Skip to main content

Molecular Marker and Therapeutic Regimen for Neurodegenerative Diseases

  • Chapter
  • First Online:
Models, Molecules and Mechanisms in Biogerontology

Abstract

The aging brain and nervous system go through changes by natural processes over time. The gradual loss of nerve cells takes place in normal aging process, while in some cases, collapsed old nerve cells lead to lots of accumulation of nerve cell’s waste, eventually forming plaques and tangles. The plaques and tangles result in dementia (the memory loss) or movement disorder, which initiate different neurodegenerative diseases in aging. Disease-associated behavioral changes will start and become worse if it could not be detected in the early stage. It can be prevented by mental and physical exercise in normal aging process. Further, neurodegenerative disease in aging could be protected from promoting by early detection with potent molecular markers. The molecule which has direct or indirect role with the pathophysiology of the disease that reflects the insight for early diagnosis can distinguish disease accurately from normal. A molecular marker may simply refer to any biomolecule that can be estimated and utilized as a yardstick of a physiological or pathological state. In this chapter, the molecular markers have been described in context to the neuronal physiology and their potential diagnostic utility in neurodegeneration. This chapter presented the recently exploited biological molecules which have neuropathological role for the development of molecular markers in Alzheimer’s disease and Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Orgel LE (1963) The maintenance of the accuracy of protein synthesis and its relevance to ageing. Proc Natl Acad Sci USA 49:517–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    Article  CAS  PubMed  Google Scholar 

  3. Weissman A (1891) Essays upon heredity and kindred biological problems. Oxford University Press-Clarendon, Oxford

    Google Scholar 

  4. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  CAS  PubMed  Google Scholar 

  5. Dilman V (1954) Data regarding the origin of climacteric and the role of age-associated “perestroika” in the elevation of blood pressure, blood cholesterol levels, and body weight. Master’s Thesis, Leningrad.

    Google Scholar 

  6. Walford RL (1969) Immunologic aspects of aging. Klin Wochenschr 47:599–605

    Article  CAS  PubMed  Google Scholar 

  7. Prince M, Wimo A, Guerchet M, Ali GC, Wu YT, Prina M (2015) The global impact of dementia: an analysis of prevalence, incidence, cost and trends. World Alzheimer Report Alzheimer’s Disease International

    Google Scholar 

  8. Ritsner M (2009) The handbook of neuropsychiatric biomarkers, endophenotypes and genes. Springer, Berlin

    Book  Google Scholar 

  9. Prasher VP, Farrer MJ, Kessling AM, Fisher EM, West RJ, Barber PC, Butler AC (1998) Molecular mapping of Alzheimer-type dementia in Down’s syndrome. Ann Neurol 43:380–383

    Article  CAS  PubMed  Google Scholar 

  10. Small SA, Duff K (2008) Linking Abeta and tau in late-onset Alzheimer’s disease: a dual pathway hypothesis. Neuron 60:534–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee VM, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159

    Article  CAS  PubMed  Google Scholar 

  12. Takashima A (2009) Amyloid-beta, tau, and dementia. J Alzheimers Dis 17:729–736

    Article  CAS  PubMed  Google Scholar 

  13. Billingsley ML, Kincaid RL (1997) Regulated phosphorylation and dephosphorylation of tau protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration. Biochem J 323:577–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Morris M, Maeda S, Vossel K, Mucke L (2011) The many faces of tau. Neuron 70:410–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brunden KR, Trojanowski JQ, Lee VM (2009) Advances in tau-focused drug discovery for Alzheimer’s disease and related tauopathies. Nat Rev Drug Discov 8:783–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Blom ES, Giedraitis V, Zetterberg H, Fukumoto H, Blennow K, Hyman BT, Irizarry MC, Wahlund LO, Lannfelt L, Ingelsson M (2009) Rapid progression from mild cognitive impairment to Alzheimer’s disease in subjects with elevated levels of tau in cerebrospinal fluid and the APOE epsilon4/epsilon4 genotype. Dement Geriatr Cogn Disord 27:458–464

    Article  CAS  PubMed  Google Scholar 

  17. Sämgård K, Zetterberg H, Blennow K, Hansson O, Minthon L, Londos E (2010) Cerebrospinal fluid total tau as a marker of Alzheimer’s disease intensity. Int J Geriatr Psychiatry 25:403–410

    Article  PubMed  Google Scholar 

  18. Brickhouse M, O’Keefe K, Sullivan C, Rentz D, Marshall G, Dickerson B, Sperling R (2011) Hippocampal hyperactivation associated with cortical thinning in Alzheimer’s disease signature regions in nondemented elderly adults. J Neurosci 31:17680–17688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Mucke L (2010) Amyloid-beta-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat Neurosci 13:812–818

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Verret L, Mann EO, Hang GB, Barth AM, Cobos I, Ho K, Devidze N, Masliah E, Kreitzer AC, Mody I, Mucke L, Palop JJ (2012) Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 149:708–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  CAS  PubMed  Google Scholar 

  22. Rachakonda V, Pan TH, LE WD (2004) Biomarkers of neurodegenerative disorders: how good are they? Cell Res 14:347–358

    Article  CAS  PubMed  Google Scholar 

  23. Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362:329–344

    Article  CAS  PubMed  Google Scholar 

  24. Gowert NS, Donner L, Chatterjee M, Eisele YS, Towhid ST, Münzer P, Walker B, Ogorek I, Borst O, Grandoch M, Schaller M, Fischer JW, Gawaz M, Weggen S, Lang F, Jucker M, Elvers M (2014) Blood platelets in the progression of Alzheimer’s disease. PLoS One 9:e90523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Padovani A, Borroni B, Colciaghi F, Pastorino L, Archetti S, Cottini E, Caimi L, Cattabeni F, Di Luca M (2001) Platelet amyloid precursor protein forms in AD: a peripheral diagnostic tool and a pharmacological target. Mech Ageing Dev 122:1997–2004

    Article  CAS  PubMed  Google Scholar 

  26. Borroni B, Colciaghi F, Caltagirone C, Rozzini L, Broglio L, Cattabeni F, Di Luca M, Padovani A (2003) Platelet amyloid precursor protein abnormalities in mild cognitive impairment predict conversion to dementia of Alzheimer type: a 2-year follow-up study. Arch Neurol 60:1740–1744

    Article  PubMed  Google Scholar 

  27. Luchsinger JA, Tang MX, Miller J, Green R, Mehta PD, Mayeux R (2007) Relation of plasma homocysteine to plasma amyloid beta levels. Neurochem Res 32:775–781

    Article  CAS  PubMed  Google Scholar 

  28. Ruiz A, Pesini P, Espinosa A, Pérez-Grijalba V, Valero S, Sotolongo-Grau O, Alegret M, Monleón I, Lafuente A, Buendía M, Ibarria M, Ruiz S, Hernández I, San José I, Tárraga L, Boada M, Sarasa M (2013) Blood amyloid beta levels in healthy, mild cognitive impairment and Alzheimer’s disease individuals: replication of diastolic blood pressure correlations and analysis of critical covariates. PLoS One 8:e81334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Sunderland T, Linker G, Mirza N, Putnam KT, Friedman DL, Kimmel LH, Bergeson J, Manetti GJ, Zimmermann M, Tang B, Bartko JJ, Cohen RM (2003) Decreased beta-amyloid 1-42 and increased tau levels in cerebrospinal fluid of patients with Alzheimer disease. JAMA 289:2094–2103

    Article  PubMed  Google Scholar 

  30. Andreasen N, Sjogren M, Blennow K (2003) CSF markers for Alzheimer’s disease: total tau, phospho-tau and Aβ42. World J Biol Psychiatry 4:147–155

    Article  PubMed  Google Scholar 

  31. Tapiola T, Alafuzoff I, Herukka SK, Parkkinen L, Hartikainen P, Soininen H, Pirttila T (2009) Cerebrospinal fluid β-amyloid 42 and tau proteins as biomarkers of Alzheimer type pathologic changes in the brain. Arch Neurol 66:382–389

    Article  PubMed  Google Scholar 

  32. Zetterberg H, Wilson D, Andreasson U, Minthon L, Blennow K, Randall J, Hansson O (2013) Plasma tau levels in Alzheimer’s disease. Alzheimers Res Ther 5:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chiu MJ, Chen YF, Chen TF, Yang SY, Yang FP, Tseng TW, Chieh JJ, Chen JC, Tzen KY, Hua MS, Horng HE (2014) Plasma tau as a window to the brain—negative associations with brain volume and memory function in mild cognitive impairment and early Alzheimer’s disease. Hum Brain Mapp 35:3132–3142

    Article  PubMed  Google Scholar 

  34. Kandimalla RJ, Prabhakar S, Wani WY, Kaushal A, Gupta N, Sharma DR, Grover VK, Bhardwaj N, Jain K, Gill KD (2013) CSF p-Tau levels in the prediction of Alzheimer’s disease. Biol Open 2:1119–1124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Hampel H, Bürger K, Pruessner JC, Zinkowski R, DeBernardis J (2005) Correlation of cerebrospinal fluid levels of tau protein phosphorylated at threonine 231 with rates of hippocampal atrophy in Alzheimer disease. Arch Neurol 62:770–773

    Article  PubMed  Google Scholar 

  36. Shekhar S, Kumar R, Rai N, Kumar V, Singh K, Upadhyay AD, Tripathi M, Dwivedi S, Dey AB, Dey S (2016) Estimation of Tau and phosphorylated Tau181 in serum of Alzheimer’s disease and mild cognitive impairment patients. PLoS One 11:e0159099

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Farías G, Pérez P, Slachevsky A, Maccioni RB (2012) Platelet tau pattern correlates with cognitive status in Alzheimer’s disease. J Alzheimers Dis 31:65–69

    Article  PubMed  CAS  Google Scholar 

  38. Guzmán-Martínez L, Farías GA, Maccioni RB (2012) Emerging noninvasive biomarkers for early detection of Alzheimer’s disease. Arch Med Res 43:663–666

    Article  PubMed  CAS  Google Scholar 

  39. Geekiyanage H, Chan C (2011) MicroRNA-137/181c regulates serine palmitoyltransferase and in turn amyloid β, novel targets in sporadic Alzheimer’s disease. J Neurosci 31:14820–14830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hébert SS, Horré K, Nicolaï L, Papadopoulou AS, Mandemakers W, Silahtaroglu AN, Kauppinen S, Delacourte A, De Strooper B (2008) Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci USA 105:6415–6420

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sheinerman KS, Tsivinsky VG, Crawford F, Mullan MJ, Abdullah L, Umansky SR (2012) Plasma microRNA biomarkers for detection of mild cognitive impairment. Aging (Albany NY) 4:590–605

    Article  CAS  Google Scholar 

  42. Leidinger P, Backes C, Deutscher S, Schmitt K, Mueller SC, Frese K, Haas J, Ruprecht K, Paul F, Stähler C, Lang CJ, Meder B, Bartfai T, Meese E, Keller A (2013) A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol 14:R78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Tan L, Yu JT, Tan MS, Liu QY, Wang HF, Zhang W, Jiang T, Tan L (2014) Genome-wide serum microRNA expression profiling identifies serum biomarkers for Alzheimer’s disease. J Alzheimers Dis 40:1017–1027

    Article  CAS  PubMed  Google Scholar 

  44. Kim DK, Seo MY, Lim S, Kim S, Kim JW, Carroll BJ, Kwon DY, Kwon T, Kang SS (2001) Serum melanotransferrin, p97 as a biochemical marker of Alzheimer’s disease. Neuropsychopharmacology 25:84–90

    Article  CAS  PubMed  Google Scholar 

  45. Ujiie M, Dickstein DL, Jefferies WA (2002) p97 as a biomarker for Alzheimer disease. Front Biosci 7:e42–e47

    Article  CAS  PubMed  Google Scholar 

  46. Desrosiers RR, Bertrand Y, Nguyen QT, Demeule M, Gabathuler R, Kennard ML, Gauthier S, Béliveau R (2003) Expression of melanotransferrin isoforms in human serum: relevance to Alzheimer’s disease. Biochem J 374:463–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325:201–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ingram DK, Zhu M, Mamczarz J, Zou S, Lane MA, Roth GS, deCabo R (2006) Calorie restriction mimetics: an emerging research field. Aging Cell 5:97–108

    Article  CAS  PubMed  Google Scholar 

  49. Spindler SR (2010) Caloric restriction: from soup to nuts. Ageing Res Rev 9:324–353

    Article  CAS  PubMed  Google Scholar 

  50. Chen D, Steele AD, Lindquist S, Guarente L (2005) Increase in activity during calorie restriction requires Sirt1. Science 310:1641

    Article  CAS  PubMed  Google Scholar 

  51. Li Y, Xu W, McBurney MW, Longo VD (2008) SirT1 inhibition reduces IGFI/IRS-2/Ras/ERK1/2 signaling and protects neurons. Cell Metab 8:38–48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I (2005) Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 16:4623–4635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shi T, Wang F, Stieren E, Tong Q (2005) SIRT3, a mitochondrial sirtuins deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem 280:13560–13567

    Article  CAS  PubMed  Google Scholar 

  54. Haigis MC, Sinclair DA (2010) Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 5:253–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Imai S, Armstrong CM, Kaeberlein M, Guarente L (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403:795–800

    Article  CAS  PubMed  Google Scholar 

  56. Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R, Leid M, McBurney MW, Guarente L (2004) Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 429:771–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Qin W, Yang T, Ho L, Zhao Z, Wang J, Chen L, Zhao W, Thiyagarajan M, MacGrogan D, Rodgers JT, Puigserver P, Sadoshima J, Deng H, Pedrini S, Gandy S, Sauve AA, Pasinetti GM (2006) Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem 281:21745–21754

    Article  CAS  PubMed  Google Scholar 

  58. Patel NV, Gordon MN, Connor KE, Good RA, Engelman RW, Mason J, Morgan DG, Morgan TE, Finch CE (2005) Caloric restriction attenuates Abeta-deposition in Alzheimer transgenic models. Neurobiol Aging 26:995–1000

    Article  CAS  PubMed  Google Scholar 

  59. Guarente L (2008) Mitochondria–a nexus for aging, calorie restriction, and sirtuins. Cell 132:171–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bonda DJ, Lee HG, Camins A, Pallàs M, Casadesus G, Smith MA, Zhu X (2011) The sirtuin pathway in ageing and Alzheimer disease: mechanistic and therapeutic considerations. Lancet Neurol 10:275–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Donmez G, Diana W, Cohen DE, Guarente L (2010) SIRT1 Suppresses β-Amyloid Production by Activating the α-Secretase Gene ADAM10. Cell 142:320–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8:101–112

    Article  CAS  PubMed  Google Scholar 

  63. Luis CA, Abdullah L, Paris D, Quadros A, Mullan M, Mouzon B, Ait-Ghezala G, Crawford F, Mullan M (2009) Serum beta-amyloid correlates with neuropsychological impairment. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn 16:203–218

    Article  PubMed  Google Scholar 

  64. Kim D, Nguyen MD, Dobbin MM, Fischer A, Sananbenesi F, Rodgers JT, Delalle I, Baur JA, Sui G, Armour SM, Puigserver P, Sinclair DA, Tsai LH (2007) SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J 26:3169–3179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Albani D, Polito L, Forloni G (2011) Sirtuins as novel targets for Alzheimer’s disease and other neurodegenerative disorders: experimental and genetic evidence. J Alzheimers Dis 19:11–26

    Article  CAS  Google Scholar 

  66. Vlassenko AG, Vaishnavi SN, Couture L, Sacco D, Shannon BJ, March RH, Morris JC, Raichle ME, Mintun MA (2010) Spatial correlation between brain aerobic glycolysis and amyloid-beta (Abeta) deposition. Proc Natl Acad Sci USA 107:17763–17767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente LP, Sassone-Corsi P (2008) The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134:329–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Prinzen C, Muller U, Endres K, Fahrenholz F, Postina R (2005) Genomic structure and functional characterization of the human ADAM10 promoter. FASEB J 19:1522–1524

    Article  CAS  PubMed  Google Scholar 

  69. Julien C, Tremblay C, Emond V, Lebbadi M, Salem N Jr, Bennett DA, Calon F (2009) Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J Neuropathol Exp Neurol 68:48–58

    Article  CAS  PubMed  Google Scholar 

  70. Kumar R, Chaterjee P, Sharma PK, Singh AK, Gupta A, Gill K, Tripathi M, Dey AB, Dey S (2013) Sirtuin1: a promising serum protein marker for early detection of Alzheimer’s disease. PLoS One 8:e61560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Vousden KH, Prives C (2007) Blinded by the light: the growing complexity of p53. Cell 137:413–431

    Article  CAS  Google Scholar 

  72. Budanov AV (2011) Stress-responsive sestrins link p53 with redox regulation and mammalian target of rapamycin signaling. Antioxid Redox Signal 15:1679–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Budanov AV, Lee JH, Karin M (2010) Stressin’ Sestrins take an aging fight. EMBO Mol Med 2:388–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Richardson JS, Subbarao KV, Ang LC (1990) Biochemical indices of peroxidation in Alzheimer’s and control brains. Trans Am Soc Neurochem 21:113

    Google Scholar 

  75. Yoshikawa T (1993) Free radicals and their scavengers in Parkinson’s disease. Eur Neurol 33:60–68

    Article  PubMed  Google Scholar 

  76. Choi SI, Kim BY, Dadakhujaev S, Oh JY, Kim TI, Kim JY, Kim EK (2012) Impaired autophagy and delayed autophagic clearance of transforming growth factor β-induced protein (TGFBI) in granular corneal dystrophy type 2. Autophagy 8:1782–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kim JR, Lee SR, Chung HJ, Kim S, Baek SH, Kim JH, Kim YS (2003) Identification of amyloid beta-peptide responsive genes by cDNA microarray technology: involvement of RTP801 in amyloid beta-peptide toxicity. Exp Mol Med 35:403–411

    Article  CAS  PubMed  Google Scholar 

  78. Budanov AV, Karin M (2008) p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134:451–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Papadia S, Soriano FX, Leveille F, Martel MA, Dakin KA, Hansen HH, Kaindl A, Sifringer M, Fowler J, Stefovska V, McKenzie G, Craigon M, Corriveau R, Ghazal P, Horsburgh K, Yankner BA, Wyllie DJ, Ikonomidou C, Hardingham GE (2008) Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses. Nat Neurosci 11:476–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jönsson TJ, Lowther WT (2007) The peroxiredoxin repair proteins. Subcell Biochem 44:115–141

    Article  PubMed  PubMed Central  Google Scholar 

  81. Essler S, Dehne N, Brune B (2009) Role of sestrin2 in peroxide signaling in macrophages. FEBS Lett 583:3531–3535

    Article  CAS  PubMed  Google Scholar 

  82. Reddy K, Cusack CL, Nnah IC, Khayati K, Saqcena C, Huynh TB, Noggle SA, Ballabio A, Dobrowolski R (2016) Dysregulation of nutrient sensing and CLEARance in presenilin deficiency. Cell Rep 14:2166–2179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Skovronsky DM, Lee VM, Trojanowski JQ (2006) Neurodegenerative diseases: new concepts of pathogenesis and their therapeutic implications. Annu Rev Pathol 1:151–170

    Article  CAS  PubMed  Google Scholar 

  84. Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Soontornniyomkij V, Soontornniyomkij B, Moore DJ, Gouaux B, Masliah E, Tung S, Vinters HV, Grant I, Achim CL (2012) Antioxidant sestrin-2 redistribution to neuronal soma in human immunodeficiency virus-associated neurocognitive disorders. J Neuroimmune Pharmacol 7:579–590

    Article  PubMed  PubMed Central  Google Scholar 

  86. Saveljeva S, Cleary P, Mnich K, Ayo A, Pakos-Zebrucka K, Patterson JB, Logue SE, Samali A (2016) Endoplasmic reticulum stress-mediated induction of SESTRIN 2 potentiates cell survival. Oncotarget 7:12254

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kourtis N, Tavernarakis N (2011) Cellular stress response pathways and ageing: intricate molecular relationships. EMBO J 30:2520–2531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Park HW, Park H, Ro SH, Jang I, Semple IA, Kim DN, Kim M, Nam M, Zhang D, Yin L, Lee JH (2014) Hepatoprotective role of Sestrin2 against chronic ER stress. Nat Commun 5:4233

    Article  CAS  PubMed  Google Scholar 

  89. Wurtman R (2015) Biomarkers in the diagnosis and management of Alzheimer’s disease. Metabolism 64:S47–S50

    Article  CAS  PubMed  Google Scholar 

  90. Joshi YB, Praticò D (2015) The 5-lipoxygenase pathway: oxidative and inflammatory contributions to the Alzheimer’s disease phenotype. Front Cell Neurosci 8:436

    Article  PubMed  PubMed Central  Google Scholar 

  91. Giannopoulos PF, Joshi YB, Praticò D (2014) Novel lipid signaling pathways in Alzheimer’s disease pathogenesis. Biochem Pharmacol 88:560–564

    Article  CAS  PubMed  Google Scholar 

  92. Shashank Shekhar, Saroj Kumar Yadav, Nitish Rai, Rahul Kumar, Yudhishthir Yadav, Manjari Tripathi, Aparajit B. Dey, Sharmistha Dey, (2018) 5-LOX in Alzheimer’s Disease: Potential Serum Marker and In Vitro Evidences for Rescue of Neurotoxicity by Its Inhibitor YWCS. Molecular Neurobiology 55 (4):2754-2762

    Article  PubMed  CAS  Google Scholar 

  93. Nickerson DA, Taylor SL, Fullerton SM, Weiss KM, Clark AG, Stengard JH, Salomaa V, Boerwinkle E, Sing CF (2000) Sequence diversity and large-scale typing of SNPs in the human apolipoprotein E gene. Genome Res 10:1532–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923

    Article  CAS  PubMed  Google Scholar 

  95. Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, Roses AD (1993) Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A 90:1977–1981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE (2007) Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet 39:17–23

    Article  CAS  PubMed  Google Scholar 

  97. Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, Myers RH, Pericak-Vance MA, Risch N, van Duijn CM (1997) Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 278:1349–1356

    Article  CAS  PubMed  Google Scholar 

  98. Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE (2009) The AlzGene database. Alzheimer Research Forum. http://www.alzgene.org

  99. Roses AD (1996) Apolipoprotein E alleles as risk factors in Alzheimer’s disease. Annu Rev Med 47:387–400

    Article  CAS  PubMed  Google Scholar 

  100. Corder EH, Saunders AM, Risch NJ, Strittmatter WJ, Schmechel DE, Gaskell PC Jr, Rimmler JB, Locke PA, Conneally PM, Schmader KE, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1994) Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet 7:180–184

    Article  CAS  PubMed  Google Scholar 

  101. Schapira AHV (1999) Science, medicine, and the future Parkinson’s disease. BMJ 318:311–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Esteves AR, Arduíno DM, Swerdlow RH, Oliveira CR, Cardoso SM (2009) Oxidative stress involvement in alpha-synuclein oligomerization in Parkinson’s disease cybrids. Antioxid Redox Signal 11:439–448

    Article  CAS  PubMed  Google Scholar 

  103. Maswood N, Young J, Tilmont E, Zhang Z, Gash DM, Gerhardt GA, Grondin R, Roth GS, Mattison J, Lane MA, Carson RE, Cohen RM, Mouton PR, Quigley C, Mattson MP, Ingram DK (2004) Caloric restriction increases neurotrophic factor levels and attenuates neurochemical and behavioral deficits in a primate model of Parkinson’s disease. Proc Natl Acad Sci USA 101:18171–18176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lin SJ, Ford E, Haigis M, Liszt G, Guarente L (2004) Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev 18:12–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Grasso M, Piscopo P, Confaloni A, Denti MA (2014) Circulating miRNAs as biomarkers for neurodegenerative disorders. Molecules 19:6891–6910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Nuytemans K, Theuns J, Cruts M (2010) Genetic Etiology of Parkinson Disease Associated with Mutations in the SNCA, PARK2, PINK1, PARK7 and LRRK2 genes: a mutation update. Hum Mutat 31:763–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Fiskum G, Starkov A, Polster B (2003) Mitochondrial mechanisms of neural cell death and neuro protective interventions in Parkinson’s disease. Ann N Y Acad Sci 991:111–119

    Article  CAS  PubMed  Google Scholar 

  108. Greenamyre JT, Betarbet R, Sherer TB (2003) The rotenone model of Parkinson’s disease: genes, environment and mitochondria. Parkinsonism Relat Disord 9:S59–S64

    Article  PubMed  Google Scholar 

  109. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  CAS  PubMed  Google Scholar 

  110. Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atarés B, Llorens V, Gomez Tortosa E, del Ser T, Muñoz DG, de Yebenes JG (2004) The new mutation, E46K, of α-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55:164–173

    Article  CAS  PubMed  Google Scholar 

  111. Lee HJ, Patel S, Lee SJ (2005) Intravascular localization and exocytosis of alpha-synuclein and its aggregates. J Neurosci 25:6016–6024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Marques O, Outeiro TF (2012) Alpha-synuclein: from secretion to dysfunction and death. Cell Death Dis 3:e350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nakai M, Fujita M, Waragai M, Sugama S, Wei J, Akatsu H, Ohtaka-Maruyama C, Okado H, Hashimoto M (2007) Expression of alpha-synuclein, a presynaptic protein implicated in Parkinson’s disease, in erythropoietic lineage. Biochem Biophys Res Commun 358:104–110

    Article  CAS  PubMed  Google Scholar 

  114. Alvarez-Erviti L, Seow Y, Schapira AH, Gardiner C, Sargent IL, Wood MJ, Cooper JM (2011) Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. Neurobiol Dis 42:360–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Danzer KM, Kranich LR, Ruf WP, Cagsal-Getkin O, Winslow AR, Zhu L, Vanderburg CR, McLean PJ (2012) Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol Neurodegener 7:42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Shi M, Liu C, Cook TJ, Bullock KM, Zhao Y, Ginghina C, Li Y, Aro P, Dator R, He C, Hipp MJ, Zabetian CP, Peskind ER, Hu SC, Quinn JF, Galasko DR, Banks WA, Zhang J (2014) Plasma exosomal alpha-synuclein is likely CNS-derived and increased in Parkinson’s disease. Acta Neuropathol 128:639–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Donadio V, Incensi A, Leta V, Giannoccaro MP, Scaglione C, Martinelli P, Capellari S, Avoni P, Baruzzi A, Liguori R (2014) Skin nerve alpha-synuclein deposits: a biomarker for idiopathic Parkinson disease. Neurology 82:1362–1369

    Article  CAS  PubMed  Google Scholar 

  118. Ohrfelt A, Grognet P, Andreasen N, Wallin A, Vanmechelen E, Blennow K, Zetterberg H (2009) Cerebrospinal fluid alpha-synuclein in neurodegenerative disorders-a marker of synapse loss? Neurosci Lett 450:332–335

    Article  PubMed  CAS  Google Scholar 

  119. Park MJ, Cheon SM, Bae HR, Kim SH, Kim JW (2011) Elevated levels of alpha-synuclein oligomer in the cerebrospinal fluid of drug-naive patients with Parkinson’s disease. J Clin Neurol 7:215–222

    Article  PubMed  PubMed Central  Google Scholar 

  120. Mollenhauer B, Locascio JJ, Schulz-Schaeffer W, Sixel-Doring F, Trenkwalder C, Schlossmacher MG (2011) Alpha-Synuclein and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism: a cohort study. Lancet Neurol 10:230–240

    Article  CAS  PubMed  Google Scholar 

  121. Mollenhauer B, Trautmann E, Taylor P, Manninger P, Sixel-Doring F, Ebentheuer J, Trenkwalder C, Schlossmacher MG (2013) Total CSF alpha-synuclein is lower in de novo Parkinson patients than in healthy subjects. Neurosci Lett 532:44–48

    Article  CAS  PubMed  Google Scholar 

  122. Parnetti L, Chiasserini D, Bellomo G, Giannandrea D, De Carlo C, Qureshi MM, Ardah MT, Varghese S, Bonanni L, Borroni B, Tambasco N, Eusebi P, Rossi A, Onofrj M, Padovani A, Calabresi P, El-Agnaf O (2011) Cerebrospinal fluid Tau/alpha-synuclein ratio in Parkinson’s disease and degenerative dementias. Mov Disord 26:1428–1435

    Article  PubMed  Google Scholar 

  123. Tokuda T, Salem SA, Allsop D, Mizuno T, Nakagawa M, Qureshi MM, Locascio JJ, Schlossmacher MG, El-Agnaf OM (2006) Decreased alpha-synuclein in cerebrospinal fluid of aged individuals and subjects with Parkinson’s disease. Biochem Biophys Res Commun 349:162–166

    Article  CAS  PubMed  Google Scholar 

  124. Hall S, Ohrfelt A, Constantinescu R, Andreasson U, Surova Y, Bostrom F, Nilsson C, Håkan W, Decraemer H, Någga K, Minthon L, Londos E, Vanmechelen E, Holmberg B, Zetterberg H, Blennow K, Hansson O (2012) Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders. Arch Neurol 69:1445–1452

    Article  PubMed  Google Scholar 

  125. Hong Z, Shi M, Chung KA, Quinn JF, Peskind ER, Galasko D, Jankovic J, Zabetian CP, Leverenz JB, Baird G, Montine TJ, Hancock AM, Hwang H, Pan C, Bradner J, Kang UJ, Jensen PH, Zhang J (2010) DJ-1 and alpha-synuclein in human cerebrospinal fluid as biomarkers of Parkinson’s disease. Brain 133:713–726

    Article  PubMed  PubMed Central  Google Scholar 

  126. Wang Y, Shi M, Chung KA, Zabetian CP, Leverenz JB, Berg D, Srulijes K, Trojanowski JQ, Lee VM, Siderowf AD, Hurtig H, Litvan I, Schiess MC, Peskind ER, Masuda M, Hasegawa M, Lin X, Pan C, Galasko D, Goldstein DS, Jensen PH, Yang H, Cain KC, Zhang J (2012) Phosphorylated alpha-synuclein in Parkinson’s disease. Sci Transl Med 4:121ra20

    PubMed  PubMed Central  Google Scholar 

  127. Shi M, Zabetian CP, Hancock AM, Ginghina C, Hong Z, Yearout D, Chung KA, Quinn JF, Peskind ER, Galasko D, Jankovic J, Leverenz JB, Zhang J (2010) Significance and confounders of peripheral DJ-1 and alpha-synuclein in Parkinson’s disease. Neurosci Lett 480:78–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Borghi R, Marchese R, Negro A, Marinelli L, Forloni G, Zaccheo D, Abbruzzese G, Tabaton M (2000) Full length alpha-synuclein is present in cerebrospinal fluid from Parkinson’s disease and normal subjects. Neurosci Lett 287:65–67

    Article  CAS  PubMed  Google Scholar 

  129. Jakowec MW, Petzinger GM, Sastry S, Donaldson DM, McCormack A, Langston JW (1998) The native form of alpha-synuclein is not found in the cerebrospinal fluid of patients with Parkinson’s disease or normal controls. Neurosci Lett 253:13–16

    Article  CAS  PubMed  Google Scholar 

  130. Stewart T, Sossi V, Aasly JO, Wszolek ZK, Uitti RJ, Hasegawa K, Yokoyama T, Zabetian CP, Leverenz JB, Stoessl AJ, Wang Y, Ginghina C, Liu C, Cain KC, Auinger P, Kang UJ, Jensen PH, Shi M, Zhang J (2015) Phosphorylated alpha-synuclein in Parkinson’s disease: correlation depends on disease severity. Acta Neuropathol Commun 3:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Besong-Agbo D, Wolf E, Jessen F, Oechsner M, Hametner E, Poewe W, Reindl M, Oertel WH, Noelker C, Bacher M, Dodel R (2013) Naturally occurring alpha-synuclein autoantibody levels are lower in patients with Parkinson disease. Neurology 80:169–175

    Article  CAS  PubMed  Google Scholar 

  132. Duran R, Barrero FJ, Morales B, Luna JD, Ramirez M, Vives F (2010) Plasma alpha-synuclein in patients with Parkinson’s disease with and without treatment. Mov Disord 25:489–493

    Article  PubMed  Google Scholar 

  133. Lee PH, Lee G, Park HJ, Bang OY, Joo IS, Huh K (2006) The plasma alpha-synuclein levels in patients with Parkinson’s disease and multiple system atrophy. J Neural Transm 113:1435–1439

    Article  CAS  PubMed  Google Scholar 

  134. Li QX, Mok SS, Laughton KM, McLean CA, Cappai R, Masters CL, Culvenor JG, Horne MK (2007) Plasma alpha-synuclein is decreased in subjects with Parkinson’s disease. Exp Neurol 204:583–588

    Article  CAS  PubMed  Google Scholar 

  135. Foulds PG, Mitchell JD, Parker A, Turner R, Green G, Diggle P, Hasegawa M, Taylor M, Mann D, Allsop D (2011) Phosphorylated alpha-synuclein can be detected in blood plasma and is potentially a useful biomarker for Parkinson’s disease. FASEB J 25:4127–4137

    Article  CAS  PubMed  Google Scholar 

  136. Mata IF, Shi M, Agarwal P, Chung KA, Edwards KL, Factor SA, Galasko DR, Ginghina C, Griffith A, Higgins DS, Kay DM, Kim H, Leverenz JB, Quinn JF, Roberts JW, Samii A, Snapinn KW, Tsuang DW, Yearout D, Zhang J, Payami H, Zabetian CP (2010) SNCA variant associated with Parkinson disease and plasma alpha-synuclein level. Arch Neurol 67:1350–1356

    Article  PubMed  PubMed Central  Google Scholar 

  137. Gorostidi A, Bergareche A, Ruiz-Martinez J, Marti-Masso JF, Cruz M, Varghese S, Qureshi MM, Alzahmi F, Al-Hayani A, López de Munáin A, El-Agnaf OM (2012) Alpha-synuclein levels in blood plasma from LRRK2 mutation carriers. PLoS One 7:e52312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Miller DW, Hague SM, Clarimon J, Baptista M, Gwinn-Hardy K, Cookson MR, Singleton AB (2004) Alpha-synuclein in blood and brain from familial Parkinson disease with SNCA locus triplication. Neurology 62:1835–1838

    Article  CAS  PubMed  Google Scholar 

  139. Abd-Elhadi S, Honig A, Simhi-Haham D, Schechter M, Linetsky E, Ben-Hur T, Sharon R (2015) Total and proteinase K-resistant alpha-synuclein levels in erythrocytes, determined by their ability to bind phospholipids, Associate with Parkinson’s Disease. Sci Rep 5:11120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wang X, Yu S, Li F, Feng T (2015) Detection of alpha-synuclein oligomers in red blood cells as a potential biomarker of Parkinson’s disease. Neurosci Lett 599:115–119

    Article  CAS  PubMed  Google Scholar 

  141. Devic I, Hwang H, Edgar JS, Izutsu K, Presland R, Pan C, Goodlett DR, Wang Y, Armaly J, Tumas V, Zabetian CP, Leverenz JB, Shi M, Zhang J (2011) Salivary alpha-synuclein and DJ-1: potential biomarkers for Parkinson’s disease. Brain 134:e178

    Article  PubMed  PubMed Central  Google Scholar 

  142. Stewart T, Sui YT, Gonzalez-Cuyar LF, Wong DT, Akin DM, Tumas V, Aasly J, Ashmore E, Aro P, Ginghina C, Korff A, Zabetian CP, Leverenz JB, Shi M, Zhang J (2014) Cheek cell-derived alpha-synuclein and DJ-1 do not differentiate Parkinson’s disease from control. Neurobiol Aging 35:418–420

    Article  CAS  PubMed  Google Scholar 

  143. Al-Nimer MS, Mshatat SF, Abdulla HI (2014) Saliva alpha-synuclein and a high extinction coefficient protein: a novel approach in assessment biomarkers of Parkinson’ disease. N Am J Med Sci 6:633–637

    Article  PubMed  PubMed Central  Google Scholar 

  144. Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, Dekker MC, Squitieri F, Ibanez P, Joosse M, van Dongen JW, Vanacore N, van Swieten JC, Brice A, Meco G, van Duijn CM, Oostra BA, Heutink P (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299:256–259

    Article  CAS  PubMed  Google Scholar 

  145. Lin X, Cook TJ, Zabetian CP, Leverenz JB, Peskind ER, Hu S-C, Cain KC, Pan C, Edgar JS, Goodlett DR, Racette BA, Checkoway H, Montine TJ, Shi M, Zhang J (2012) DJ-1 isoforms in whole blood as potential biomarkers of Parkinson disease. Sci Rep 2:954

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Chahine LM, Stern MB, Chen-Plotkin A (2014) Blood-based biomarkers for Parkinson’s disease. Parkinsonism Relat Disord 1:S99–S103

    Article  Google Scholar 

  147. Schwarzschild MA, Schwid SR, Marek K, Watts A, Lang AE, Oakes D, Shoulson I, Ascherio A, Parkinson Study Group PRECEPT Investigators, Hyson C, Gorbold E, Rudolph A, Kieburtz K, Fahn S, Gauger L, Goetz C, Seibyl J, Forrest M, Ondrasik J (2008) Serum urate as a predictor of clinical and radiographic progression in Parkinson disease. Arch Neurol 65:716–723

    Article  Google Scholar 

  148. Qiang JK, Wong YC, Siderowf A, Hurtig HI, Xie SX, Lee VM, Trojanowski JQ, Yearout DB, Leverenz J, Montine TJ, Stern M, Mendick S, Jennings D, Zabetian C, Marek K, Chen-Plotkin AS (2013) Plasma apolipoprotein A1 as a biomarker for Parkinson disease. Ann Neurol 74:119–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Gao X, Simon KC, Schwarzschild MA, Ascherio A (2012) Prospective study of statin use and risk of Parkinson disease. Arch Neurol 69:380–384

    Article  PubMed  PubMed Central  Google Scholar 

  150. Lee YC, Lin CH, Wu RM, Lin MS, Lin JW, Chang CH, Lai MS (2013) Discontinuation of statin therapy associates with Parkinson disease: A population-based study. Neurology 81:410–416

    Article  CAS  PubMed  Google Scholar 

  151. Margis R, Margis R, Rieder CR (2011) Identification of blood microRNAs associated to Parkinson’s disease. J Biotechnol 152:96–101

    Article  CAS  PubMed  Google Scholar 

  152. Khoo SK, Petillo D, Kang UJ, Resau JH, Berryhill B, Linder J, Forsgren L, Neuman LA, Tan AC (2012) Plasma-based circulating MicroRNA biomarkers for Parkinson’s disease. J Park Dis 2:321–331

    CAS  Google Scholar 

  153. Botta-Orfila T, Morató X, Compta Y, Lozano JJ, Falgàs N, Valldeoriola F, Pont-Sunyer C, Vilas D, Mengual L, Fernández M, Molinuevo JL, Antonell A, Martí MJ, Fernández-Santiago R, Ezquerra M (2014) Identification of blood serum micro-RNAs associated with idiopathic and LRRK2 Parkinson’s disease. J Neurosci Res 92:1071–1077

    Article  CAS  PubMed  Google Scholar 

  154. Pankratz N, Nichols WC, Uniacke SK, Halter C, Rudolph A, Shults C, Conneally PM, Foroud T, Parkinson Study Group (2003) Significant linkage of Parkinson disease to chromosome 2q36–37. Am J Hum Genet 72:1053–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Shimura H, Hattori N, Si K, Mizuno Y, Asakawa S, Minoshima S, Shimizu N, Iwai K, Chiba T, Tanaka K, Suzuki T (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nature 25:302–305

    CAS  Google Scholar 

  156. Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, González-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304:1158–1160

    Article  CAS  PubMed  Google Scholar 

  157. Le WD, Xu P, Jankovic J, Jiang H, Appel SH, Smith RG, Vassilatis DK (2003) Mutations in NR4A2 associated with familial Parkinson disease. Nat Genet 33:85–89

    Article  CAS  PubMed  Google Scholar 

  158. Le WD, Appel SH (2004) Mutation genes responsible for Parkinson disease. Curr Opin Pharmacol 4:79–84

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dey, S., Rai, N., Shekhar, S., Singh, A.P., Agnihotri, V. (2019). Molecular Marker and Therapeutic Regimen for Neurodegenerative Diseases. In: Rath, P. (eds) Models, Molecules and Mechanisms in Biogerontology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3585-3_2

Download citation

Publish with us

Policies and ethics