Article  CAS  Google Scholar 

  6. Dong S-S, Qu M, Rui Q, Wang D-Y (2018) Combinational effect of titanium dioxide nanoparticles and nanopolystyrene particles at environmentally relevant concentrations on nematodes Caenorhabditis elegans. Ecotoxicol Environ Saf 161:444–450

    Article  CAS  PubMed  Google Scholar 

  7. Xiao G-S, Zhi L-T, Ding X-C, Rui Q, Wang D-Y (2017) Value of mir-247 in warning graphene oxide toxicity in nematode Caenorhabditis elegans. RSC Adv 7:52694–52701

    Article  CAS  Google Scholar 

  8. Zhao L, Wan H-X, Liu Q-Z, Wang D-Y (2017) Multi-walled carbon nanotubes-induced alterations in microRNA let-7 and its targets activate a protection mechanism by conferring a developmental timing control. Part Fibre Toxicol 14:27

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhao L, Qu M, Wong G, Wang D-Y (2017) Transgenerational toxicity of nanopolystyrene particles in the range of μg/L in nematode Caenorhabditis elegans. Environ Sci Nano 4:2356–2366

    Article  CAS  Google Scholar 

  10. Wu Q-L, Zhi L-T, Qu Y-Y, Wang D-Y (2016) Quantum dots increased fat storage in intestine of Caenorhabditis elegans by influencing molecular basis for fatty acid metabolism. Nanomedicine 12:1175–1184

    Article  CAS  PubMed  Google Scholar 

  11. Ashrafi K (2007) Obesity and the regulation of fat metabolism. WormBook. https://doi.org/10.1895/wormbook.1.130.1

  12. Lee D, Jeong D, Son HG, Yamaoka Y, Kim H, Seo K, Khan AA, Roh T, Moon DW, Lee Y, Lee SV (2015) SREBP and MDT-15 protect C. elegans from glucose-induced accelerated aging by preventing accumulation of saturated fat. Genes Dev 29:2490–2503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yu Y-L, Zhi L-T, Wu Q-L, Jing L-N, Wang D-Y (2018) NPR-9 regulates innate immune response in Caenorhabditis elegans by antagonizing activity of AIB interneurons. Cell Mol Immunol 15:27–37

    Article  CAS  PubMed  Google Scholar 

  14. Zhi L-T, Yu Y-L, Li X-Y, Wang D-Y, Wang D-Y (2017) Molecular control of innate immune response to Pseudomonas aeruginosa infection by intestinal let-7 in Caenorhabditis elegans. PLoS Pathog 13:e1006152

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhi L-T, Yu Y-L, Jiang Z-X, Wang D-Y (2017) mir-355 functions as an important link between p38 MAPK signaling and insulin signaling in the regulation of innate immunity. Sci Rep 7:14560

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sun L-M, Liao K, Hong C-C, Wang D-Y (2017) Honokiol induces reactive oxygen species-mediated apoptosis in Candida albicans through mitochondrial dysfunction. PLoS One 12:e0172228

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sun L-M, Liao K, Wang D-Y (2017) Honokiol induces superoxide production by targeting mitochondrial respiratory chain complex I in Candida albicans. PLoS One 12:e0184003

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yu Y-L, Zhi L-T, Guan X-M, Wang D-Y, Wang D-Y (2016) FLP-4 neuropeptide and its receptor in a neuronal circuit regulate preference choice through functions of ASH-2 trithorax complex in Caenorhabditis elegans. Sci Rep 6:21485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sun L-M, Zhi L-T, Shakoor S, Liao K, Wang D-Y (2016) microRNAs involved in the control of innate immunity in Candida infected Caenorhabditis elegans. Sci Rep 6:36036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sun L-M, Liao K, Li Y-P, Zhao L, Liang S, Guo D, Hu J, Wang D-Y (2016) Synergy between PVP-coated silver nanoparticles and azole antifungal against drug-resistant Candida albicans. J Nanosci Nanotechnol 16:2325–2335

    Article  CAS  PubMed  Google Scholar 

  21. Wu Q-L, Cao X-O, Yan D, Wang D-Y, Aballay A (2015) Genetic screen reveals link between maternal-effect sterile gene mes-1 and P. aeruginosa-induced neurodegeneration in C. elegans. J Biol Chem 290:29231–29239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sim S, Hibberd ML (2016) Caenorhabditis elegans susceptibility to gut Enterococcus faecalis infection is associated with fat metabolism and epithelial junction integrity. BMC Microbiol 16:6

    Article  PubMed  PubMed Central  Google Scholar 

  23. Goh GYS, Winter JJ, Bhanshali F, Doering KRS, Lai R, Lee K, Veal EA, Taubert S (2018) NHR-49/HNF4 integrates regulation of fatty acid metabolism with a protective transcriptional response to oxidative stress and fasting. Aging Cell 17:e12743

    Article  PubMed  PubMed Central  Google Scholar 

  24. Horikawa M, Sakamoto K (2009) Fatty acid metabolism is involved in stress resistance mechanisms of Caenorhabditis elegans. Biochem Biophys Res Commun 390:1402–1407

    Article  CAS  PubMed  Google Scholar 

  25. Gilst MR, Hadjivassiliou H, Yamamoto KR (2005) A Caenorhabditis elegans nutrient response system partially dependent on nuclear receptor NHR-49. Proc Natl Acad Sci U S A 102:13496–13501

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pukkila-Worley R, Feinbaum RL, McEwan DL, Conery AL, Ausubel FM (2014) The evolutionarily conserved mediator subunit MDT-15/MED15 links protective innate immune responses and xenobiotic detoxification. PLoS Pathog 10:e1004143

    Article  PubMed  PubMed Central  Google Scholar 

  27. Goh GYS, Martelli KL, Parhar KS, Kwong AWL, Wong MA, Mah A, Hou NS, Taubert S (2014) The conserved mediator subunit MDT-15 is required for oxidative stress responses in Caenorhabditis elegans. Aging Cell 13:70–79

    Article  CAS  PubMed  Google Scholar 

  28. Sinha A, Rae R (2014) A functional genomic screen for evolutionarily conserved genes required for lifespan and immunity in germline-deficient C. elegans. PLoS One 9:e101970

    Article  PubMed  PubMed Central  Google Scholar 

  29. Apfeld J, O’Connor G, McDonagh T, DiStefano PS, Curtis R (2004) The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev 18:3004–3009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee H, Cho JS, Lambacher N, Lee J, Lee SJ, Lee TH, Gartner A, Koo HS (2008) The Caenorhabditis elegans AMP-activated protein kinase AAK-2 is phosphorylated by LKB1 and is required for resistance to oxidative stress and for normal motility and foraging behavior. J Biol Chem 283:14988–14993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Matsuyama S, Moriuchi M, Suico MA, Yano S, Morino-Koga S, Shuto T, Yamanaka K, Kondo T, Araki E, Kai H (2014) Mild electrical stimulation increases stress resistance and suppresses fat accumulation via activation of LKB1-AMPK signaling pathway in C. elegans. PLoS One 9:e114690

    Article  PubMed  PubMed Central  Google Scholar 

  32. Savory FR, Sait SM, Hope IA (2011) DAF-16 and ∆9 desaturase genes promote cold tolerance in long-lived Caenorhabditis elegans age-1 mutants. PLoS One 6:e24550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Qu M, Xu K-N, Li Y-H, Wong G, Wang D-Y (2018) Using acs-22 mutant Caenorhabditis elegans to detect the toxicity of nanopolystyrene particles. Sci Total Environ 643:119–126

    Article  CAS  PubMed  Google Scholar 

  34. Zhi L-T, Fu W, Wang X, Wang D-Y (2016) ACS-22, a protein homologous to mammalian fatty acid transport protein 4, is essential for the control of toxicity and translocation of multi-walled carbon nanotubes in Caenorhabditis elegans. RSC Adv 6:4151–4159

    Article  CAS  Google Scholar 

  35. Zhao Y-L, Yu X-M, Jia R-H, Yang R-L, Rui Q, Wang D-Y (2015) Lactic acid bacteria protects Caenorhabditis elegans from toxicity of graphene oxide by maintaining normal intestinal permeability under different genetic backgrounds. Sci Rep 5:17233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, D. (2019). Functions of Metabolism-Related Signaling Pathways in the Regulation of Toxicity of Environmental Toxicants or Stresses. In: Molecular Toxicology in Caenorhabditis elegans. Springer, Singapore. https://doi.org/10.1007/978-981-13-3633-1_8

Download citation

Publish with us

Policies and ethics