Skip to main content

Near Field Nanoscale Temperature Measurement Using AlGaN:Er3+ Film via Photoluminescence Nanothermometry

  • Chapter
  • First Online:
Photo-Thermal Spectroscopy with Plasmonic and Rare-Earth Doped (Nano)Materials

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSNANOSCIENCE))

  • 357 Accesses

Abstract

In this chapter we present a new optical temperature measurement and thermal imaging technique combining near-field microscopy and Er3+ photoluminescence spectroscopy. The technique is used with two different approaches towards local temperature measurement and thermal imaging. In the first approach, gold nanostructures on top of Al0.94 Ga0.06 N thin film embedded with Er3+ ions are optically excited through the SNOM tip with 532 nm CW laser to generate thermal images with the spatial resolution comparable to the true size of the nanostructures. In the second approach, nanostructures on top of thermal sensor film are excited with 532 nm CW laser through the substrate with a large spot size (FWHM ~ 10 µm). The Er3+ emission from the film is collected in transmission mode through the SNOM tip. In this chapter the steady state temperature change under optical illumination is measured for different sized clusters made from 40 nm diameter gold nanoparticles and it is found that the maximum temperature change and temperature decay length (r1/2) into the surrounding medium increases linearly with cluster radius. Based upon this observation, we can conclude that if a large cell is embedded with optical heaters with a distance between heaters that allows for collective heating, then the thermal profile outside of the cell decays with a decay constant that is dependent upon the size of the cell. This chapter is reprinted (adapted) with permission from Nanoscale, 2017, 4(7), pp 18641869. Copyright 2017 Royal Society of Chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fang Z, Zhen Y-R, Neumann O, Polman A, Garcia Javier, de Abajo F, Nordlander P, Halas NJ (2013) Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle. Nano Lett 13(4):1736–1742

    Article  CAS  Google Scholar 

  2. Polman A (2013) Solar steam nanobubbles. ACS Nano 7(1):15–18

    Article  CAS  Google Scholar 

  3. El-Sayed IH, Huang XH, El-Sayed MA (2006) Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 239(1):129–135

    Article  CAS  Google Scholar 

  4. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 100(23):13549–13554

    Article  CAS  Google Scholar 

  5. Huang XH, Jain PK, El-Sayed IH, El-Sayed MA (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23(3):217–228

    Article  Google Scholar 

  6. Park JH, von Maltzahn G, Ong LL, Centrone A, Hatton TA, Ruoslahti E, Bhatia SN, Sailor MJ (2010) Cooperative nanoparticles for tumor detection and photothermally triggered drug delivery. Adv Mater 22(8):880–885

    Article  CAS  Google Scholar 

  7. Alkilany AM, Thompson LB, Boulos SP, Sisco PN, Murphy CJ (2012) Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv Drug Deliv Rev 64(2):190–199

    Article  CAS  Google Scholar 

  8. Alvarez-Puebla RA, Liz-Marzan LM (2012) Traps and cages for universal SERS detection. Chem Soc Rev 41(1):43–51

    Article  CAS  Google Scholar 

  9. Govorov AO, Zhang W, Skeini T, Richardson H, Lee J, Kotov NA (2006) Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res Lett 1(1):84–90

    Article  Google Scholar 

  10. Govorov AO, Richardson HH (2007) Generating heat with metal nanoparticles. Nano Today 2(1):30–38

    Article  Google Scholar 

  11. Rodriguez-Sevilla P, Zhang YH, Haro-Gonzalez P, Sanz-Rodriguez F, Jaque F, Sole JG, Liu XG, Jaque D (2016) Thermal scanning at the cellular level by an optically trapped upconverting fluorescent particle. Adv Mater 28(12):2421–2426

    Article  CAS  Google Scholar 

  12. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645

    Article  CAS  Google Scholar 

  13. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated-emission—stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782

    Article  CAS  Google Scholar 

  14. Moerner WE, Fromm DP (2003) Methods of single-molecule fluorescence spectroscopy and microscopy. Rev Sci Instrum 74(8):3597–3619

    Article  CAS  Google Scholar 

  15. Xiong Y, Liu Z, Sun C, Zhang X (2007) Two-dimensional Imaging by far-field superlens at visible wavelengths. Nano Lett 7(11):3360–3365

    Article  CAS  Google Scholar 

  16. Carlson MT, Khan A, Richardson HH (2011) Local temperature determination of optically excited nanoparticles and nanodots. Nano Lett 11(3):1061–1069

    Article  CAS  Google Scholar 

  17. Gurumurugan K, Chen H, Harp GR, Jadwisienczak WM, Lozykowski HJ (1999) Visible cathodoluminescence of Er-doped amorphous AlN thin films. Appl Phys Lett 74(20):3008–3010

    Article  CAS  Google Scholar 

  18. Garter MJ, Steckl AJ (2002) Temperature behavior of visible and infrared electroluminescent devices fabricated on erbium-doped GaN. IEEE Trans Elect Dev 49(1):48–54

    Article  CAS  Google Scholar 

  19. Baral S, Johnson SC, Alaulamie AA, Richardson HH (2016) Nanothermometry using optically trapped erbium oxide nanoparticle. Appl Phys Mater Sci Process 122:(4)

    Article  Google Scholar 

  20. Hecht B, Sick B, Wild UP, Deckert V, Zenobi R, Martin OJF, Pohl DW (2000) Scanning near-field optical microscopy with aperture probes: fundamentals and applications. J Chem Phys 112(18):7761–7774

    Article  CAS  Google Scholar 

  21. Baffou G, Quidant R, de Abajo FJG (2010) Nanoscale control of optical heating in complex plasmonic systems. ACS Nano 4(2):709–716

    Article  CAS  Google Scholar 

  22. Specht E The best known packings of equal circles in a circle (complete up to N = 2600). http://hydra.nat.uni-magdeburg.de/packing/cci/cci.html

  23. Graham RL, Lubachevsky BD, Nurmela KJ, Ostergard PRJ (1998) Dense packings of congruent circles in a circle. Discret Math 181(1–3):139–154

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susil Baral .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baral, S., Rafiei Miandashti, A., H. Richardson, H. (2019). Near Field Nanoscale Temperature Measurement Using AlGaN:Er3+ Film via Photoluminescence Nanothermometry. In: Photo-Thermal Spectroscopy with Plasmonic and Rare-Earth Doped (Nano)Materials. SpringerBriefs in Applied Sciences and Technology(). Springer, Singapore. https://doi.org/10.1007/978-981-13-3591-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3591-4_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3590-7

  • Online ISBN: 978-981-13-3591-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics