Skip to main content

Introduction of Brain Cognition

  • Chapter
  • First Online:

Part of the book series: Research on Intelligent Manufacturing ((REINMA))

Abstract

This chapter analyzes brain mechanisms for launching the attention to video information, describes swarm intelligence to consciously and proactively implement these mechanisms and advances the concepts of “brain-inspired object detection ” and “brain-inspired compressive tracking ,” respectively. Algorithms for swarm intelligence are interpreted as an integration of deep learning with target impulse responses, defining the selected objects in videos for tracking as eigenobjects . Such swarm intelligence achieves the robustness, accuracy and speed simultaneously, as preliminarily validated on challenging data under the unmanned driving scene. Brain mechanisms for a selective cognition to locate eigenobjects and mechanism for the motion tracking are illustrated, taking detection and tracking of dangerous objects as an example. Based on the biological mechanisms, mechanisms for the eigenobjects detection and its motion tracking by brain-inspired robots are analyzed, along with a sketch of the scheme to implement biological mechanisms in integration models. The perspective applications of compressive tracking by brain-inspired robots are preliminarily discussed, and at the end of this chapter, the outline of this book is also presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J.W. Davis, A.M. Morison, D.D. Woods, An adaptive focus-of-attention model for video surveillance and monitoring. Mach. Vis. Appl. 18(1), 41–64 (2007)

    Article  Google Scholar 

  2. A. Borji, D.N. Sihite, L. Itti, Salient object detection: a benchmark. IEEE Trans. Image Process. 24(12), 5706–5722 (2015)

    Article  MathSciNet  Google Scholar 

  3. H. Schneiderman, T. Kanade, Object detection using the statistics of parts. Int. J. Comput. Vision 56(3), 151–177 (2004)

    Article  Google Scholar 

  4. P. Felzenszwalb, R. Girshick, D. Mcallester et al., Visual object detection with deformable part models. Commun. ACM 56(9), 97–105 (2013)

    Article  Google Scholar 

  5. C. Papageorgiou, T. Poggio, A trainable system for object detection. Int. J. Comput. Vision 38(1), 15–33 (2000)

    Article  MATH  Google Scholar 

  6. A. Torralba, Contextual priming for object detection. Int. J. Comput. Vision 53(2), 169–191 (2003)

    Article  MathSciNet  Google Scholar 

  7. B. Leibe, A. Leonardis, B. Schiele, Robust object detection with interleaved categorization and segmentation. Int. J. Comput. Vision 77(1), 259–289 (2008)

    Article  Google Scholar 

  8. V. Ferrari, F. Jurie, C. Schmid, From images to shape models for object detection. Int. J. Comput. Vision 87(3), 284–303 (2010)

    Article  Google Scholar 

  9. H. Kirchner, S.J. Thorpe, Ultra-rapid object detection with saccadic eye movements: visual processing speed revisited. Vision Res. 46(11), 1762–1776 (2006)

    Article  Google Scholar 

  10. Z. Sun, G. Bebis, R. Miller, Object detection using feature subset selection. Pattern Recogn. 37(11), 2165–2176 (2004)

    Article  Google Scholar 

  11. J.L. Crespo, A. Faiña, R.J. Duro, An adaptive detection/attention mechanism for real time robot operation. Neurocomputing 72(4–6), 850–860 (2009)

    Article  Google Scholar 

  12. B. Webb, Swarm intelligence: from natural to artificial systems. Connection Sci. 14(2), 163–164 (2002)

    Article  Google Scholar 

  13. E. Bonabeau, C. Meyer, Swarm intelligence. A whole new way to think about business. Harvard Bus. Rev. 79(5), 106–114 (2001)

    Google Scholar 

  14. M. Dorigo, M. Birattari, C. Blum, Ant Colony Optimization and Swarm Intelligence, vol. 49(8). (Springer Verlag, 1995), pp. 767–771

    Google Scholar 

  15. S. Garnier, J. Gautrais, G. Theraulaz, The biological principles of swarm intelligence. Swarm Intell. 1(1), 3–31 (2007)

    Article  Google Scholar 

  16. M. Dorigo, M. Birattari, C. Blum, et al., in Ant Colony Optimization and Swarm Intelligence. 4th International Workshop, ANTS 2004, Brussels, Belgium, September 5–8, 2004. Lecture Notes in Computer Science, vol. 49(8). (2004), pp. 767–771

    Google Scholar 

  17. C.J. Wan, L.Q. Zhu, Y.H. Liu et al., Proton-conducting graphene oxide-coupled neuron transistors for brain-inspired cognitive systems. Adv. Mater. 28(3), 3557–3563 (2016)

    Article  Google Scholar 

  18. P. Gkoupidenis, D.A. Koutsouras, T. Lonjaret et al., Orientation selectivity in a multi-gated organic electrochemical transistor. Sci. Rep. 6, 27007 (2016)

    Article  Google Scholar 

  19. X. Liu, Y. Zeng, T. Zhang et al., Parallel brain simulator: a multi-scale and parallel brain-inspired neural network modeling and simulation platform. Cogn. Comput. 1–15 (2016)

    Google Scholar 

  20. R. Velik, A brain-inspired multimodal data mining approach for human activity recognition in elderly homes. J. Ambient Intell. Smart Environ. 6(4), 447–468 (2014)

    Google Scholar 

  21. J.J. Wong, S.Y. Cho, A brain-inspired framework for emotion recognition. Magn. Reson. Imaging 32(9), 1139–1155 (2006)

    Google Scholar 

  22. M. Masdari, F. Salehi, M. Jalali et al., A survey of PSO-based scheduling algorithms in cloud computing. J. Netw. Syst. Manage. 1–37 (2016)

    Google Scholar 

  23. Q. Qiu, Z. Li, K. Ahmed et al., A neuromorphic architecture for context aware text image recognition. J. Signal Process. Syst. 84(3), 355–369 (2016)

    Article  Google Scholar 

  24. J. Basiri, F. Taghiyareh, in Introducing a Socio-Inspired Swarm Intelligence Algorithm for Numerical Function Optimization. International Econference on Computer and Knowledge Engineering. (2014), pp. 462–467

    Google Scholar 

  25. H. Qiu, H. Duan, Y. Shi, A decoupling receding horizon search approach to agent routing and optical sensor tasking based on brain storm optimization. Optik—Int. J. Light Electron Opt. 126(7–8), 690–696 (2015)

    Article  Google Scholar 

  26. S. Luo, H. Xia, T. Yoshida et al., Toward collective intelligence of virtual communities: a primitive conceptual model. J. Syst. Sci. Syst. Eng. 18(2), 203–221 (2010)

    Article  Google Scholar 

  27. G. Rozenberg, T. Bäck, J.N. Kok, Handbook of natural computing. Kybernetes 40(3/4), 20–69 (2012)

    MATH  Google Scholar 

  28. Z. Cao, X. Hei, L. Wang et al., An improved brain storm optimization with differential evolution strategy for applications of ANNs. Math. Probl. Eng. 2015(10), 1–18 (2015)

    Google Scholar 

  29. H. Xia, Z. Wang, S. Luo et al., in Toward a Concept of Community Intelligence: A View on Knowledge Sharing and Fusion in Web-Mediated Communities. IEEE International Conference on Systems, Man and Cybernetics. IEEE Xplore. (2008), pp. 88–93

    Google Scholar 

  30. S. Chawla, M. Manju, S. Singh, Computational intelligence techniques for wireless sensor network: review. Int. J. Comput. Appl. 118(14), 23–27 (2015)

    Google Scholar 

  31. J. Jiang, L. Zhang, Y. Wang, A brain-inspired face recognition framework. Int. Congr. 1291, 245–248 (2006)

    Article  Google Scholar 

  32. T. Morie, H. Miyamoto, A. Hanazawa, Brain-inspired visual processing for robust gesture recognition. Int. Congr. 1301, 31–34 (2007)

    Article  Google Scholar 

  33. G. Azzopardi, N. Petkov, COSFIRE: a brain-inspired approach to visual pattern recognition. Lect. Notes Comput. Sci. 8306, 76–87 (2014)

    Article  Google Scholar 

  34. Y. Zhang, Z.H. Zhou, Cost-sensitive face recognition. Computer Vision and Pattern Recognition, 2008 CVPR 2008. (2008), pp. 1–8

    Google Scholar 

  35. K. Zhang, L. Zhang, M.H. Yang, Real-Time Compressive Tracking. European Conference on Computer Vision. (2012), pp. 864–877

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenfeng Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Huazhong University of Science and Technology Press, Wuhan and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, W., Deng, X., Ding, L., Zhang, L. (2020). Introduction of Brain Cognition. In: Brain-Inspired Intelligence and Visual Perception. Research on Intelligent Manufacturing. Springer, Singapore. https://doi.org/10.1007/978-981-13-3549-5_1

Download citation

Publish with us

Policies and ethics