Skip to main content

Integration and Scheduling of Core Modules

  • Chapter
  • First Online:
Brain-Inspired Intelligence and Visual Perception

Part of the book series: Research on Intelligent Manufacturing ((REINMA))

  • 641 Accesses

Abstract

In this chapter, a theoretical framework of brain-inspired intelligence is finally established in synergetical implementation of the vision–brain, including the geospatial modeling (seen), the robotic integrated intelligence (understanding) and the brain-inspired decision system (response). For a better interpretation of these core modules and for the convenience of readers’ understanding, the planetary exploration wheeled mobile robot is employed as an example and double-layer human–machine interfaces are utilized to display how the vision–brain will function in the future. Based on the vision–brain hypothesis and the results of Chaps. 3 and 4, in order to solve a robot path-planning problem and decide an optimal path to the targets or regions of interest, obstacle avoidance through a geospatial modeling is essentially necessary. Scheduling of core modules can be further interpreted as a hierarchical cooperation process of the vision–brain with other technological modules. Alternatively, the architecture of a vision–brain can be interpreted as three-layer intelligence—seen, understanding and response. Such multilayer architecture of brain-inspired intelligence makes a better chance for extending related technologies, supporting the R&D of tele-operated machine intelligence , and has a universal significance for any future intelligent systems, especially for improving the cognition efficiency and robustness of a machine brain through a scene understanding .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Soviet Union lunar rovers. [Online]. Available: http://lroc.sese.asu.edu/news/index.php?/archives/198-Soviet-Union-Lunar-Rovers.html

  2. JPL, NASA/JPL Mars Pathfinder. [Online]. Available: http://marsprogram.jpl.nasa.gov/MPF/

  3. JPL, NASA/JPL Mars Exploration Rover Mission. [Online]. Available: http://marsrovers.jpl.nasa.gov/home/index.html

  4. S.W. Squyres, A.H. Knoll, R.E. Arvidson et al., Exploration of Victoria crater by the Mars rover opportunity. Science 324(5930), 1058–1061 (2009)

    Article  Google Scholar 

  5. S.W. Squyres, R.E. Arvidson, J.F. Bell III et al., The Spirit rover’s Athena science investigation at Gusev Crater, Mars. Science 305(5685), 794–799 (2004)

    Article  Google Scholar 

  6. JPL, Mars Science Laboratory–Curiosity: NASA’s next Mars rover. [Online]. Available: http://www.nasa.gov/mission_pages/msl/

  7. ESA, ExoMars Mission. [Online]. Available: http://www.esa.int/SPECIALS/ExoMars/SEM10VLPQ5F_0.html

  8. Z.Z. Sun, Y. Jia, H. Zhang, Technological advancements and promotion roles of Chang’e-3 lunar probe mission. Sci. China Tech. Sci. 56(11), 2702–2708 (2013)

    Article  Google Scholar 

  9. JAXA. Moon lander SELENE 2. [Online]. Available: http://www.jspec.jaxa.jp/e/activity/selene2.html

  10. NASA, Solar System exploration–the 2006 Solar System exploration roadmap for NASA’s science mission directorate. [Online]. Available: http://www.lpi.usra.edu/vexag/road_map_final.pdf (2006, Sept)

  11. S. Hayati, R. Volpe, P. Backes et al., in The Rocky 7 Rover: A Mars Sciencecraft Prototype. Proceedings of the IEEE International Conference on Robotics and Automation (IEEE, Albuquerque, NM, USA, 1997), pp. 2458–2464

    Google Scholar 

  12. Y. Zheng, Z. Ouyang, C. Li et al., China’s Lunar Exploration Program: present and future. Planet. Space Sci. 56(7), 881–886 (2008)

    Article  Google Scholar 

  13. M. Maimone, J. Biesiadecki, E. Tunstel et al., Surface navigation and mobility intelligence on the Mars exploration rovers, in Intelligence for Space Robotics, ed. by A.M. Howard, E.W. Tunstel (TX, USA, San Antonio, 2006)

    Google Scholar 

  14. M. Bajracharya, M.W. Maimone, D. Helmick, Autonomy for Mars rovers: past, present, and future. Computer 41(12), 44–50 (2008)

    Article  Google Scholar 

  15. M.W. Maimone, P.C. Leger, J.J. Biesiadecki, in Overview of the Mars exploration rovers’ autonomous mobility and vision capabilities. Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Space Robotics Workshop. Roma, Italy, 2007

    Google Scholar 

  16. A. Montferrer, D. Bonyuet, Cooperative robot teleoperation through virtual reality interfaces, in Proceedings of the Sixth International Conference on Information Visualization (2002), pp. 243–248

    Google Scholar 

  17. P.G. Backes, G.K. Tharp, K.S. Tso, in The Web Interface for Telescience (WITS). Proceedings of the IEEE International Conference on Robotics and Automation (IEEE, Albuquerque, NM, USA, 1997), pp. 411–417

    Google Scholar 

  18. J.R. Wright, F.R. Hartman, B.K. Cooper et al., Driving on Mars with RSVP: building safe and effective command sequences. IEEE Robot. Autom. Mag. 13(2), 37–45 (2006)

    Article  Google Scholar 

  19. K. Young, Mars rover escapes from the “Bay of Lamentation”. 2006. [Online]. Available: http://www.newscientist.com/article/dn9286-mars-rover-escapes-from-the-bay-of-lamentation.html

  20. L. Ding, H.B. Gao, Z.Q. Deng et al., in Design of Comprehensive High-Fidelity/High-Speed Virtual Simulation System for Lunar Rover. Proceedings of IEEE Conference on Robotics, Automation and Mechatronics. Chengdu, China, 2008

    Google Scholar 

  21. D. Dvorak, G. Bollella, T. Canham et al., in Project Golden Gate: Towards Real-Time Java in Space Missions. Proceedings of the Seventh IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (IEEE, Vienna, Austria, 2004), pp. 15–22

    Google Scholar 

  22. JPL, Mars exploration rovers objectives. [Online]. Available: http://marsrover.nasa.gov/science/objectives.html

  23. JPL, Mars Science Laboratory contribution to Mars Exploration Program science goals, [Online]. Available: http://mars.jpl.nasa.gov/msl/mission/science/goals/

  24. ESA, Scientific objectives of the ExoMars Rover, [Online]. Available: http://exploration.esa.int/science-e/www/object/index.cfm?fobjectid=45082

  25. C.R. Neal, The Moon 35 years after Apollo: what’s left to learn? Chem. Erde-Geochem 69(1), 3–43 (2009)

    Article  MathSciNet  Google Scholar 

  26. S. Tanaka, T. Mitani, Y. Iijima et al., The Science Objectives of Japanese Lunar Lander Project SELENE-II. Proceedings of the 42nd Lunar and Planetary Science Conference. The Woodlands, TX, USA, 2011

    Google Scholar 

  27. D.F. Blake, R.V. Morris, G. Kocurek et al., Curiosity at Gale Crater, Mars: characterization and analysis of the rocknest sand shadow. Science 341(6153), 1239505 (2013)

    Article  Google Scholar 

  28. Wikipedia, Curiosity (rover). [Online]. Available: http://en.wikipedia.org/wiki/Curiosity_(rover)#cite_note-MSLUSAToday-16

  29. Harbin Institute of Technology (HIT), The Lunar Rover prototype exhibited in Zhuhai Airshow, the locomotion system of which was developed by HIT. 2006. [Online]. Available: http://today.hit.edu.cn/articles/2006/11-08/11132413.htm

  30. E. Baumgartner E, Bonitz R, Melko J, et al., in The Mars Exploration Rover Instrument Positioning System. Proceedings of the 2005 IEEE Aerospace Conference (IEEE, Big Sky, MT, USA, 2005), pp. 1–19

    Google Scholar 

  31. C.C. Leger, A. Trebi-Ollennu, J.R. Wright et al., Mars Exploration Rover Surface Operations: Driving Spirit at Gusev Crater. Proceedings of the 2005 IEEE International Conference on Systems, Man and Cybernetics (IEEE, Big Sky, MT, USA, 2005), pp. 1815–1822

    Google Scholar 

  32. JPL, MSL Science corner. [Online]. Available: http://msl-scicorner.jpl.nasa.gov/

  33. R. Volpe, I. Nesnas, T. Estlin et al., in The CLARAty architecture for robotic autonomy. Proceedings of the IEEE Aerospace Conference (IEEE, Big Sky, MT, USA, 2001), pp. 1121–1132

    Google Scholar 

  34. I.A.D. Nesnas, S. Reid, G. Danie et al., CLARAty: Challenges and steps toward reusable robotic software. Int. J. Adv. Robot Syst. 3(1), 23–30 (2006)

    Article  Google Scholar 

  35. F.R. Hartman, B. Cooper, C. Leger et al., in Data Visualization for Effective rover Sequencing. Proceedings of the 2005 IEEE Aerospace Conference (IEEE, Big Sky, MT, USA, 2005), pp. 1378–1383

    Google Scholar 

  36. J. Yen, A. Jain, J. Balaram, in ROAMS: Rover Analysis Modeling and Simulation Software. Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space (ESTEC, Noordwijk, The Netherlands, 1999)

    Google Scholar 

  37. R. Volpe, in Rover Functional Autonomy Development for the Mars Mobile Science Laboratory. Proceedings of the IEEE Aerospace Conference (IEEE, Big Sky, Montana, USA, 2003), pp. 643–652

    Google Scholar 

  38. M.P. Golombek, R.C. Anderson, J.R. Barnes, Overview of the Mars Pathfinder mission: launch through landing, surface operations, data sheets, and science results. J. Geophys. Res. 104(E4), 8523–8553 (1999)

    Article  Google Scholar 

  39. V.M. Richard, W.R. Steven, G. Ralf et al., Identification of Carbonate-rich outcrops on Mars by the Spirit rover. Science 329(5990), 421–424 (2010)

    Article  Google Scholar 

  40. S.W. Squyres, A.H. Knoll, R.E. Arvidson et al., Two years at Meridiani Planum: results from the Opportunity rover. Science 313(1403), 1403–1407 (2006)

    Article  Google Scholar 

  41. K.E. Herkenhoff, S.W. Squyres, R.E. Arvidson et al., Evidence from Opportunity’s Microscopic imager for water on Meridiani Planum. Science 306(5702), 1727–1730 (2004)

    Article  Google Scholar 

  42. J.F. Bell III, S.W. Squyres, R.E. Arvidson et al., Pancam multispectral imaging results from the Spirit Rover at Gusev Crater. Science 305(5685), 800–806 (2004)

    Article  Google Scholar 

  43. M.P. Golombek, R.E. Arvidson, J.F. Bell III et al., Assessment of Mars exploration rover landing site predictions. Nature 436, 44–48 (2005)

    Article  Google Scholar 

  44. Rover Team, Characterization of the Martian surface deposits by the Mars Pathfinder rover, Sojourner. Science 278(5344), 1765–1767 (1997)

    Article  Google Scholar 

  45. R.L. Fergason, P.R. Christensen, J.F. Bell III et al., Physical properties of the Mars Exploration Rover landing sites as inferred from Mini-TES-derived thermal inertia. J. Geophys. Res. 111(2) (2006)

    Article  Google Scholar 

  46. R.E. Arvidson, R.C. Anderson, J.F. Bell III et al., Localization and physical properties experiments conducted by Opportunity at Meridiani Planum. Science 306(5702), 1730–1733 (2004)

    Article  Google Scholar 

  47. R.E. Arvidson, R.C. Anderson, P. Bartlett et al., Localization and physical properties experiments conducted by Spirit at Gusev Crater. Science 305(5685), 821–824 (2004)

    Article  Google Scholar 

  48. J.J. Biesiadecki, E.T. Baumgartner, R.G. Bonitz et al., Mars Exploration Rover surface operations: driving Opportunity at Meridiani Planum. IEEE Robot. Autom. Mag. 13(2), 63–71 (2006)

    Article  Google Scholar 

  49. JPL, User interfaces. [Online]. Available: http://www-robotics.jpl.nasa.gov/applications/applicationArea.cfm?App=11

  50. R. Alami, R. Chatila, S. Fleury et al., An architecture for autonomy. Int. J. Robot. Res. 17(4), 315–337 (1998)

    Article  Google Scholar 

  51. T. Estlin, D. Gaines, B. Bornstein et al., in Supporting increased autonomy for a Mars rover. Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space. Hollywood, USA, 2008

    Google Scholar 

  52. F. Ingrand, S. Lacroix, S. Lemai-Chenevier et al., Decisional autonomy of planetary rovers. J. Field Robot. 24(7), 559–580 (2007)

    Article  Google Scholar 

  53. R. Volpe, I. Nesnas, T. Estlin et al., CLARAty: Coupled Layer Architecture for Robotic Autonomy. NASA, Jet Propulsion Laboratory, Pasadena, CA, USA, Technical Report D–19975, 2000

    Google Scholar 

  54. D. Lutz, New Mars rover’s mechanics to be used to study Martian soil properties. [Online]. Available: http://news.wustl.edu/news/pages/23139.aspx (2012)

  55. K. Iagnemma, Terrain estimation methods for enhanced autonomous rover mobility, in Intelligence for Space Robotics, ed. by A.M. Howard, E.W. Tunstel (TX, USA, San Antonio, 2006)

    Google Scholar 

  56. K. Iagnemma, S. Kang, H. Shibly et al., Online terrain parameter estimation for wheeled mobile robots with application to planetary rovers. IEEE Trans. Robot. 20(5), 921–927 (2004)

    Article  Google Scholar 

  57. L.E. Ray, Estimation of terrain forces and parameters for rigid-wheeled vehicles. IEEE Trans. Robot. 25(3), 717–726 (2009)

    Article  Google Scholar 

  58. L. Ding, K. Yoshida, K. Nagatani et al., Parameter Identification for Planetary Soil Based on a Decoupled Analytical Wheel–Soil Interaction Terramechanics Model. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, St. Louis, MO, USA, 2009), pp. 4122–4127

    Google Scholar 

  59. L. Ding, H. Gao, Z. Deng et al., An approach of identifying mechanical parameters for lunar soil based on integrated wheel–soil interaction terramechanics model of rovers (in Chinese). Acta Aeronaut. Astronaut. Sin. 32(6), 1112–1123 (2011)

    Google Scholar 

  60. L. Ojeda, D. Cruz, G. Reina et al., Current-based slippage detection and odometry correction for mobile robots and planetary rovers. IEEE Trans. Robot. 22(2), 366–378 (2006)

    Article  Google Scholar 

  61. D. Dumond, Terrain classification using proprioceptive sensors. Ph.D. dissertation, Thayer School of Engineering, Dartmouth College, Hanover, NH, USA, 2011

    Google Scholar 

  62. C.A. Brooks, K. Iagnemma, Vibration-based terrain classification for planetary exploration rovers. IEEE Trans. Robot. 21(6), 1185–1191 (2005)

    Article  Google Scholar 

  63. A. Angelova, L. Matthies, D. Helmick et al., Learning and prediction of slip from visual information. J. Field Robot. 24(3), 205–231 (2007)

    Article  Google Scholar 

  64. J.J. Leonard, H.F. Durrant-Whyte, in Simultaneous map building and localization for an autonomous mobile robot. Proceedings of the IEEE/RSJ International Workshop on Intelligent Robots and Systems (IEEE, Osaka, Japan, 1991), 1442–1447

    Google Scholar 

  65. H.F. Durrant-Whyte, T. Bailey, Simultaneous localization and mapping: part I. IEEE Robot. Autom. Mag. 13(2), 99–110 (2006)

    Article  Google Scholar 

  66. M.W.M.G. Dissanayake, P. Newman, S. Clark et al., A solution to the simultaneous localisation and map building (SLAM) problem. IEEE Trans. Robot. Autom. 17(3), 229–241 (2006)

    Article  Google Scholar 

  67. A.J. Davison, N. Kita, in 3D Simultaneous Localization and Map-Building Using Active Vision for a Robot Moving on Undulating Terrain. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, Kauai, HI, USA, 2011)

    Google Scholar 

  68. A.J. Davison, in Real-TIME Simultaneous Localisation and Mapping with a Single Camera. Proceedings of the Ninth IEEE International Conference on Computer Vision, pp. 384–391. Nice, France, 2003

    Google Scholar 

  69. L. Matthies, M. Maimone, A. Johnson et al., Computer vision on Mars. Int. J. Comput. Vision 75(1), 67–92 (2007)

    Article  Google Scholar 

  70. Y. Cheng, M.W. Maimone, L. Matthies, Visual odometry on the Mars exploration rovers-a tool to ensure accurate driving and science imaging. IEEE Robot. Autom. Mag. 13(2), 54–62 (2006)

    Article  Google Scholar 

  71. M. Maimone, Y. Cheng, L. Matthies, Two years of Visual Odometry on the Mars Exploration Rovers. J. Field Robot. 24(3), 169–186 (2007)

    Article  Google Scholar 

  72. C.A. Brooks, K. Iagnemma, Self-supervised terrain classification for planetary surface exploration rovers. J. Field Robot. 29(3), 445–468 (2012)

    Article  Google Scholar 

  73. L. Ojeda, J. Borenstein, G. Witus et al., Terrain characterization and classification with a mobile robot. J. Field Robot. 23(2), 103–122 (2006)

    Article  MATH  Google Scholar 

  74. D.B. Gennery, Traversability analysis and path planning for a planetary rover. Auton. Robots 6(2), 131–146 (1999)

    Article  Google Scholar 

  75. S. Lacroix, A. Mallet, D. Bonnafous, Autonomous rover navigation on unknown terrains: functions and integration. Int. J. Robot. Res. 21(10–11), 917–942 (2002)

    Article  Google Scholar 

  76. S. Chhaniyara, C. Brunskill, B. Yeomans et al., Terrain trafficability analysis and soil mechanical property identification for planetary rovers: a survey. J. Terramech. 49(2), 115–128 (2012)

    Article  Google Scholar 

  77. K. Iagnemma, F. Genot, S. Dubowsky, in Rapid Physics-Based Rough-Terrain Rover Planning with Sensor and Control Uncertainty. Proceedings of IEEE International Conference on Robotics and Automation. Detroit, MI, USA, 1999

    Google Scholar 

  78. G. Ishigami, K. Nagatani, K. Yoshida, in Path Planning for Planetary Exploration Rovers and Its Evaluation Based on Wheel Slip Dynamics. Proceedings of the IEEE International Conference on Robotics and Automation (IEEE, Roma, Italy, 2007), pp. 2361–2366

    Google Scholar 

  79. T.M. Howard, A. Kelly, Optimal rough terrain trajectory generation for wheeled mobile robots. Int. J. Robot. Res. 26(2), 141–166 (2007)

    Article  Google Scholar 

  80. J.H. Kim, Y.H. Kim, S.H. Choi et al., Evolutionary multi-objective optimization in robot soccer system for education. IEEE Comput. Intell. Mag. 4(1), 31–41 (2009)

    Article  Google Scholar 

  81. M. Tarokh, Hybrid intelligent path planning for articulated rovers in rough terrain. Fuzzy Set Syst. 159(21), 2927–2937 (2008)

    Article  MathSciNet  Google Scholar 

  82. N. Noguchi, H. Terao, Path planning of an agricultural mobile robot by neural network and genetic allgorithm. Comput. Electron. Agr. 18(2–3), 187–204 (1997)

    Article  Google Scholar 

  83. I. Kolmanovsky, N.H. McClamroch, Development in nonholonomic control problems. IEEE Contr. Syst. Mag. 15(6), 20–36 (1995)

    Article  Google Scholar 

  84. P. Morin, C. Samson, Control of nonholonomic mobile robots based on the transverse function approach. IEEE Trans. Robot. 25(5), 1058–1073 (2009)

    Article  Google Scholar 

  85. K. Iagnemma, H. Shibly, A. Rzepniewski et al., Planning and Control Algorithms for Enhanced Rough-Terrain Rover Mobility. Proceedings of the 6th International Symposium on Artificial Intelligence and Robotics & Automation in Space. St-Hubert, Quebec, Canada, 2001

    Google Scholar 

  86. G. Ishigami, A. Miwa, K. Nagatani, K. Yoshida, Terramechanics-based model for steering maneuver of planetary exploration rovers on loose soil. J. Field Robot. 24(3), 233–250 (2007)

    Article  Google Scholar 

  87. L. Ding, H.B. Gao, Z.Q. Deng et al., Path-following control of wheeled planetary exploration robots moving on deformable rough terrain. Sci. World J. Article ID 793526 (2014). http://dx.doi.org/10.1155/2014/793526

  88. D.M. Helmick, Y. Cheng, D. Clouse et al., in Path following using visual odometry for a Mars rover in high-slip environments. Proceedings of the IEEE Aerospace Conference (IEEE, Big Sky, MT, USA, 2004), pp. 772–789

    Google Scholar 

  89. D.M. Helmick, S.I. Roumeliotis, Y. Cheng et al., Slip-compensated path following for planetary exploration rovers. Adv. Robot. 20(11), 1257–1280 (2006)

    Article  Google Scholar 

  90. G. Ishigami, K. Nagatani, K. Yoshida, in Path following control with slip compensation on loose soil for exploration rover. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, Beijing, China, 2006), pp. 5552–5557

    Google Scholar 

  91. L. Ding, H.B. Gao, Z.Q. Deng et al., Slip-Ratio-Coordinated Control of Planetary Exploration Robots Traversing over Deformable Rough Terrain. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, Taipei, China, 2010), pp. 4958–4963

    Google Scholar 

  92. L. Ding, Wheel–soil interaction terramechanics for lunar/planetary exploration rovers: modeling and application (in Chinese). Ph.D. thesis, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, China, 2009

    Google Scholar 

  93. K. Xia, Research on tracking control of mobile robot based on wheel–soil interaction modeling (in Chinese). Master dissertation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, China, 2009

    Google Scholar 

  94. D.W. Wang, C.B. Low, Modeling and analysis of skidding and slipping in wheeled mobile robots: control design perspective. IEEE Trans. Robot. 24(3), 676–687 (2008)

    Article  Google Scholar 

  95. L. Ding, H.B. Gao, J.L. Guo et al., in Terramechanics-Based Analysis of Slipping and Skidding for Wheeled Mobile Robots. Proceedings of the 31st Chinese Control Conference (IEEE, Heifei, China, 2012), pp. 4966–4973

    Google Scholar 

  96. L. Ding, H.B. Gao, Z.Q. Deng et al., Advances in simulation of planetary wheeled mobile robots, in Mobile Robots-Current Trends, ed. by Z. Gacovski (InTech Press, Rijeka, Croatia, 2011), pp. 375–402

    Google Scholar 

  97. J. Yen, A. Jain, J. Balaram, in ROAMS: Rover Analysis Modeling and Simulation Software. Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space (ESTEC, Noordwijk, The Netherlands, 1999)

    Google Scholar 

  98. T. Estlin, D. Gaines, B. Bornstein et al., in Supporting Increased Autonomy for a Mars Rover. Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space. Hollywood, USA, 2008

    Google Scholar 

  99. F. Zhou, R.E. Arvidson, K. Bennett et al., Simulations of Mars rover traverses. J. Field Robot. 31(1), 141–160 (2014)

    Article  Google Scholar 

  100. B. Schäfer, A. Gibbesch, R. Krenn et al., Planetary rover mobility simulation on soft and uneven terrain. Vehicle Syst. Dyn. 48(1), 149–169 (2010)

    Article  Google Scholar 

  101. L. Ding, K. Nagatani, K. Sato et al., in Terramechanics-Based High-Fidelity Dynamics Simulation for Wheeled Mobile Robot on Deformable Rough Terrain. Proceedings of the IEEE International Conference on Robotics and Automation (IEEE, Anchorage, Alaska, USA, 2010), pp. 4922–4927

    Google Scholar 

  102. J. Wright, F.R. Hartman, B. Cooper et al., in Terrain Modeling for Immersive Visualization for the Mars Exploration Rovers. Proceedings of the SpaceOps. Montreal, Canada, 2004

    Google Scholar 

  103. P.C. Leger, R.G. Deen, R.G. Bonitz, in Remote Image Analysis for Mars Exploration Rover Mobility and Manipulation Operations. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (IEEE, Hawaii, USA, 2005), pp. 917–922

    Google Scholar 

  104. A.D. Griffiths, A.J. Coates, R. Jaumann et al., Context for the ESA ExoMars rover: the Panoramic Camera (PanCam) instrument. Int. J. Astrobiol. 5(3), 269–275 (2006)

    Article  Google Scholar 

  105. I. Rekleitis, J. Bedwani, E. Dupuis, in Autonomous Planetary Exploration Using LiDAR Data. Proceedings of the IEEE International Conference on Robotics and Automation (IEEE, Kobe, Japan, 2009), pp. 3025–3030

    Google Scholar 

  106. P.J.F. Carle, P.T. Furgale, T.D. Barfoot, Long-range rover localization by matching LIDAR scans to orbital elevation maps. J. Field Robot. 27(3), 344–370 (2010)

    Google Scholar 

  107. K. Yoshida, The SpaceDyn: a MATLAB toolbox for space and mobile robots. JRM 12(4), 411–416 (2000)

    Article  Google Scholar 

  108. L. Ding, Z.Q. Deng, H.B. Gao et al., Experimental study and analysis of the wheels’ steering mechanics for planetary exploration WMRs moving on deformable terrain. Int. J. Robot. Res. 32(6), 712–743 (2013)

    Article  Google Scholar 

  109. M.G. Bekker, Introduction to Terrain-Vehicle (The University of Michigan Press, Ann Arbor, MI, USA, 1969)

    Google Scholar 

  110. J.Y. Wong, Terramechanics and Off-Road Vehicle Engineering, 2nd edn (Elsevier, 2010)

    Google Scholar 

  111. L. Ding, Z.Q. Deng, H.B. Gao et al., Planetary rovers’ wheel–soil interaction mechanics: new challenges and applications for wheeled mobile robots. Intell. Serv. Robot. 4(1), 17–38 (2011)

    Article  Google Scholar 

  112. L. Ding, H.B. Gao, Z.Q. Deng et al., Experimental study and analysis on driving wheels’ performance for planetary exploration rovers moving in deformable soil. J. Terramech. 48(1), 27–45 (2010)

    Article  Google Scholar 

  113. L. Ding, H.B. Gao, Z.Q. Deng et al., Wheel slip-sinkage and its prediction model of lunar rover. J. Cent. South Univ. Technol. 17(1), 129–135 (2010)

    Article  Google Scholar 

  114. L. Ding, Z.Q. Deng, H.B. Gao et al., Interaction mechanics model for rigid driving wheels of planetary rovers moving on sandy terrain with consideration of multiple physical effects. J. Field Robot. (2014). https://doi.org/10.1002/rob.21533

    Article  Google Scholar 

  115. G. Meirion-Griffith, M. Spenko, A modified pressure–sinkage model for small, rigid wheels on deformable terrains. J. Terramech. 48(2), 149–155 (2011)

    Article  Google Scholar 

  116. R.A. Irani, R.J. Bauer, A. Warkentin, A dynamic terramechanic model for small lightweight vehicles with rigid wheels and grousers operating in sandy soil. J. Terramech. 48(4), 307–318 (2011)

    Article  Google Scholar 

  117. H.B. Gao, J.L. Guo, L. Ding et al., Longitudinal skid model for wheels of planetary exploration rovers based on terramechanics. J Terramech. 50(5), 327–343 (2013)

    Article  Google Scholar 

  118. L. Ding, H.B. Gao, Z.Q. Deng et al., in Longitudinal Slip Versus Skid of Planetary Rovers’ Wheels Traversing on Deformable Slopes. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2842–2848. Tokyo, Japan, 2013

    Google Scholar 

  119. H. Shibly, K. Iagnemma, S. Dubowsky, An equivalent soil mechanics formulation for rigid wheels in deformable terrain, with application to planetary exploration rovers. J. Terramech. 42(1), 1–13 (2005)

    Article  Google Scholar 

  120. L. Ding, H.B. Gao, Y.K. Li et al., Improved explicit-form equations for estimating dynamic wheel sinkage and compaction resistance on deformable terrain. Mech. Mach. Theory 86, 235–264 (2015)

    Article  Google Scholar 

  121. S.P. Guo, D.X. Li, Y.H. Meng et al., Task space control of free-floating space robots using constrained adaptive RBF-NTSM. Sci. China Technol. Sci. 57(4), 828–837 (2014)

    Article  Google Scholar 

  122. H.C. Zhuang, H.B. Gao, Z.Q. Deng et al., A review of heavy-duty legged robots. Sci. China Technol. Sci. 57(2), 298–314 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenfeng Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Huazhong University of Science and Technology Press, Wuhan and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, W., Deng, X., Ding, L., Zhang, L. (2020). Integration and Scheduling of Core Modules. In: Brain-Inspired Intelligence and Visual Perception. Research on Intelligent Manufacturing. Springer, Singapore. https://doi.org/10.1007/978-981-13-3549-5_5

Download citation

Publish with us

Policies and ethics