Skip to main content

Selectivity of Antimicrobial Peptides: A Complex Interplay of Multiple Equilibria

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1117))

Abstract

Antimicrobial peptides (AMPs) attack bacterial membranes selectively, killing microbes at concentrations that cause no toxicity to the host cells. This selectivity is not due to interaction with specific receptors but is determined by the different lipid compositions of the membranes of the two cell types and by the peculiar physicochemical properties of AMPs, particularly their cationic and amphipathic character. However, the available data, including recent studies of peptide-cell association, indicate that this picture is excessively simplistic, because selectivity is modulated by a complex interplay of several interconnected phenomena. For instance, conformational transitions and self-assembly equilibria modulate the effective peptide hydrophobicity, the electrostatic and hydrophobic contributions to the membrane-binding driving force are nonadditive, and kinetic processes can play an important role in selective bacterial killing in the presence of host cells. All these phenomena and their bearing on the final activity and toxicity of AMPs must be considered in the definition of design principles to optimize peptide selectivity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abraham T, Lewis RN, Hodges RS, McElhaney RN (2005) Isothermal titration calorimetry studies of the binding of the antimicrobial peptide gramicidin S to phospholipid bilayer membranes. Biochemistry 44(33):11279–11285

    CAS  PubMed  Google Scholar 

  • Agrawal A, Weisshaar JC (2018) Effects of alterations of the E. coli lipopolysaccharide layer on membrane permeabilization events induced by Cecropin A. Biochim Biophys Acta 1860(7):1470–1479

    CAS  PubMed Central  Google Scholar 

  • Ahmad A, Yadav SP, Asthana N, Mitra K, Srivastava SP, Ghosh JK (2006) Utilization of an amphipathic leucine zipper sequence to design antibacterial peptides with simultaneous modulation of toxic activity against human red blood cells. J Biol Chem 281(31):22029–22038

    CAS  PubMed  Google Scholar 

  • Ahmad A, Asthana N, Azmi S, Srivastava RM, Pandey BK, Yadav V, Ghosh JK (2009a) Structure–function study of cathelicidin-derived bovine antimicrobial peptide BMAP-28: design of its cell-selective analogs by amino acid substitutions in the heptad repeat sequences. Biochim Biophys Acta 1788(11):2411–2420

    CAS  PubMed  Google Scholar 

  • Ahmad A, Azmi S, Srivastava RM, Srivastava S, Pandey BK, Saxena R, Bajpai VK, Ghosh JK (2009b) Design of nontoxic analogues of cathelicidin-derived bovine antimicrobial peptide BMAP-27: the role of leucine as well as phenylalanine zipper sequences in determining its toxicity. Biochemistry 48(46):10905–10917

    CAS  PubMed  Google Scholar 

  • Akhtar MS, Qaisar A, Irfanullah J, Iqbal J (2005) Antimicrobial peptide 99mTc-ubiquicidin 29-41 as human infection-imaging agent: clinical trial. J Nucl Med 46(4):567–573

    CAS  PubMed  Google Scholar 

  • Akhtar MS, Imran MB, Nadeem MA, Shahid A (2012) Antimicrobial peptides as infection imaging agents: better than radiolabeled antibiotics. Int J Pept. https://doi.org/10.1155/2012/965238

    Google Scholar 

  • Akram AR, Avlonitis N, Lilienkampf A, Perez-Lopez AM, McDonald N, Chankeshwara SV, Scholefield E, Haslett C, Bradley M, Dhaliwal K (2015) A labelled-ubiquicidin antimicrobial peptide for immediate in situ optical detection of live bacteria in human alveolar lung tissue. Chem Sci 6(12):6971–6979

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alba A, López-Abarrategui C, Otero-González AJ (2012) Host defense peptides: an alternative as antiinfective and immunomodulatory therapeutics. Biopolymers 98(4):251–267

    CAS  PubMed  Google Scholar 

  • Allende D, Simon SA, McIntosh TJ (2005) Melittin-induced bilayer leakage depends on lipid material properties: evidence for toroidal pores. Biophys J 88(3):1828–1837

    CAS  PubMed  Google Scholar 

  • Aloia RC, Tian H, Jensen FC (1993) Lipid composition and fluidity of the human immunodeficiency virus envelope and host cell plasma membranes. Proc Natl Acad Sci U S A 90(11):5181–5185

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ames GF (1968) Lipids of Salmonella typhimurium and Escherichia coli: structure and metabolism. J Bacteriol 95(3):833–843

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andra J, Goldmann T, Ernst CM, Peschel A, Gutsmann T (2011) Multiple peptide resistance factor (MprF)-mediated resistance of Staphylococcus aureus against antimicrobial peptides coincides with a modulated peptide interaction with artificial membranes comprising lysyl-phosphatidylglycerol. J Biol Chem 286(21):18692–18700

    PubMed  PubMed Central  Google Scholar 

  • Arcidiacono S, Soares JW, Meehan AM, Marek P, Kirby R (2009) Membrane permeability and antimicrobial kinetics of cecropin P1 against Escherichia coli. J Pept Sci 15(6):398–403

    CAS  PubMed  Google Scholar 

  • Assadi M, Vahdat K, Nabipour I, Sehhat MR, Hadavand F, Javadi H, Tavakoli A, Saberifard J, Kalantarhormozi MR, Zakani A, Eftekhari M (2011) Diagnostic value of 99mTc-ubiquicidin scintigraphy for osteomyelitis and comparisons with 99mTc-methylene diphosphonate scintigraphy and magnetic resonance imaging. Nucl Med Commun 32(8):716–723

    PubMed  Google Scholar 

  • Asthana N, Yadav SP, Ghosh JK (2004) Dissection of antibacterial and toxic activity of Melittin: a leucine zipper motif plays a crucial role in determining its hemolytic activity but not antibacterial activity. J Biol Chem 279(53):55042–55050

    CAS  PubMed  Google Scholar 

  • Avrahami D, Shai Y (2002) Conjugation of a magainin analogue with lipophilic acids controls hydrophobicity, solution assembly, and cell selectivity. Biochemistry 41(7):2254–2263

    CAS  PubMed  Google Scholar 

  • Avrahami D, Shai Y (2004) A new group of antifungal and antibacterial lipopeptides derived from non-membrane active peptides conjugated to palmitic acid. J Biol Chem 279(13):12277–12285

    CAS  PubMed  Google Scholar 

  • Bacalum M, Radu M (2015) Cationic antimicrobial peptides cytotoxicity on mammalian cells: an analysis using therapeutic index integrative concept. Int J Pept Res Ther 21:47–55

    CAS  Google Scholar 

  • Bagheri M, Amininasab M, Dathe M (2018) Arg/Trp-rich cyclic α/β-antimicrobial peptides: the roles of H-bonding and hydrophobic/hydrophilic solvent accessible surface areas upon the activity and membrane selectivity. Chem Eur J. 24(53):14242–14253

    Google Scholar 

  • Ballas SK, Krasnow SH (1980) Structure of erythrocyte membrane and its transport functions. Ann Clin Lab Sci 10(3):209–219

    CAS  PubMed  Google Scholar 

  • Beschiaschvili G, Seelig J (1990) Melittin binding to mixed phosphatidylglycerol/phosphatidylcholine membranes. Biochemistry 29(1):52–58

    CAS  PubMed  Google Scholar 

  • Bessalle R, Kapitkovsky A, Gorea A, Shalit I, Fridkin M (1990) All-D-magainin: chirality, antimicrobial activity and proteolytic resistance. FEBS Lett 274(1–2):151–155

    CAS  PubMed  Google Scholar 

  • Bessalle R, Haas H, Goria A, Shalit I, Fridkin M (1992) Augmentation of the antibacterial activity of magainin by positive-charge chain extension. Antimicrob Agents Chemother 36(2):313–317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatt J, Mukherjee A, Shinto A, Karuppusamy KK, Korde A, Kumar M, Sarma HD, Repaka K, Dash A (2018) Gallium-68 labeled Ubiquicidin derived octapeptide as a potential infection imaging agent. Nucl Med Biol 62–63:47–53

    PubMed  Google Scholar 

  • Bishop DG, Rutberg L, Samuelsson B (1967) The chemical composition of the cytoplasmic membrane of Bacillus subtilis. Eur J Biochem 2(4):448–453

    CAS  PubMed  Google Scholar 

  • Bland JM, De Lucca AJ, Jacks TJ, Vigo CB (2001) All-D-cecropin B: synthesis, conformation, lipopolysaccharide binding, and antibacterial activity. Mol Cell Biochem 218(1–2):105–111

    CAS  PubMed  Google Scholar 

  • Blondelle SE, Houghten RA (1991) Hemolytic and antimicrobial activities of the twenty-four individual omission analogs of melittin. Biochemistry 30(19):4671–4678

    CAS  PubMed  Google Scholar 

  • Bobone S, Piazzon A, Orioni B, Pedersen JZ, Nan YH, Hahm KS, Shin SH, Stella L (2011) The thin line between cell-penetrating and antimicrobial peptides: the case of Pep-1 and Pep-1-K. J Pept Sci 17(5):335–341

    CAS  PubMed  Google Scholar 

  • Bobone S, Roversi D, Giordano L, De Zotti M, Formaggio F, Toniolo C, Park Y, Stella L (2012) The lipid dependence of antimicrobial peptide activity is an unreliable experimental test for different pore models. Biochemistry 51(51):10124–10126

    CAS  PubMed  Google Scholar 

  • Bobone S, Bocchinfuso G, Park Y, Palleschi A, Hahm KS, Stella L (2013) The importance of being kinked: role of Pro residues in the selectivity of the helical antimicrobial peptide P5. J Pept Sci 19(12):758–769

    CAS  PubMed  Google Scholar 

  • Bocchinfuso G, Palleschi A, Orioni B, Grande G, Formaggio F, Toniolo C et al (2009) Different mechanisms of action of antimicrobial peptides: insights from fluorescence spectroscopy experiments and molecular dynamics simulations. J Pept Sci Off Publ Eur Pept Soc 15(9):550–558

    CAS  Google Scholar 

  • Bocchinfuso G, Bobone S, Mazzuca C, Palleschi A, Stella L (2011) Fluorescence spectroscopy and molecular dynamics simulations in studies on the mechanism of membrane destabilization by antimicrobial peptides. Cell Mol Life Sci 68(13):2281–2301

    CAS  PubMed  Google Scholar 

  • Boyd KJ, Alder NN, May ER (2017) Buckling under pressure: curvature-based lipid segregation and stability modulation in cardiolipin-containing bilayers. Langmuir 33(27):6937–6946

    CAS  PubMed  PubMed Central  Google Scholar 

  • Braun S, Pokorná S, Šachl R, Hof M, Heerklotz H, Hoernke M (2017) Biomembrane permeabilization: statistics of individual leakage events harmonize the interpretation of vesicle leakage. ACS Nano 12(1):813–819

    PubMed  Google Scholar 

  • Brender JR, McHenry AJ, Ramamoorthy A (2012) Does cholesterol play a role in the bacterial selectivity of antimicrobial peptides? Front Immunol 3:195

    PubMed  PubMed Central  Google Scholar 

  • Broekhuyse RM (1969) Quantitative two-dimensional thin-layer chromatography of blood phospholipids. Clin Chim Acta 23(3):457–461

    CAS  PubMed  Google Scholar 

  • Brouwer CP, Bogaards SJ, Wulferink M, Velders MP, Welling MM (2006) Synthetic peptides derived from human antimicrobial peptide ubiquicidin accumulate at sites of infections and eradicate (multi-drug resistant) Staphylococcus aureus in mice. Peptides 27(11):2585–2591

    CAS  PubMed  Google Scholar 

  • Brouwer CPJM, Sarda-Mantel L, Meulemans A, Guludec DL, Welling MM (2008) The use of technetium-99m radiolabeled human antimicrobial peptides for infection specific imaging. Mini-Rev Med Chem 8(10):1039–1052

    CAS  PubMed  Google Scholar 

  • Bulet P, Stocklin R (2005) Insect antimicrobial peptides: structures, properties and gene regulation. Protein Pept Lett 12(1):3–11

    CAS  PubMed  Google Scholar 

  • Bütikofer P, Lin ZW, Chiu DT, Lubin B, Kuypers FA (1990) Transbilayer distribution and mobility of phosphatidylinositol in human red blood cells. J Biol Chem 265(27):16035–16038

    PubMed  Google Scholar 

  • Büttner K, Blondelle SE, Ostresh JM, Houghten RA (1992) Perturbation of peptide conformations induced in anisotropic environments. Biopolymers 32(6):575–583

    PubMed  Google Scholar 

  • Carneiro VA, Duarte HS, Prado MGV, Silva ML, Teixeira M, dos Santos YM, Vasconcelos IB, Cunha RMS (2015) Antimicrobial peptides: from synthesis to clinical perspectives. In: The battle against microbial pathogens: basic science, technological advances and educational programs, 1st edn. Formatex Research Center, Spain, pp 81–90

    Google Scholar 

  • Carotenuto A, Malfi S, Saviello MR, Campiglia P, Gomez-Monterrey I, Mangoni ML, Marcellini Hercolani Gaddi L, Novellino E, Grieco P (2008) A different molecular mechanism underlying antimicrobial and hemolytic actions of temporins A and L. J Med Chem 51(8):2354–2362

    CAS  PubMed  Google Scholar 

  • Chairatana P, Nolan EM (2014) Molecular basis for self-assembly of a human host-defense peptide that entraps bacterial pathogens. J Am Chem Soc 136(38):13267–13276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chapuis H, Slaninová J, Bednárová L, Monincová L, Buděšínský M, Čeřovský V (2012) Effect of hydrocarbon stapling on the properties of α-helical antimicrobial peptides isolated from the venom of hymenoptera. Amino Acids 43(5):2047–2058

    CAS  PubMed  Google Scholar 

  • Chen L, Liang JF (2013) Peptide fibrils with altered stability, activity, and cell selectivity. Biomacromolecules 14(7):2326–2331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Mant CT, Farmer SW, Hancock REW, Michael L, Vasil ML, Hodges RS (2005) Rational design of alpha-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J Biol Chem 280:12316–12329

    CAS  PubMed  Google Scholar 

  • Chen Y, Vasil AI, Rehaume L, Mant CT, Burns JL, Vasil ML, Hancock RE, Hodges RS (2006) Comparison of biophysical and biologic properties of α-helical enantiomeric antimicrobial peptides. Chem Biol Drug Des 67(2):162–173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Guarnieri MT, Vasil AI, Vasil ML, Mant CT, Hodges RS (2007) Role of peptide hydrophobicity in the mechanism of action of α-helical antimicrobial peptides. Antimicrob Agents Chemother 51(4):1398–1406

    CAS  PubMed  Google Scholar 

  • Chen C, Pan F, Zhang S, Hu J, Cao M, Wang J, Xu H, Zhao X, Lu JR (2010) Antibacterial activities of short designer peptides: a link between propensity for nanostructuring and capacity for membrane destabilization. Biomacromolecules 11(2):402–411

    CAS  PubMed  Google Scholar 

  • Chen C, Hu J, Zeng P, Pan F, Yaseen M, Xu H, Lu JR (2014) Molecular mechanisms of anticancer action and cell selectivity of short α-helical peptides. Biomaterials 35(5):1552–1561

    CAS  PubMed  Google Scholar 

  • Chen H, Liu C, Chen D, Madrid K, Peng S, Dong X, Zhang M, Gu Y (2015) Bacteria-targeting conjugates based on antimicrobial peptide for bacteria diagnosis and therapy. Mol Pharm 12(7):2505–2516

    CAS  PubMed  Google Scholar 

  • Cherry MA, Higgins SK, Melroy H, Lee HS, Pokorny A (2014) Peptides with the same composition, hydrophobicity, and hydrophobic moment bind to phospholipid bilayers with different affinities. J Phys Chem B 118(43):12462–12470

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chu-Kung AF, Bozzelli KN, Lockwood NA, Haseman JR, Mayo KH, Tirrell MV (2004) Promotion of peptide antimicrobial activity by fatty acid conjugation. Bioconjug Chem 15(3):530–535

    CAS  PubMed  Google Scholar 

  • Chu-Kung AF, Nguyen R, Bozzelli KN, Tirrell M (2010) Chain length dependence of antimicrobial peptide-fatty acid conjugate activity. J Colloid Interface Sci 345(2):160–167

    CAS  PubMed  Google Scholar 

  • Cornut I, Büttner K, Dasseux JL, Dufourcq J (1994) The amphipathic α-helix concept: application to the de novo design of ideally amphipathic Leu, Lys peptides with hemolytic activity higher than that of melittin. FEBS Lett 349(1):29–33

    CAS  PubMed  Google Scholar 

  • Dalzini A, Bergamini C, Biondi B, De Zotti M, Panighel G, Fato R, Peggion C, Bortolus M, Maniero AL (2016) The rational search for selective anticancer derivatives of the peptide trichogin GA IV: a multi-technique biophysical approach. Sci Rep 6:24000

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daschbach MM, Negin S, You L, Walsh M, Gokel GW (2012) Aggregation and supramolecular membrane interactions that influence anion transport in tryptophan-containing synthetic peptides. Chem Eur J 18(24):7608–7623

    CAS  PubMed  Google Scholar 

  • Dathe M, Wieprecht T (1999) Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim Biophys Acta 1462(1):71–87

    CAS  PubMed  Google Scholar 

  • Dathe M, Schümann M, Wieprecht T, Winkler A, Beyermann M, Krause E, Matsuzatki K, Murase O, Bienert M (1996) Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Biochemistry 35(38):12612–12622

    CAS  PubMed  Google Scholar 

  • Dathe M, Wieprecht T, Nikolenko H, Handel L, Maloy WL, MacDonald DL, Beyermann M, Bienert M (1997) Hydrophobicity, hydrophobic moment and angle subtended by charged residues modulate antibacterial and haemolytic activity of amphipathic helical peptides. FEBS Lett 403(2):208–212

    CAS  PubMed  Google Scholar 

  • Dathe M, Nikolenko H, Meyer J, Beyermann M, Bienert M (2001) Optimization of the antimicrobial activity of magainin peptides by modification of charge. FEBS Lett 501(2–3):146–150

    CAS  PubMed  Google Scholar 

  • Dathe M, Meyer J, Beyermann M, Maul B, Hoischen C, Bienert M (2002) General aspects of peptide selectivity towards lipid bilayers and cell membranes studied by variation of the structural parameters of amphipathic helical model peptides. Biochim Biophys Acta 1558(2):171–186

    CAS  PubMed  Google Scholar 

  • Dawson RM, Liu CQ (2011) Analogues of peptide SMAP-29 with comparable antimicrobial potency and reduced toxicity. Int J Antimicrob Agents 37(5):432–437

    CAS  PubMed  Google Scholar 

  • Dawson RM, Fox MA, Atkins HS, Liu CQ (2011) Potent antimicrobial peptides with selectivity for Bacillus anthracis over human erythrocytes. Int J Antimicrob Agents 38(3):237–242

    CAS  PubMed  Google Scholar 

  • de Kruijff B (1990) Cholesterol as a target for toxins. Biosci Rep 10(2):127–130

    PubMed  Google Scholar 

  • de la Fuente-Núñez C, Reffuveille F, Mansour SC, Reckseidler-Zenteno SL, Hernández D, Brackman G, Coenye T, Hancock REW (2015) D-enantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethal Pseudomonas aeruginosa infections. Chem Biol 22(2):196–205

    PubMed  PubMed Central  Google Scholar 

  • de Murphy CA, Gemmel F, Balter J (2010) Clinical trial of specific imaging of infections. Nucl Med Commun 31(8):726–733

    Google Scholar 

  • Dean SN, Bishop BM, Van Hoek ML (2011) Susceptibility of Pseudomonas aeruginosa biofilm to alpha-helical peptides: D-enantiomer of LL-37. Front Microbiol 2:128

    CAS  PubMed  PubMed Central  Google Scholar 

  • DeGrado WF, Kezdy FJ, Kaiser ET (1981) Design, synthesis, and characterization of a cytotoxic peptide with melittin-like activity. J Am Chem Soc 103(3):679–681

    CAS  Google Scholar 

  • Dempsey CE, Ueno S, Avison MB (2003) Enhanced membrane permeabilization and antibacterial activity of a disulfide-dimerized magainin analogue. Biochemistry 42(2):402–409

    CAS  PubMed  Google Scholar 

  • Dennison SR, Harris F, Bhatt T, Singh J, Phoenix DA (2009) The effect of C-terminal amidation on the efficacy and selectivity of antimicrobial and anticancer peptides. Mol Cell Biochem 332(1–2):43–50

    CAS  PubMed  Google Scholar 

  • Deslouches B, Hasek ML, Craigo JK, Steckbeck JD, Montelar RC (2016) Comparative functional properties of engineered cationic antimicrobial peptides consisting exclusively of tryptophan and either lysine or arginine. J Med Microbiol 65(6):554–565

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dodge JT, Phillips GB (1967) Composition of phospholipids and of phospholipid fatty acids and aldehydes in human red cells. J Lipid Res 8(6):667–675

    CAS  PubMed  Google Scholar 

  • Dutta J, Baijnath S, Somboro AM, Nagiah S, Albericio F, de la Torre BG, Marjanovic-Painter B, Zeevaart JR, Sathekge M, Kruger HG, Chuturgoon A, Naicker T, Ebenhan T, Govender T (2017) Synthesis, in vitro evaluation, and 68Ga-radiolabeling of CDP1 toward PET/CT imaging of bacterial infection. Chem Biol Drug Des 90(4):572–579

    CAS  PubMed  Google Scholar 

  • Ebenhan T, Gheysens O, Kruger HG, Zeevaart JR, Sathekge MM (2014a) Antimicrobial peptides: their role as infection-selective tracers for molecular imaging. Biomed Res Int. https://doi.org/10.1155/2014/867381

    Google Scholar 

  • Ebenhan T, Chadwick N, Sathekge MM, Govender P, Govender T, Kruger HG, Marjanovic-Painter B, Zeevaart JR (2014b) Peptide synthesis, characterization and 68Ga-radiolabeling of NOTA-conjugated ubiquicidin fragments for prospective infection imaging with PET/CT. Nucl Med Biol 41(5):390–400

    CAS  PubMed  Google Scholar 

  • Ebenhan T, Sathekge M, Lenagana T, Koole M, Gheysens O, Govender T, Zeevaart JR (2018) 68Ga-NOTA-functionalized ubiquicidin: cytotoxicity, biodistribution, radiation dosimetry and first-in-human positron emission tomography/computed tomography imaging of infections. J Nucl Med 59(2):334–339

    CAS  PubMed  Google Scholar 

  • Eckert R (2011) Road to clinical efficacy: challenges and novel strategies for antimicrobial peptide development. Future Microbiol 6(6):635–651

    CAS  PubMed  Google Scholar 

  • Eisenberg D, Weiss RM, Terwilliger TC (1982) The helical hydrophobic moment: a measure of the amphiphilicity of a helix. Nature 299(5881):371–374

    CAS  PubMed  Google Scholar 

  • Epand RF, Schmitt MA, Gellman SH, Epand RM (2006) Role of membrane lipids in the mechanism of bacterial species selective toxicity by two α/β-antimicrobial peptides. Biochim Biophys Acta 1758(9):1343–1350

    CAS  PubMed  Google Scholar 

  • Farrotti A, Bocchinfuso G, Palleschi A, Rosato N, Salnikov ES, Voievoda N, Bechinger B, Stella L (2015) Molecular dynamics methods to predict peptide locations in membranes: LAH4 as a stringent test case. Biochim Biophys Acta 1848(2):581–592

    CAS  PubMed  Google Scholar 

  • Farrotti A, Conflitti P, Srivastava S, Ghosh JK, Palleschi A, Stella L, Bocchinfuso G (2017) Molecular dynamics simulations of the host defense peptide temporin L and its Q3K derivative: an atomic level view from aggregation in water to bilayer perturbation. Molecules 22(7):1235

    PubMed Central  Google Scholar 

  • Feder R, Dagan A, Mor A (2000) Structure-activity relationship study of antimicrobial dermaseptin S4 showing the consequences of peptide oligomerization on selective cytotoxicity. J Biol Chem 275(6):4230–4238

    CAS  PubMed  Google Scholar 

  • Feder R, Nehushtai R, Mor A (2001) Affinity driven molecular transfer from erythrocyte membrane to target cells. Peptides 22(10):1683–1690

    CAS  PubMed  Google Scholar 

  • Fernández-Vidal M, Jayasinghe S, Ladokhin AS, White SH (2007) Folding amphipathic helices into membranes: amphiphilicity trumps hydrophobicity. J Mol Biol 370(3):459–470

    PubMed  PubMed Central  Google Scholar 

  • Ferro-Flores G, de Murphy CA, Pedraza-López M, Meléndez-Alafort L, Zhang YM, Rusckowski M, Hnatowich DJ (2003) In vitro and in vivo assessment of 99mTc-UBI specificity for bacteria. Nucl Med Biol 30(6):597–603

    CAS  PubMed  Google Scholar 

  • Findlay EG, Currie SM, Davidson DJ (2013) Cationic host defence peptides: potential as antiviral therapeutics. BioDrugs 27(5):479–493

    Google Scholar 

  • Friedrich CL, Moyles D, Beveridge TJ, Hancock RE (2000) Antibacterial action of structurally diverse cationic peptides on gram-positive bacteria. Antimicrob Agents Chemother 44(8):2086–2092

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaillard P, Carrupt PA, Testa B, Boudon A (1994) Molecular lipophilicity potential, a tool in 3D QSAR: method and applications. J Comput Aided Mol Des 8(2):83–96

    CAS  PubMed  Google Scholar 

  • Gandomkar M, Najafi R, Shafiei M, Mazidi M, Goudarzi M, Mirfallah SH, Ebrahimi F, Heydarpor HR, Abdie N (2009) Clinical evaluation of antimicrobial peptide [99mTc/Tricine/HYNIC0] ubiquicidin 29–41 as a human-specific infection imaging agent. Nucl Med Biol 36(2):199–205

    CAS  PubMed  Google Scholar 

  • Gascard P, Tran D, Sauvage M, Sulpice JC, Fukami K, Takenawa T, Claret M, Giraud F (1991) Asymmetric distribution of phosphoinositides and phosphatidic acid in the human erythrocyte membrane. Biochim Biophys Acta 1069(1):27–36

    CAS  PubMed  Google Scholar 

  • Gaspar D, Veiga AS, Castanho MA (2013) From antimicrobial to anticancer peptides. A review. Front Microbiol 4:294

    PubMed  PubMed Central  Google Scholar 

  • Gatto E, Mazzuca C, Stella L, Venanzi M, Toniolo C, Pispisa B (2006) Effect of peptide lipidation on membrane perturbing activity: a comparative study on two trichogin analogues. J Phys Chem B 110(45):22813–22818

    CAS  PubMed  Google Scholar 

  • Gazit E, Boman A, Boman HG, Shai Y (1995) Interaction of the mammalian antibacterial peptide cecropin P1 with phospholipid vesicles. Biochemistry 34(36):11479–11488

    CAS  PubMed  Google Scholar 

  • Gelhaus C, Jacobs T, Andrä J, Leippe M (2008) The antimicrobial peptide NK-2, the core region of mammalian NK-lysin, kills intraerythrocytic Plasmodium falciparum. Antimicrob Agents Chemother 52(5):1713–1720

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh JK, Shaool D, Guillaud P, Cicéron L, Mazier D, Kustanovich I, Shai Y, Mor A (1997) Selective cytotoxicity of dermaseptin S3 toward intraerythrocytic plasmodium falciparum and the underlying molecular basis. J Biol Chem 272(50):31609–31616

    CAS  PubMed  Google Scholar 

  • Giacometti A, Cirioni O, Greganti G, Quarta M, Scalise G (1998) In vitro activities of membrane-active peptides against gram-positive and gram-negative aerobic bacteria. Antimicrob Agents Chemother 42(12):3320–3324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giangaspero A, Sandri L, Tossi A (2001) Amphipathic α helical antimicrobial peptides. A systematic study of the effects of structural and physical properties on biological activity. Eur J Biochem 268(21):5589–5600

    CAS  PubMed  Google Scholar 

  • Glukhov E, Burrows LL, Deber CM (2008) Membrane interactions of designed cationic antimicrobial peptides: the two thresholds. Biopolymers 89(5):360–371

    CAS  PubMed  Google Scholar 

  • Golbek TW, Franz J, Elliott Fowler J, Schilke KF, Weidner T, Baio JE (2017) Identifying the selectivity of antimicrobial peptides to cell membranes by sum frequency generation spectroscopy. Biointerphases 12(2):02D406

    PubMed  Google Scholar 

  • Gonçalves S, Abade J, Teixeira A, Santos NC (2012) Lipid composition is a determinant for human defensin HNP1 selectivity. Biopolymers 98(4):313–321

    PubMed  Google Scholar 

  • Gordesky SE, Marinetti GV (1973) The asymmetric arrangement of phospholipids in the human erythrocyte membrane. Biochem Biophys Res Commun 50(4):1027–1031

    CAS  PubMed  Google Scholar 

  • Gordesky SE, Marinetti GV, Love R (1975) The reaction of chemical probes with the erythrocyte membrane. J Membr Biol 20(1–2):111–132

    CAS  PubMed  Google Scholar 

  • Hallock KJ, Lee DK, Omnaas J, Mosberg HI, Ramamoorthy A (2002) Membrane composition determines pardaxin’s mechanism of lipid bilayer disruption. Biophys J 83(2):1004–1013

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hancock RE, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24(12):1551

    CAS  PubMed  Google Scholar 

  • Haney EF, Wu BC, Lee K, Hilchie AL, Hancock RE (2017) Aggregation and its influence on the immunomodulatory activity of synthetic innate defense regulator peptides. Cell Chem Biol 24(8):969–980

    CAS  PubMed  Google Scholar 

  • Harris F, Dennison SR, Singh J, Phoenix DA (2013) On the selectivity and efficacy of defense peptides with respect to cancer cells. Med Res Rev 33(1):190–234

    CAS  PubMed  Google Scholar 

  • Hartmann M, Berditsch M, Hawecker J, Ardakani MF, Gerthsen D, Ulrich AS (2010) Damage of the bacterial cell envelope by antimicrobial peptides gramicidin S and PGLa as revealed by transmission and scanning electron microscopy. Antimicrob Agents Chemother 54(8):3132–3142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hawrani A, Howe RA, Walsh TR, Dempsey CE (2008) Origin of low mammalian cell toxicity in a class of highly active antimicrobial amphipathic helical peptides. J Biol Chem 283(27):18636–18645

    CAS  PubMed  Google Scholar 

  • Hayami M, Okabe A, Kariyama R, Abe M, Kanemasa Y (1979) Lipid composition of Staphylococcus aureus and its derived L-forms. Microbiol Immunol 23(6):435–442

    CAS  PubMed  Google Scholar 

  • He J, Krauson AJ, Wimley WC (2014) Toward the de novo design of antimicrobial peptides: lack of correlation between peptide permeabilization of lipid vesicles and antimicrobial, cytolytic, or cytotoxic activity in living cells. Biopolymers 102(1):1–6

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henriksen J, Rowat AC, Brief E, Hsueh YW, Thewalt JL, Zuckermann MJ, Ipsen JH (2006) Universal behavior of membranes with sterols. Biophys J 90(5):1639–1649

    CAS  PubMed  Google Scholar 

  • Henriksen JR, Etzerodt T, Gjetting T, Andresen TL (2014) Side chain hydrophobicity modulates therapeutic activity and membrane selectivity of antimicrobial peptide mastoparan-X. PLoS One 9:e91007

    PubMed  PubMed Central  Google Scholar 

  • Hollmann A, Martinez M, Maturana P, Semorile LC, Maffia PC (2018) Antimicrobial peptides: interaction with model and biological membranes and synergism with chemical antibiotics. Front Chem 6:204

    PubMed  PubMed Central  Google Scholar 

  • Holt A, de Almeida RF, Nyholm TK, Loura LM, Daily AE, Staffhorst RW, Rijkers DTS, Koeppe RE II, Prieto M, Killian JA (2008) Is there a preferential interaction between cholesterol and tryptophan residues in membrane proteins? Biochemistry 47(8):2638–2649

    CAS  PubMed  Google Scholar 

  • Hong SY, Oh JE, Lee KH (1999) Effect of D-amino acid substitution on the stability, the secondary structure, and the activity of membrane-active peptide. Biochem Pharmacol 58(11):1775–1780

    CAS  PubMed  Google Scholar 

  • Hoskin DW, Ramamoorthy A (2008) Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta 1778(2):357–375

    CAS  PubMed  Google Scholar 

  • Hoyos-Nogués M, Gil FJ, Mas-Moruno C (2018) Antimicrobial peptides: powerful biorecognition elements to detect bacteria in biosensing technologies. Molecules 23(7):1683

    PubMed Central  Google Scholar 

  • Huang Y, Huang J, Chen Y (2010) Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell 1(2):143–152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, He L, Li G, Zhai N, Jiang H, Chen Y (2014) Role of helicity of α-helical antimicrobial peptides to improve specificity. Protein Cell 5(8):631–642

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs T, Bruhn H, Gaworski I, Fleischer B, Leippe M (2003) NK-lysin and its shortened analog NK-2 exhibit potent activities against Trypanosoma cruzi. Antimicrob Agents Chemother 47(2):607–613

    CAS  PubMed  PubMed Central  Google Scholar 

  • Javadpour MM, Juban MM, Lo WCJ, Bishop SM, Alberty BJ, Cowell SM, Becker CL, McLaughlin ML (1996) De novo antimicrobial peptides with low mammalian cell toxicity. J Med Chem 39:3107–3113

    CAS  PubMed  Google Scholar 

  • Jepson AK, Schwarz-Linek J, Ryan L, Ryadnov MG, Poon WC (2016) What is the ‘Minimum Inhibitory Concentration’ (MIC) of Pexiganan acting on Escherichia coli?-A cautionary case study. In: Leake MC (ed) Biophysics of infection. Springer, Cham, pp 33–48

    Google Scholar 

  • Jiang Z, Vasil AI, Hale JD, Hancock RE, Vasil ML, Hodges RS (2008) Effects of net charge and the number of positively charged residues on the biological activity of amphipathic α-helical cationic antimicrobial peptides. Biopolymers 90(3):369–383

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Z, Vasil AI, Gera L, Vasil M, Hodges RS (2011) Rational design of a-helical antimicrobial peptides to target Gram-negative pathogens, Acinetobacter baumannii and Pseudomonas aeruginosa: utilization of charge, ‘specificity determinants,’ total hydrophobicity, hydrophobe type and location as design parameters to improve the therapeutic ratio. Chem Biol Drug Des 77(4):225–240

    PubMed  PubMed Central  Google Scholar 

  • Jiang Z, Vasil AI, Vasil ML, Hodges RS (2014) “Specificity Determinants” improve therapeutic indices of two antimicrobial peptides piscidin 1 and dermaseptin s4 against the Gram-negative pathogens Acinetobacter baumannii and Pseudomonas aeruginosa. Pharmaceuticals 7(4):366–391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Z, Mant CT, Vasil M, Hodges RS (2018) Role of positively charged residues on the polar and non- polar faces of amphipathic α- helical antimicrobial peptides on specificity and selectivity for Gram-negative pathogens. Chem Biol Drug Des 91(1):75–92

    CAS  PubMed  Google Scholar 

  • Jones EM, Smart A, Bloomberg G, Burgess L, Millar MR (1994) Lactoferricin, a new antimicrobial peptide. J Appl Bacteriol 77(2):208–214

    CAS  PubMed  Google Scholar 

  • Joshi S, Dewangan RP, Yar MS, Rawat DS, Pasha S (2015) N-terminal aromatic tag induced self assembly of tryptophan–arginine rich ultra short sequences and their potent antibacterial activity. RSC Adv 5(84):68610–68620

    CAS  Google Scholar 

  • Juretic D, Vukicevic D, Ilic N, Antcheva N, Tossi A (2009) Computational design of highly selective antimicrobial peptides. J Chem Inf Model 49(12):2873–2882

    CAS  PubMed  Google Scholar 

  • Juvvadi P, Vunnam S, Merrifield RB (1996) Synthetic melittin, its enantio, retro, and retroenantio isomers, and selected chimeric analogs: their antibacterial, hemolytic, and lipid bilayer action. J Am Chem Soc 118(38):8989–8997

    CAS  Google Scholar 

  • Kahrom M, Bahar MM, Jangjoo A, Erfani M, Sadeghi R, Zakavi SR (2014) Poor sensitivity of 99mTc-labeled ubiquicidin scintigraphy in diagnosis of acute appendicitis. Eur Surg 46(4):173–176

    Google Scholar 

  • Kamech N, Vukičević D, Ladram A, Piesse C, Vasseur J, Bojović V, Simunić J, Juretić D (2012) Improving the selectivity of antimicrobial peptides from anuran skin. J Chem Inf Model 52(12):3341–3351

    CAS  PubMed  Google Scholar 

  • Kaminski HM, Feix JB (2011) Effects of D-lysine substitutions on the activity and selectivity of antimicrobial peptide CM15. Polymers 3(4):2088–2106

    CAS  PubMed  Google Scholar 

  • Kang JH, Shin SY, Jang SY, Kim KL, Hahm KS (1999) Effects of tryptophan residues of porcine myeloid antibacterial peptide PMAP-23 on antibiotic activity. Biochem Biophys Res Commun 264(1):281–286

    CAS  PubMed  Google Scholar 

  • Khandelia H, Kaznessis YN (2006) Molecular dynamics investigation of the influence of anionic and zwitterionic interfaces on antimicrobial peptides’ structure: implications for peptide toxicity and activity. Peptides 27(6):1192–1200

    CAS  PubMed  Google Scholar 

  • Kim S, Kim SS, Lee BJ (2005) Correlation between the activities of α-helical antimicrobial peptides and hydrophobicities represented as RP HPLC retention times. Peptides 26(11):2050–2056

    CAS  PubMed  Google Scholar 

  • Kim JK, Lee SA, Shin S, Lee JY, Jeong KW, Nan YH, Park YS, Shin SY, Kim Y (2010) Structural flexibility and the positive charges are the key factors in bacterial cell selectivity and membrane penetration of peptoid-substituted analog of Piscidin 1. Biochim Biophys Acta 1798(10):1913–1925

    CAS  PubMed  Google Scholar 

  • Kindrachuk J, Napper S (2010) Structure-activity relationships of multifunctional host defence peptides. Mini-Rev Med Chem 10(7):596–614

    CAS  PubMed  Google Scholar 

  • Koller D, Lohner K (2014) The role of spontaneous lipid curvature in the interaction of interfacially active peptides with membranes. Biochim Biophys Acta 1838(9):2250–2259

    CAS  PubMed  Google Scholar 

  • Konai MM, Samaddar S, Bocchinfuso G, Santucci V, Stella L, Haldar J (2018) Selectively targeting bacteria by tuning the molecular design of membrane-active peptidomimetic amphiphiles. Chem Commun 54(39):4943–4946

    CAS  Google Scholar 

  • Kondejewski LH, Jelokhani-Niaraki M, Farmer SW, Lix B, Kay CM, Sykes BD, Hancock RE, Hodges RS (1999) Dissociation of antimicrobial and hemolytic activities in cyclic peptide diastereomers by systematic alterations in amphipathicity. J Biol Chem 274(19):13181–13192

    CAS  PubMed  Google Scholar 

  • Kondejewski LH, Lee DL, Jelokhani-Niaraki M, Farmer SW, Hancock REW, Hodges RS (2002) Optimization of microbial specificity in cyclic peptides by modulation of hydrophobicity within a defined structural framework. J Biol Chem 277(1):67–74

    CAS  PubMed  Google Scholar 

  • Krause E, Beyermann M, Dathe M, Rothemund S, Bienert M (1995) Location of an amphipathic. alpha-Helix in peptides using reversed-phase HPLC retention behavior of D-amino acid analogs. Anal Chem 67(2):252–258

    CAS  PubMed  Google Scholar 

  • Krugliak M, Feder R, Zolotarev VY, Gaidukov L, Dagan A, Ginsburg H, Mor A (2000) Antimalarial activities of dermaseptin S4 derivatives. Antimicrob Agents Chemother 44(9):2442–2451

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kustanovich I, Shalev DE, Mikhlin M, Gaidukov L, Mor A (2002) Structural requirements for potent versus selective cytotoxicity for antimicrobial dermaseptin S4 derivatives. J Biol Chem 277(19):16941–16951

    CAS  PubMed  Google Scholar 

  • Ladokhin AS, White SH (2001) Protein chemistry at membrane interfaces: non-additivity of electrostatic and hydrophobic interactions. J Mol Biol 309(3):543–552

    CAS  PubMed  Google Scholar 

  • Laverty G, McLaughlin M, Shaw C, Gorman SP, Gilmore BF (2010) Antimicrobial activity of short, synthetic cationic lipopeptides. Chem Biol Drug Des 75(6):563–569

    CAS  PubMed  Google Scholar 

  • Le Joncour V, Laakkonen P (2018) Seek & destroy, use of targeting peptides for cancer detection and drug delivery. Bioorg Med Chem 26(10):2797–2806

    PubMed  Google Scholar 

  • Lee K, Shin SY, Kim K, Lim SS, Hahm KS, Kim Y (2004) Antibiotic activity and structural analysis of the scorpion-derived antimicrobial peptide IsCT and its analogs. Biochem Biophys Res Commun 323(2):712–719

    CAS  PubMed  Google Scholar 

  • Lee MT, Hung WC, Chen FY, Huang HW (2005) Many-body effect of antimicrobial peptides: on the correlation between lipid’s spontaneous curvature and pore formation. Biophys J 89(6):4006–4016

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SA, Kim YK, Lim SS, Zhu WL, Ko H, Shin SY, Hahm KS, Kim Y (2007) Solution structure and cell selectivity of piscidin 1 and its analogues. Biochemistry 46(12):3653–3663

    CAS  PubMed  Google Scholar 

  • Lei R, Hou J, Chen Q, Yuan W, Cheng B, Sun Y, Jin Y, Ge L, Ben-Sasson SA, Chen J, Wang H, Lu W, Fang X (2018) Self-assembling myristoylated human α-defensin 5 as a next-generation nanobiotics potentiates therapeutic efficacy in bacterial infection. ACS Nano 12(6):5284–5296

    CAS  PubMed  Google Scholar 

  • Leite NB, Aufderhorst-Roberts A, Palma MS, Connell SD, Neto JR, Beales PA (2015) PE and PS lipids synergistically enhance membrane poration by a peptide with anticancer properties. Biophys J 109(5):936–947

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levison ME, Pitsakis PG, May PL, Johnson CC (1993) The bactericidal activity of magainins against Pseudomonas aeruginosa and Enterococcus faecium. J Antimicrob Chemother 32(4):577–585

    CAS  PubMed  Google Scholar 

  • Lewis RNAH, McElhaney RN (2005) The mesomorphic phase behavior of lipids. In: Yeagle PL (ed) The structure of biological membranes, 2nd edn. CRC Press, Boca Raton, pp 53–120

    Google Scholar 

  • Li P, Zhou C, Rayatpisheh S, Ye K, Poon YF, Hammond PT, Duan H, Chan-Park MB (2012) Cationic peptidopolysaccharides show excellent broad-spectrum antimicrobial activities and high selectivity. Adv Mater 24(30):4130–4137

    CAS  PubMed  Google Scholar 

  • Lin D, Grossfield A (2015) Thermodynamics of micelle formation and membrane fusion modulate antimicrobial lipopeptide activity. Biophys J 109(4):750–759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Xu K, Wang H, Tan PJ, Fan W, Venkatraman SS, Li L, Yang YY (2009) Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat Nanotechnol 4(7):457–463

    CAS  PubMed  Google Scholar 

  • Lorian V (2005) Antibiotics in laboratory medicine, 5th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Luo Y, McLean DT, Linden GJ, McAuley DF, McMullan R, Lundy FT (2017) The naturally occurring host defense peptide, LL-37, and its truncated mimetics KE-18 and KR-12 have selected biocidal and antibiofilm activities against Candida albicans, Staphylococcus aureus, and Escherichia coli in vitro. Front Microbiol 8:544

    PubMed  PubMed Central  Google Scholar 

  • Lupetti A, Welling MM, Pauwels EK, Nibbering PH (2003) Radiolabelled antimicrobial peptides for infection detection. Lancet Infect Dis 3(4):223–229

    CAS  PubMed  Google Scholar 

  • Lupetti A, Van Dissel JT, Brouwer CP, Nibbering PH (2008) Human antimicrobial peptides’ antifungal activity against Aspergillus fumigatus. Eur J Clin Microbiol Infect Dis 27(11):1125–1129

    CAS  PubMed  Google Scholar 

  • Lyu Y, Yang Y, Lyu X, Dong N, Shan A (2016) Antimicrobial activity, improved cell selectivity and mode of action of short PMAP-36-derived peptides against bacteria and Candida. Sci Rep 6:27258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahlapuu M, Håkansson J, Ringstad L, Björn C (2016) Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol 6:194

    PubMed  PubMed Central  Google Scholar 

  • Makovitzki A, Avrahami D, Shai Y (2006) Ultrashort antibacterial and antifungal lipopeptides. Proc Natl Acad Sci U S A 103(43):15997–16002

    CAS  PubMed  PubMed Central  Google Scholar 

  • Makovitzki A, Baram J, Shai Y (2008) Antimicrobial lipopolypeptides composed of palmitoyl di-and tricationic peptides: in vitro and in vivo activities, self-assembly to nanostructures, and a plausible mode of action. Biochemistry 47(40):10630–10636

    CAS  PubMed  Google Scholar 

  • Malanovic N, Lohner K (2016) Antimicrobial peptides targeting gram-positive bacteria. Pharmaceuticals 9(3):59

    PubMed Central  Google Scholar 

  • Malina A, Shai Y (2005) Conjugation of fatty acids with different lengths modulates the antibacterial and antifungal activity of a cationic biologically inactive peptide. Biochem J 390(3):695–702

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mangoni ML, Shai Y (2009) Temporins and their synergism against Gram-negative bacteria and in lipopolysaccharide detoxification. Biochim Biophys Acta 1788(8):1610–1619

    CAS  PubMed  Google Scholar 

  • Mangoni ML, Carotenuto A, Auriemma L, Saviello MR, Campiglia P, Gomez-Monterrey I, Malfi S, Marcellini L, Barra D, Novellino E, Grieco P (2011) Structure-activity relationship, conformational and biological studies of Temporin L analogues. J Med Chem 54(5):1298–1307

    CAS  PubMed  Google Scholar 

  • Mannoor MS, Zhang S, Link AJ, McAlpine MC (2010) Electrical detection of pathogenic bacteria via immobilized antimicrobial peptides. Proc Natl Acad Sci U S A 107(45):19207–19212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marsh D (1990) CRC handbook of lipid bilayers. CRC Press, Boca Raton

    Google Scholar 

  • Matsuzaki K (2009) Control of cell selectivity of antimicrobial peptides. Biochim Biophys Acta 1788(8):1687–1692

    CAS  PubMed  Google Scholar 

  • Matsuzaki K, Harada M, Handa T, Funakoshi S, Fujii N, Yajima H, Miyajima K (1989) Magainin 1-induced leakage of entrapped calcein out of negatively-charged lipid vesicles. Biochim Biophys Acta 981(1):130–134

    CAS  PubMed  Google Scholar 

  • Matsuzaki K, Sugishita K, Fujii N, Miyajima K (1995) Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2. Biochemistry 34(10):3423–3429

    CAS  PubMed  Google Scholar 

  • Matsuzaki K, Sugishita KI, Harada M, Fujii N, Miyajima K (1997) Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of Gram-negative bacteria. Biochim Biophys Acta 1327(1):119–130

    CAS  PubMed  Google Scholar 

  • Matsuzaki K, Sugishita KI, Ishibe N, Ueha M, Nakata S, Miyajima K, Epand RM (1998) Relationship of membrane curvature to the formation of pores by magainin 2. Biochemistry 37(34):11856–11863

    CAS  PubMed  Google Scholar 

  • Maturana P, Martinez M, Noguera ME, Santos NC, Disalvo EA, Semorile L, Maffia PC, Hollmann A (2017) Lipid selectivity in novel antimicrobial peptides: implication on antimicrobial and hemolytic activity. Colloids Surf B Biointerfaces 153:152–159

    CAS  PubMed  Google Scholar 

  • Mazzuca C, Stella L, Venanzi M, Formaggio F, Toniolo C, Pispisa B (2005) Mechanism of membrane activity of the antibiotic trichogin GA IV: a two-state transition controlled by peptide concentration. Biophys J 88(5):3411–3421

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCloskey AP, Gilmore BF, Laverty G (2014) Evolution of antimicrobial peptides to self-assembled peptides for biomaterial applications. Pathogens 3(4):791–821

    CAS  PubMed  PubMed Central  Google Scholar 

  • McHenry AJ, Sciacca MF, Brender JR, Ramamoorthy A (2012) Does cholesterol suppress the antimicrobial peptide induced disruption of lipid raft containing membranes? Biochim Biophys Acta 1818(12):3019–3024

    CAS  PubMed  PubMed Central  Google Scholar 

  • McIntosh TJ, Vidal A, Simon SA (2002) The energetics of peptide-lipid interactions: modulation by interfacial dipoles and cholesterol. In: Peptide-lipid interactions, current topics in membranes, vol 52. Elsevier, Amsterdam, pp 309–338

    Google Scholar 

  • McMahon HT, Boucrot E (2015) Membrane curvature at a glance. J Cell Sci 128(6):1065–1070

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meléndez-Alafort L, Rodríguez-Cortés J, Ferro-Flores G, De Murphy CA, Herrera-Rodríguez R, Mitsoura E, Martínez-Duncker C (2004) Biokinetics of 99mTc-UBI 29-41 in humans. Nucl Med Biol 31(3):373–379

    PubMed  Google Scholar 

  • Melo MN, Ferre R, Castanho MA (2009) Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations. Nat Rev Microbiol 7(3):245–250

    CAS  PubMed  Google Scholar 

  • Mendive-Tapia L, Zhao C, Akram AR, Preciado S, Albericio F, Lee M, Serrels A, Kielland N, Read ND, Lavilla R, Vendrell M (2016) Spacer-free BODIPY fluorogens in antimicrobial peptides for direct imaging of fungal infection in human tissue. Nat Commun 7:10940

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miyazaki Y, Aoki M, Yano Y, Matsuzaki K (2012) Interaction of antimicrobial peptide magainin 2 with gangliosides as a target for human cell binding. Biochemistry 51(51):10229–10235

    CAS  PubMed  Google Scholar 

  • Mojsoska B, Zuckermann RN, Jenssen H (2015) Structure-activity relationship study of novel peptoids that mimic the structure of antimicrobial peptides. Antimicrob Agents Chemother 59(7):4112–4120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morein S, Andersson AS, Rilfors L, Lindblom G (1996) Wild-type Escherichia coli cells regulate the membrane lipid composition in a window between gel and non-lamellar structures. J Biol Chem 271(12):6801–6809

    CAS  PubMed  Google Scholar 

  • Mouritsen OG, Zuckermann MJ (2004) What’s so special about cholesterol? Lipids 39(11):1101–1113

    CAS  PubMed  Google Scholar 

  • Mura M, Wang J, Zhou Y, Pinna M, Zvelindovsky AV, Dennison SR, Phoenix DA (2016) The effect of amidation on the behaviour of antimicrobial peptides. Eur Biophys J 45(3):195–207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nan YH, Bang JK, Shin SY (2009) Design of novel indolicidin-derived antimicrobial peptides with enhanced cell specificity and potent anti-inflammatory activity. Peptides 30(5):832–838

    CAS  PubMed  Google Scholar 

  • Nan YH, Lee BJ, Shin SY (2012) Prokaryotic selectivity, anti-endotoxic activity and protease stability of diastereomeric and enantiomeric analogs of human antimicrobial peptide LL-37. Bull Kor Chem Soc 33(9):2883–2889

    CAS  Google Scholar 

  • Nicolas P (2009) Multifunctional host defense peptides: intracellular-targeting antimicrobial peptides. FEBS J 276(22):6483–6496

    CAS  PubMed  Google Scholar 

  • Nishi H, Komatsuzawa H, Fujiwara T, McCallum N, Sugai M (2004) Reduced content of lysyl-phosphatidylglycerol in the cytoplasmic membrane affects susceptibility to moenomycin, as well as vancomycin, gentamicin, and antimicrobial peptides, in Staphylococcus aureus. Antimicrob Agents Chemother 48(12):4800–4807

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noore J, Noore A, Li B (2012) Cationic antimicrobial peptide LL-37 is effective against both extra-and intra-cellular staphylococcus aureus. Antimicrob Agents Chemother 57(3):1283–1290

    PubMed  Google Scholar 

  • Oddo A, Hansen PR (2017) Hemolytic activity of antimicrobial peptides. In: Hansen PR (ed) Antimicrobial peptides: methods and protocols. Methods in molecular biology, vol 1548. Humana Press, New York, pp 427–435

    Google Scholar 

  • Oh H, Hedberg M, Wade D, Edlund C (2000) Activities of synthetic hybrid peptides against anaerobic bacteria: aspects of methodology and stability. Antimicrob Agents Chemother 44(1):68–72

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver PM, Crooks JA, Leidl M, Yoon EJ, Saghatelian A, Weibel DB (2014) Localization of anionic phospholipids in Escherichia coli cells. J Bacteriol 196(19):3386–3398

    PubMed  PubMed Central  Google Scholar 

  • Op den Kamp JAF, Redai I, van Deenen LLM (1969) Phospholipid composition of Bacillus subtilis. J Bacteriol 99(1):298–303

    Google Scholar 

  • Oren Z, Shai Y (1997) Selective lysis of bacteria but not mammalian cells by diastereomers of melittin: structure-function study. Biochemistry 36(7):1826–1835

    CAS  PubMed  Google Scholar 

  • Oren Z, Shai Y (2000) Cyclization of a cytolytic amphipathic α-helical peptide and its diastereomer: effect on structure, interaction with model membranes, and biological function. Biochemistry 39(20):6103–6114

    CAS  PubMed  Google Scholar 

  • Oren Z, Lerman JC, Gudmundsson GH, Agerberth B, Shai Y (1999) Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity. Biochem J 341(3):501–513

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orioni B, Bocchinfuso G, Kim JY, Palleschi A, Grande G, Bobone S, Park Y, Kim JI, Hahm KS, Stella L (2009) Membrane perturbation by the antimicrobial peptide PMAP-23: a fluorescence and molecular dynamics study. Biochim Biophys Acta 1788(7):1523–1533

    CAS  PubMed  Google Scholar 

  • Osborn MJ, Gander JE, Parisi E, Carson J (1972) Mechanism of assembly of the outer membrane of Salmonella typhimurium isolation and characterization of cytoplasmic and outer membrane. J Biol Chem 247(12):3962–3972

    CAS  PubMed  Google Scholar 

  • Ostovar A, Assadi M, Vahdat K, Nabipour I, Javadi H, Eftekhari M, Assadi M (2013) A pooled analysis of diagnostic value of 99mTc-ubiquicidin (UBI) scintigraphy in detection of an infectious process. Clin Nucl Med 38(6):413–416

    PubMed  Google Scholar 

  • Otvos L (2017) Racing on the wrong track. Front Chem 5:42

    PubMed  PubMed Central  Google Scholar 

  • Otvos L Jr, Bokonyi K, Varga I, Otvos BI, Hoffmann R, Ertl HC, Wade JD, McManus AM, Craik DJ, Bulet P (2000) Insect peptides with improved protease-resistance protect mice against bacterial infection. Protein Sci 9(4):742–749

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pachón-Ibáñez ME, Smani Y, Pachón J, Sánchez-Céspedes J (2017) Perspectives for clinical use of engineered human host defense antimicrobial peptides. FEMS Microbiol Rev 41(3):323–342

    PubMed  PubMed Central  Google Scholar 

  • Pandey BK, Ahmad A, Asthana N, Azmi S, Srivastava RM, Srivastava S, Verma R, Vishwakarma AL, Ghosh JK (2010) Cell-selective lysis by novel analogues of melittin against human red blood cells and Escherichia coli. Biochemistry 49(36):7920–7929

    CAS  PubMed  Google Scholar 

  • Pandey BK, Srivastava S, Singh M, Ghosh JK (2011) Inducing toxicity by introducing a leucine-zipper-like motif in frog antimicrobial peptide, magainin 2. Biochem J 436(3):609–620

    CAS  PubMed  Google Scholar 

  • Panteleev P, Bolosov IA, Balandin SV, Ovchinnikova TV (2015) Design of antimicrobial peptide arecinin analogs with improved therapeutic indices. J Pept Sci 21(2):105–113

    CAS  PubMed  Google Scholar 

  • Papo N, Oren Z, Pag U, Sahl HG, Shai Y (2002) The consequence of sequence alteration of an amphipathic α-helical antimicrobial peptide and its diastereomers. J Biol Chem 277(37):33913–33921

    CAS  PubMed  Google Scholar 

  • Park Y, Lee DG, Jang SH, Woo EH, Jeong HG, Choi CH, Hahm KS (2003) A Leu-Lys-rich antimicrobial peptide: activity and mechanism. Biochim Biophys Acta 1645(2):172–182

    CAS  PubMed  Google Scholar 

  • Pasupuleti M, Schmidtchen A, Chalupka A, Ringstad L, Malmsten M (2009) End-tagging of ultra-short antimicrobial peptides by W/F stretches to facilitate bacterial killing. PLoS One 4(4):e5285

    PubMed  PubMed Central  Google Scholar 

  • Patel JB, Cockerill FR, Bradford PA, Eliopulos GM, Hindler JA, Jenkins SG, Lewis II JS, Limbago B, Miller LA, Nicolau DP, Powell DP, Swenson JM, Traczewski MM, Turnidge JD, Weistein MP, Zimmer BL (2012) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, approved standard, 10th edn. Clinical and Laboratory Standards Institute CLSI document M07-A10

    Google Scholar 

  • Perron GG, Zasloff M, Bell G (2006) Experimental evolution of resistance to an antimicrobial peptide. Proc Biol Sci 273(1583):251–256

    CAS  PubMed  Google Scholar 

  • Phadke SM, Islam K, Deslouches B, Kapoor SA, Stolz DB, Watkins SC, Montelaro RC, Pilewski JM, Mietzner TA (2003) Selective toxicity of engineered lentivirus lytic peptides in a CF airway cell model. Peptides 24(8):1099–1107

    CAS  PubMed  Google Scholar 

  • Phoenix DA, Harris F (2002) The hydrophobic moment and its use in the classification of amphiphilic structures. Mol Membr Biol 19(1):1–10

    CAS  PubMed  Google Scholar 

  • Phoenix DA, Dennison SR, Harris F (eds) (2012) Antimicrobial peptides. Wiley, New York

    Google Scholar 

  • Phoenix DA, Harris F, Mura M, Dennison SR (2015) The increasing role of phosphatidylethanolamine as a lipid receptor in the action of host defence peptides. Prog Lipid Res 59:26–37

    CAS  PubMed  Google Scholar 

  • Qiao Z, Lei C, Fu Y, Li Y (2017) Rapid and sensitive detection of E. coli O157: H7 based on antimicrobial peptide functionalized magnetic nanoparticles and urease-catalyzed signal amplification. Anal Methods 9(35):5204–5210

    CAS  Google Scholar 

  • Raetz CR (1986) Molecular genetics of membrane phospholipid synthesis. Annu Rev Genet 20(1):253–291

    CAS  PubMed  Google Scholar 

  • Raimondo D, Andreotti G, Saint N, Amodeo P, Renzone G, Sanseverino M, Zocchi I, Molle G, Motta A, Scaloni A (2005) A folding-dependent mechanism of antimicrobial peptide resistance to degradation unveiled by solution structure of distinction. Proc Natl Acad Sci U S A 102(18):6309–6314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rautenbach M, Troskie AM, Vosloo JA (2016) Antifungal peptides: to be or not to be membrane active. Biochimie 130:132–145

    CAS  PubMed  Google Scholar 

  • Ravi J, Bella A, Correia AJ, Lamarre B, Ryadnov MG (2015) Supramolecular amphipathicity for probing antimicrobial propensity of host defence peptides. Phys Chem Chem Phys 17(24):15608–15614

    CAS  PubMed  Google Scholar 

  • Renner LD, Weibel DB (2011) Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes. Proc Natl Acad Sci U S A 108(15):6264–6269

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rivas L, Luque-Ortega JR, Andreu D (2009) Amphibian antimicrobial peptides and Protozoa: lessons from parasites. Biochim Biophys Acta 1788(8):1570–1581

    CAS  PubMed  Google Scholar 

  • Rowlett VW, Mallampalli VK, Karlstaedt A, Dowhan W, Taegtmeyer H, Margolin W, Vitrac H (2017) The impact of membrane phospholipid alterations in Escherichia coli on cellular function and bacterial stress adaptation. J Bacteriol 199(13). https://doi.org/10.1128/JB.00849-16

  • Ruiz J, Calderon J, Rondón-Villarreal P, Torres R (2014) Analysis of structure and hemolytic activity relationships of antimicrobial peptides (AMPs). In: Advances in computational biology. Springer, Cham, pp 253–258

    Google Scholar 

  • Russell AL, Kennedy AM, Spuches AM, Venugopal D, Bhonsle JB, Hicks RP (2010) Spectroscopic and thermodynamic evidence for antimicrobial peptide membrane selectivity. Chem Phys Lipids 163(6):488–497

    CAS  PubMed  Google Scholar 

  • Saeed S, Zafar J, Khan B, Akhtar A, Qurieshi S, Fatima S, Ahmad N, Irfanullah J (2013) Utility of 99mTc-labelled antimicrobial peptide ubiquicidin (29-41) in the diagnosis of diabetic foot infection. Eur J Nucl Med Mol Imaging 40(5):737–743

    CAS  PubMed  Google Scholar 

  • Salick DA, Kretsinger JK, Pochan DJ, Schneider JP (2007) Inherent antibacterial activity of a peptide-based β-hairpin hydrogel. J Am Chem Soc 129(47):14793–14799

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sal-Man N, Oren Z, Shai Y (2002) Preassembly of membrane-active peptides is an important factor in their selectivity toward target cells. Biochemistry 41(39):11921–11930

    CAS  PubMed  Google Scholar 

  • Santos NC, Prieto M, Castanho MA (2003) Quantifying molecular partition into model systems of biomembranes: an emphasis on optical spectroscopic methods. Biochim Biophys Acta 1612(2):123–135

    CAS  PubMed  Google Scholar 

  • Savini F, Luca V, Bocedi A, Massoud R, Park Y, Mangoni ML, Stella L (2017) Cell-density dependence of host-defense peptide activity and selectivity in the presence of host cells. ACS Chem Biol 12(1):52–56

    CAS  PubMed  Google Scholar 

  • Savini F, Bobone S, Roversi D, Mangoni ML, Stella L (2018) From liposomes to cells: filling the gap between physicochemical and microbiological studies of the activity and selectivity of host-defense peptides. Pept Sci 110(5):e24041

    Google Scholar 

  • Schmidtchen A, Pasupuleti M, M&oumlrgelin M, Davoudi M, Alenfall J, Chalupka A, Malmsten M (2009) Boosting antimicrobial peptides by hydrophobic oligopeptide end-tags. J Biol Chem 284(26):17584–17594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidtchen A, Ringstad L, Kasetty G, Mizuno H, Rutland MW, Malmsten M (2011) Membrane selectivity by W-tagging of antimicrobial peptides. Biochim Biophys Acta 1808(4):1081–1091

    CAS  PubMed  Google Scholar 

  • Schmidtchen A, Pasupuleti M, Malmsten M (2014) Effect of hydrophobic modifications in antimicrobial peptides. Adv Colloid Interf Sci 205:265–274

    CAS  Google Scholar 

  • Schröder-Borm H, Willumeit R, Brandenburg K, Andrä J (2003) Molecular basis for membrane selectivity of NK-2, a potent peptide antibiotic derived from NK-lysin. Biochim Biophys Acta 1612(2):164–171

    PubMed  Google Scholar 

  • Schweizer F (2009) Cationic amphiphilic peptides with cancer-selective toxicity. Eur J Pharmacol 625(1–3):190–194

    CAS  PubMed  Google Scholar 

  • Seelig J (2004) Thermodynamics of lipid–peptide interactions. Biochim Biophys Acta 1666(1):40–50

    CAS  PubMed  Google Scholar 

  • Seo MD, Won HS, Kim JH, Mishig-Ochir T, Lee BJ (2012) Antimicrobial peptides for therapeutic applications: a review. Molecules 17(10):12276–12286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shai Y, Oren Z (1996) Diastereomers of cytolysins, a novel class of potent antibacterial peptides. J Biol Chem 271(13):7305–7308

    CAS  PubMed  Google Scholar 

  • Shai Y, Oren Z (2001) From “carpet” mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides. Peptides 22(10):1629–1641

    CAS  PubMed  Google Scholar 

  • Shankar SS, Benke SN, Nagendra N, Srivastava PL, Thulasiram HV, Gopi HN (2013) Self-assembly to function: design, synthesis, and broad spectrum antimicrobial properties of short hybrid E-vinylogous lipopeptides. J Med Chem 56(21):8468–8474

    CAS  PubMed  Google Scholar 

  • Shi X, Zhang X, Yao Q, He F (2017) A novel method for the rapid detection of microbes in blood using pleurocidin antimicrobial peptide functionalized piezoelectric sensor. J Microbiol Methods 133:69–75

    CAS  PubMed  Google Scholar 

  • Shin SY, Yang ST, Park EJ, Eom SH, Song WK, Kim JI, Lee SH, Lee MK, Lee DG, Hahm KS, Kim Y (2001) Antibacterial, antitumor and hemolytic activities of α-helical antibiotic peptide, P18 and its analogs. J Pept Res 58(6):504–514

    CAS  PubMed  Google Scholar 

  • Shriver-Lake LC, North SH, Dean SN, Taitt CR (2012) Antimicrobial peptides for detection and diagnostic assays. In: Designing receptors for the next generation of biosensors. Springer, Berlin, pp 85–104

    Google Scholar 

  • Silva RR, Avelino KY, Ribeiro KL, Franco OL, Oliveira MD, Andrade CA (2014) Optical and dielectric sensors based on antimicrobial peptides for microorganism diagnosis. Front Microbiol 5:443. https://doi.org/10.3389/fmicb.2014.00443

    Article  PubMed  PubMed Central  Google Scholar 

  • Simon SA, McIntosh TJ (2002) Peptide-lipid interactions, current topics in membranes, vol 52. Elsevier, Amsterdam

    Google Scholar 

  • Skerlavaj B, Renato Gennaro R, Luigi Bagella L, Laura Merluzzi L, Angela Risso A, Zanetti M (1996) Biological characterization of two novel cathelicidin-derived peptides and identification of structural requirements for their antimicrobial and cell lytic activities. J Biol Chem 271(45):28375–28381

    CAS  PubMed  Google Scholar 

  • Slaninová J, Mlsová V, Kroupová H, Alán L, Tůmová T, Monincová L, Borovičková L, Fučík V, Ceřovský V (2012) Toxicity study of antimicrobial peptides from wild bee venom and their analogs toward mammalian normal and cancer cells. Peptides 33(1):18–26

    PubMed  Google Scholar 

  • Snoussi M, Talledo JP, Del Rosario NA, Ha BY, Kosmrlj A, Taheri-Araghi S (2018) Heterogeneous absorption of antimicrobial peptide LL37 in Escherichia coli cells enhances population survivability. eLife 7:e38174

    Google Scholar 

  • Son M, Lee Y, Hwang H, Hyun S, Yu J (2013) Disruption of interactions between hydrophobic residues on nonpolar faces is a key determinant in decreasing hemolysis and increasing antimicrobial activities of α-helical amphipathic peptides. ChemMedChem 8(10):1638–1642

    CAS  PubMed  Google Scholar 

  • Song YM, Yang ST, Lim SS, Kim Y, Hahm KS, Kim JI, Shin SY (2004) Effects of L-or D-Pro incorporation into hydrophobic or hydrophilic helix face of amphipathic α-helical model peptide on structure and cell selectivity. Biochem Biophys Res Commun 314(2):615–621

    CAS  PubMed  Google Scholar 

  • Song YM, Park Y, Lim SS, Yang ST, Woo ER, Park IS, Lee JS, Kim JI, Hahm KS, Kim Y, Shin SY (2005) Cell selectivity and mechanism of action of antimicrobial model peptides containing peptoid residues. Biochemistry 44(36):12094–12106

    CAS  PubMed  Google Scholar 

  • Sood R, Kinnunen PK (2008) Cholesterol, lanosterol, and ergosterol attenuate the membrane association of LL-37 (W27F) and temporin L. Biochim Biophys Acta 1778(6):1460–1466

    CAS  PubMed  Google Scholar 

  • Sood R, Domanov Y, Pietiäinen M, Kontinen VP, Kinnunen PK (2008) Binding of LL-37 to model biomembranes: insight into target vs host cell recognition. Biochim Biophys Acta 1778(4):983–996

    CAS  PubMed  Google Scholar 

  • Stark M, Liu LP, Deber CM (2002) Cationic hydrophobic peptides with antimicrobial activity. Antimicrob Agents Chemother 46(11):3585–3590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Starr CG, He J, Wimley WC (2016) Host cell interactions are a significant barrier to the clinical utility of peptide antibiotics. ACS Chem Biol 11(12):3391–3399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steiner H, Andreu D, Merrifield RB (1988) Binding and action of cecropin and cecropin analogues: antibacterial peptides from insects. Biochim Biophys Acta 939(2):260–266

    CAS  PubMed  Google Scholar 

  • Stella L, Mazzuca C, Venanzi M, Palleschi A, Didone M, Formaggio F, Toniolo C, Pispisa B (2004) Aggregation and water-membrane partition as major determinants of the activity of the antibiotic peptide trichogin GA IV. Biophys J 86(2):936–945

    PubMed  PubMed Central  Google Scholar 

  • Storch J, Kleinfeld AM (1985) The lipid structure of biological membranes. Trends Biochem Sci 10(11):418–421

    CAS  Google Scholar 

  • Strandberg E, Tiltak D, Ieronimo M, Kanithasen N, Wadhwani P, Ulrich AS (2007) Influence of C-terminal amidation on the antimicrobial and hemolytic activities of cationic -helical peptides. Pure Appl Chem 79(4):717–728

    CAS  Google Scholar 

  • Strömstedt AA, Ringstad L, Schmidtchen A, Malmsten M (2010) Interaction between amphiphilic peptides and phospholipid membranes. Curr Opin Colloid Interface Sci 15(6):467–478

    Google Scholar 

  • Swierstra J, Kapoerchan V, Knijnenburg A, van Belkum A, Overhand M (2016) Structure, toxicity and antibiotic activity of gramicidin S and derivatives. Eur J Clin Microbiol Infect Dis 35(5):763–769

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tachi T, Epand RF, Epand RM, Matsuzaki K (2002) Position-dependent hydrophobicity of the antimicrobial magainin peptide affects the mode of peptide-lipid interactions and selective toxicity. Biochemistry 41(34):10723–10731

    CAS  PubMed  Google Scholar 

  • Takahashi D, Shukla SK, Prakash O, Zhang G (2010) Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity. Biochimie 92(9):1236–1241

    CAS  PubMed  Google Scholar 

  • Teixeira V, Feio MJ, Bastos M (2012) Role of lipids in the interaction of antimicrobial peptides with membranes. Prog Lipid Res 51(2):149–177

    CAS  PubMed  Google Scholar 

  • Thennarasu S, Nagaraj R (1996) Specific antimicrobial and hemolytic activities of 18-residue peptides derived from the amino terminal region of the toxin pardaxin. Protein Eng Des Sel 9(12):1219–1224

    CAS  Google Scholar 

  • Tian X, Sun F, Zhou XR, Luo SZ, Chen L (2015) Role of peptide self-assembly in antimicrobial peptides. J Pept Sci 21(7):530–539

    CAS  PubMed  Google Scholar 

  • Tiozzo E, Rocco G, Tossi A, Romeo D (1998) Wide-spectrum antibiotic activity of synthetic, amphipathic peptides. Biochem Biophys Res Commun 249(1):202–206

    CAS  PubMed  Google Scholar 

  • Toniolo C, Crisma M, Formaggio F, Peggion C, Monaco V, Goulard C, Rebuffat S, Bodo B (1996) Effect of N α-acyl chain length on the membrane-modifying properties of synthetic analogs of the lipopeptaibol trichogin GA IV. J Am Chem Soc 118(21):4952–4958

    CAS  Google Scholar 

  • Tossi A (2011) Design and engineering strategies for synthetic antimicrobial peptides. In: Prokaryotic antimicrobial peptides. Springer, New York, pp 81–98

    Google Scholar 

  • Tossi A, Sandri L, Giangaspero A (2000) Amphipathic, α-helical antimicrobial peptides. Biopolymers 55(1):4–30

    CAS  PubMed  Google Scholar 

  • Tu Z, Hao J, Kharidia R, Meng XG, Liang JF (2007) Improved stability and selectivity of lytic peptides through self-assembly. Biochem Biophys Res Commun 361(3):712–717

    CAS  PubMed  Google Scholar 

  • Tytler EM, Anantharamaiah GM, Walker DE, Mishra VK, Palgunachari MN, Segrest JP (1995) Molecular basis for prokaryotic specificity of magainin-induced lysis. Biochemistry 34(13):4393–4401

    CAS  PubMed  Google Scholar 

  • Uematsu N, Matsuzaki K (2000) Polar angle as a determinant of amphipathic α-helix-lipid interactions: a model peptide study. Biophys J 79(4):2075–2083

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uggerhøj LE, Poulsen TJ, Munk JK, Fredborg M, Sondergaard TE, Frimodt-Moller N, Hansen PR, Wimmer R (2015) Rational design of alpha-helical antimicrobial peptides: do’s and don’ts. ChemBioChem 16(2):242–253

    PubMed  Google Scholar 

  • Vallejo E, Martinez I, Tejero A, Hernandez S, Jimenez L, Bialostozky D, Sanchez G, Ilarraza H, Ferro-Flores G (2008) Clinical utility of 99mTc-labeled ubiquicidin 29–41 antimicrobial peptide for the scintigraphic detection of mediastinitis after cardiac surgery. Arch Med Res 39(8):768–774

    CAS  PubMed  Google Scholar 

  • van der Weerden NL, Bleackley MR, Anderson MA (2013) Properties and mechanisms of action of naturally occurring antifungal peptides. Cell Mol Life Sci 70(19):3545–3570

    PubMed  Google Scholar 

  • Veiga AS, Sinthuvanich C, Gaspar D, Franquelim HG, Castanho MA, Schneider JP (2012) Arginine-rich self-assembling peptides as potent antibacterial gels. Biomaterials 33(35):8907–8916

    CAS  PubMed  PubMed Central  Google Scholar 

  • Velduhizen EJA, Scheenstra MR, Tjeerdsma-van Bokhoven JLM, Coorens M, Schneider VAF, Bikker FJ, van Dijk A, Haagsman HP (2017) Antimicrobial and immunomodulatory activity of PMAP-23 derived peptides. Protein Pept Lett 24(7):609–616

    Google Scholar 

  • Verkleij AJ, Zwaal RFA, Roelofsen B, Comfurius P, Kastelijn D, van Deenen LLM (1973) The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy. Biochim Biophys Acta 323(2):178–193

    CAS  PubMed  Google Scholar 

  • Verly RM, Rodrigues MA, Daghastanli KRP, Denadai AML, Cuccovia IM, Bloch C Jr, Frezard F, Santoro MM, Pilo-Veloso D, Bemquerer MP (2008) Effect of cholesterol on the interaction of the amphibian antimicrobial peptide DD K with liposomes. Peptides 29(1):15–24

    CAS  PubMed  Google Scholar 

  • Vermeer LS, Lan Y, Abbate V, Ruh E, Bui TT, Wilkinson L, Jumagulova E, Kozlowska J, Patel J, McIntyre CA, Yam WC, Siu GKH, Atkinson RA, Lam JKW, Bansal SS, Drake AF, Mitchell GH, Mason AJ (2012) Conformational flexibility determines selectivity and Antibacterial, Antiplasmodium, and Anticancer potency of cationic α-helical peptides. J Biol Chem 287(41):34120–34133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Virtanen JA, Cheng KH, Somerharju P (1998) Phospholipid composition of the mammalian red cell membrane can be rationalized by a superlattice model. Proc Natl Acad Sci U S A 95(9):4964–4969

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wade D, Boman A, Wåhlin B, Drain CM, Andreu D, Boman HG, Merrifield RB (1990) All-D amino acid-containing channel-forming antibiotic peptides. Proc Natl Acad Sci U S A 87(12):4761–4765

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wade D, Silberring J, Soliymani R, Heikkinen S, Kilpeläinen I, Lankinen H, Kuusela P (2000) Antibacterial activities of temporin A analogs. FEBS Lett 479(1–2):6–9

    CAS  PubMed  Google Scholar 

  • Wakabayashi H, Matsumoto H, Hashimoto K, Teraguchi S, Takase M, Hayasawa H (1999) N-Acylated and D enantiomer derivatives of a nonamer core peptide of lactoferricin B showing improved antimicrobial activity. Antimicrob Agents Chemother 43(5):1267–1269

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G (ed) (2017) Antimicrobial peptides: discovery, design and novel therapeutic strategies. CABI Publishing, Cambridge, MA

    Google Scholar 

  • Wang H, Xu K, Liu L, Tan JP, Chen Y, Li Y, Fan W, Wei Z, Sheng J, Yang YY, Li L (2010) The efficacy of self-assembled cationic antimicrobial peptide nanoparticles against Cryptococcus neoformans for the treatment of meningitis. Biomaterials 31(10):2874–2881

    CAS  PubMed  Google Scholar 

  • Wang J, Chou S, Xu L, Zhu X, Dong N, Shan A, Chen Z (2015) High specific selectivity and membrane-active mechanism of the synthetic centrosymmetric α-helical peptides with Gly-Gly pairs. Sci Rep 5:15963

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Chou S, Yang Z, Yang Y, Wang Z, Song J, Dou X, Shan A (2018) Combating drug-resistant fungi with novel imperfectly amphipathic palindromic peptides. J Med Chem 61(9):3889–3907

    CAS  PubMed  Google Scholar 

  • Welling MM, Nibbering PH, Paulusma-Annema A, Hiemstra PS, Pauwels EK, Calame W (1999) Imaging of bacterial infections with 99mTc-labeled human neutrophil peptide-1. J Nucl Med 40(12):2073–2080

    CAS  PubMed  Google Scholar 

  • Welling MM, Paulusma-Annema A, Balter HS, Pauwels EK, Nibbering PH (2000) Technetium-99m labelled antimicrobial peptides discriminate between bacterial infections and sterile inflammations. Eur J Nucl Med 27(3):292–301

    CAS  PubMed  Google Scholar 

  • White DA (1973) The phospholipid composition of mammalian tissues. In: Ansell GB, Hawthorne JN, Dawson RMC (eds) Form and function of phospholipids. Elsevier, Amsterdam, pp 441–482

    Google Scholar 

  • White SH, Wimley WC (1999) Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct 28(1):319–365

    CAS  PubMed  Google Scholar 

  • Wiegand I, Hilpert K, Hancock REW (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3(2):163–175

    CAS  PubMed  Google Scholar 

  • Wieprecht T, Seelig J (2002) Isothermal titration calorimetry for studying interactions between peptides and lipid membranes. Curr Top Membr 52:31–56

    CAS  Google Scholar 

  • Wieprecht T, Dathe M, Beyermann M, Krause E, Maloy WL, MacDonald DL, Bienert M (1997a) Peptide hydrophobicity controls the activity and selectivity of magainin 2 amide in interaction with membranes. Biochemistry 36(20):6124–6132

    CAS  PubMed  Google Scholar 

  • Wieprecht T, Dathe M, Krause E, Beyermann M, Maloy WL, MacDonald DL, Bienert M (1997b) Modulation of membrane activity of amphipathic, antibacterial peptides by slight modifications of the hydrophobic moment. FEBS Lett 417(1):135–140

    CAS  PubMed  Google Scholar 

  • Wieprecht T, Dathe M, Epand RM, Beyermann M, Krause E, Maloy WL, MacDonald DL, Bienert M (1997c) Influence of the angle subtended by the positively charged helix face on the membrane activity of amphipathic, antibacterial peptides. Biochemistry 36(42):12869–12880

    CAS  PubMed  Google Scholar 

  • Wimley WC (2010a) Energetics of peptide and protein binding to lipid membranes. In: Proteins membrane binding and pore formation. Springer, New York, pp 14–23

    Google Scholar 

  • Wimley WC (2010b) Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem Biol 5(10):905–917

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wimley WC, Hristova K (2011) Antimicrobial peptides: successes, challenges and unanswered questions. J Membr Biol 239(1–2):27–34

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Wu H, Fan X, Zhao R, Li X, Wang S, Ma Y, Shen Z, Xi T (2010) Selective toxicity of antimicrobial peptide S-thanatin on bacteria. Peptides 31(9):1669–1673

    CAS  PubMed  Google Scholar 

  • Yang ST, Shin SY, Kim YC, Kim Y, Hahm KS, Kim JI (2002) Conformation-dependent antibiotic activity of tritrpticin, a cathelicidin-derived antimicrobial peptide. Biochem Biophys Res Commun 296(5):1044–1050

    CAS  PubMed  Google Scholar 

  • Yang ST, Lee JY, Kim HJ, Eu YJ, Shin SY, Hahm KS, Kim JI (2006a) Contribution of a central proline in model amphipathic α-helical peptides to self-association, interaction with phospholipids, and antimicrobial mode of action. FEBS J 273(17):4040–4054

    CAS  PubMed  Google Scholar 

  • Yang ST, Jeon JH, Kim Y, Shin SY, Hahm KS, Kim JI (2006b) Possible role of a PXXP central hinge in the antibacterial activity and membrane interaction of PMAP-23, a member of cathelicidin family. Biochemistry 45(6):1775–1784

    CAS  PubMed  Google Scholar 

  • Yau WM, Wimley WC, Gawrisch K, White SH (1998) The preference of tryptophan for membrane interfaces. Biochemistry 37(42):14713–14718

    CAS  PubMed  Google Scholar 

  • Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55(1):27–55

    CAS  PubMed  Google Scholar 

  • Yeung AT, Gellatly SL, Hancock REW (2011) Multifunctional cationic host defence peptides and their clinical applications. Cell Mol Life Sci 68(13):2161

    CAS  PubMed  Google Scholar 

  • Zelezetsky I, Tossi A (2006) Alpha-helical antimicrobial peptides-using a sequence template to guide structure–activity relationship studies. Biochim Biophys Acta 1758(9):1436–1449

    CAS  PubMed  Google Scholar 

  • Zelezetsky I, Pacor S, Pag U, Papo N, Shai Y, Sahl HG, Tossi A (2005) Controlled alteration of the shape and conformational stability of α-helical cell-lytic peptides: effect on mode of action and cell specificity. Biochem J 390(1):177–188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Benz R, Hancock REW (1999) Influence of proline residues on the antibacterial and synergistic activities of R-helical peptides. Biochemistry 38(25):8102–8111

    CAS  PubMed  Google Scholar 

  • Zhang Y, Lu H, Lin Y, Cheng J (2011) Water-soluble polypeptides with elongated, charged side chains adopt ultrastable helical conformations. Macromolecules 44(17):6641–6644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang SK, Song JW, Gong F, Li SB, Chang HY, Xie HM, Gao HW, Tan YX, Ji SP (2016) Design of an α-helical antimicrobial peptide with improved cell-selective and potent anti-biofilm activity. Sci Rep 6:27394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou NE, Mant CT, Hodges RS (1990) Effect of preferred binding domains on peptide retention behavior in reversed-phase chromatography: amphipathic alpha-helices. Pept Res 3(1):8–20

    CAS  PubMed  Google Scholar 

  • Zhu WL, Hahm K, Shin SY (2007a) Cathelicidin-derived Trp/Pro-rich antimicrobial peptides with lysine peptoid residue (Nlys): therapeutic index and plausible mode of action. J Pept Sci 13(8):529–535

    CAS  PubMed  Google Scholar 

  • Zhu WL, Song YM, Park Y, Park KH, Yang ST, Kim JI, Park IS, Hahm KS, Shin SY (2007b) Substitution of the leucine zipper sequence in melittin with peptoid residues affects self-association, cell selectivity, and mode of action. Biochim Biophys Acta 1768(6):1506–1517

    CAS  PubMed  Google Scholar 

  • Zhu WL, Nan YH, Hahm K, Shin SY (2007c) Cell selectivity of an antimicrobial peptide melittin diastereomer with D-amino acid in the leucine zipper sequence. J Biochem Mol Biol 40(6):1090–1094

    CAS  PubMed  Google Scholar 

  • Zhu WL, Hahm KS, Shin SY (2009) Cell selectivity and mechanism of action of short antimicrobial peptides designed from the cell-penetrating peptide Pep-1. J Pept Sci 15(9):569–575

    CAS  PubMed  Google Scholar 

  • Zou R, Zhu X, Tu Y, Wu J, Landry MP (2018) Activity of antimicrobial peptide aggregates decreases with increased cell membrane embedding free energy cost. Biochemistry 57(18):2606–2610

    CAS  PubMed  Google Scholar 

  • Zwaal RFA, Roelofsen B, Colley CM (1973) Localization of red cell membrane constituents. Biochim Biophys Acta 300(2):159–182

    CAS  PubMed  Google Scholar 

  • Zwaal RFA, Roelsfsen B, Comfurius P, van Deenen LLM (1975) Organization of phospholipids in human red cell membranes as detected by the action of various purified phospholipases. Biochim Biophys Acta 406(1):83–96

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank Dr. F. Savini and Dr. A. Papi for their help with Figs. 11.3 and 11.5. Research in our lab is currently supported by the Italian Ministry for Education, University and Research (grant PRIN 20157WW5EH_007), and by the Italian Association for Cancer Research (AIRC grant IG 2016 19171).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Stella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bobone, S., Stella, L. (2019). Selectivity of Antimicrobial Peptides: A Complex Interplay of Multiple Equilibria. In: Matsuzaki, K. (eds) Antimicrobial Peptides. Advances in Experimental Medicine and Biology, vol 1117. Springer, Singapore. https://doi.org/10.1007/978-981-13-3588-4_11

Download citation

Publish with us

Policies and ethics