Skip to main content

Cross-Calibration of S-NPP/VIIRS and Tiangong-2/MAI Visible Channels Using the SNO Method

  • Conference paper
  • First Online:
Proceedings of the Tiangong-2 Remote Sensing Application Conference

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 541))

  • 632 Accesses

Abstract

The space laboratory “Tiangong-2” (TG-2) was launched on 15 September 2016. The Multi-Angle Polarization Imager (MAI), onboard TG-2, is the first visible and near-infrared multi-angle polarization imager developed in China. MAI can accomplish polarization observation from up to 14 different viewing angles, which is of great significance for relevant research on the microphysical characteristics of clouds and aerosols. Aimed at the problem of a lack of an onboard calibration device for MAI, to correct TG-2’s calibration coefficients in time, the Simultaneous Nadir Overpass (SNO) cross-calibration method is proposed as a reasonable and feasible method for MAI 565- and 670-nm channels. Data from the M4 and M5 channels of the Visible Infrared Imaging Radiometer Suite (VIIRS), with good calibration accuracy, are used as reference data, and a series of matching conditions and a spectral adjustment algorithm are specified. To apply the SNO method, eight groups of examples from December 2016 to February 2017 are selected, and a large number of matching pixel samples covering land, ocean surface, and cloud layers are obtained. The resulting cross-calibration curves between MAI 565-nm and VIIRS M4 channels, and between MAI 670-nm and VIIRS M5 channels, show correlation coefficients of reflectivity of 0.986 and 0.994, mean biases of 2.48% and 5.90%, and RMSEs of 3.56% and 6.95%, respectively. Overall, the cross-calibration method achieved good results, which are of reference significance to correct the laboratory calibration coefficient of MAI. The proposed method effectively solves the problems of MAI’s subsequent on-orbit monitoring and vicarious calibration, and also lays a foundation for later applications of MAI data in research on cloud and aerosol microphysical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wenbin, X., Xiaobing, Z., Weining, Y.: Cross-calibration method based on hyperspectral imager hyperion. Acta Opt. Sin. 33(5), 279–286 (2013)

    Article  Google Scholar 

  2. Guanhua, Z., He, J., Huijie, Z., et al.: Imaging spectrometry radiometric cross-calibration based on precise spectral response matching. Spectrosc. Spectr. Anal. 32(12), 3416–3421 (2012)

    Google Scholar 

  3. Chander, G., Hewison, T.J., Fox, N., et al.: Overview of intercalibration of satellite instruments. IEEE Trans. Geosci. Remote Sens. 51(3), 1056–1080 (2013)

    Article  Google Scholar 

  4. Xiong, X., Cao, C., Chander, G.: An overview of sensor calibration inter-comparison and applications. Front Earth Sci. China 4(2), 237–252 (2010)

    Article  Google Scholar 

  5. Boming, X.: Meteorological Satellite Payload Technology. China Astronautic Publishing House, Beijing (2005)

    Google Scholar 

  6. Heidinger, A.K., Cao, C., Sullivan, J.T.: Using moderate resolution imaging spectrometer (MODIS) to calibrate advanced very high resolution radiometer reflectance channels. J. Geophys. Res. Atmos. 107(D23), AAC-1-AAC 11-10 (2002)

    Google Scholar 

  7. Thome, K.J., Biggar, S.F., Wisniewski, W.: Cross comparison of EO-1 sensors and other earth resources sensors to Landsat-7 ETM+ using Railroad Valley Playa. IEEE Trans. Geosci. Remote Sens. 41(6), 1180–1188 (2003)

    Article  Google Scholar 

  8. Rao, C.R.N., Cao, C., Zhang, N.: Inter-calibration of the moderate-resolution imaging spectro radiometer and the along track scanning Radiometer-2. Int. J. Remote Sens. 24(9), 1913–1924 (2003)

    Article  Google Scholar 

  9. Meirink, J.F., Roebeling, R.A., Stammes, P.: Inter-calibration of polar imager solar channels using SEVIRI. Atmos. Meas. Tech. 6(9), 2495–2508 (2013)

    Article  Google Scholar 

  10. Xu, N., Chen, L., Wu, R., et al.: In-flight intercalibration of FY-3C visible channels with AQUA MODIS. In: SPIE Asia-Pacific Remote Sensing, International Society for Optics and Photonics, pp. 163–176 (2014)

    Google Scholar 

  11. Yu, F., Wu, X.: Radiometric inter-calibration between Himawari-8 AHI and S-NPP VIIRS for the solar reflective bands. Remote Sens. 8(3), 165 (2016)

    Article  Google Scholar 

  12. Junjie, G., Yaozhigang, H.Z., et al.: Airborne experiment of TG-2 multi-angle polarization imager for cloud phase identification. Remote Sens. Technol. Appl. 33(3), 439–448 (2018)

    Google Scholar 

  13. Lee, T.E., Miller, S.D., Turk, F.J., et al.: The NPOESS VIIRS day/night visible sensor. Bull. Am. Meteor. Soc. 87(2), 191–199 (2006)

    Article  Google Scholar 

  14. Xiong, X., Angal, A., Butler, J., et al.: Global space-based inter-calibration system reflective solar calibration reference: from Aqua MODIS to S-NPP VIIRS. In: SPIE Asia-Pacific Remote Sensing, p. 98811D (2016)

    Google Scholar 

  15. Goldberg, M., Ohring, G., Butler, J., et al.: The global space-based inter-calibration system. Bull. Am. Meteor. Soc. 92(4), 467–475 (2011)

    Article  Google Scholar 

  16. Xiong, X., Salomonson, V., Barnes, W., et al.: An overview of terra MODIS reflective solar bands on-orbit calibration. In: IEEE International Conference on Geoscience and Remote Sensing Symposium, pp. 1111–1114 (2006)

    Google Scholar 

  17. Lei, N., Wang, Z., Xiong, X.: On-orbit radiometric calibration of Suomi NPP VIIRS reflective solar bands through observations of a sunlit solar diffuser panel. IEEE Trans. Geosci. Remote Sens. 53(11), 5983–5990 (2015)

    Article  Google Scholar 

  18. Wolfe, R.E., Lin, G., Nishihama, M., et al.: Suomi NPP VIIRS prelaunch and on-orbit geometric calibration and characterization. J. Geophys. Res. Atmos. 118(20), 11508–11521 (2013)

    Article  Google Scholar 

  19. Vallado, D., Crawford, P.: SGP4 orbit determination. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, pp. 558–570 (2008)

    Google Scholar 

  20. O’Brien, D.M., Mitchell, R.M.: An error budget for cross-calibration of AVHRR shortwave channels against ATSR-2. Remote Sens. Environ. 75(2), 216–229 (2001)

    Article  Google Scholar 

  21. Chang, T., Xiong, X., Angal, A., et al.: Aqua and Terra MODIS RSB calibration comparison using BRDF modeled reflectance. IEEE Trans. Geosci. Remote Sens. 55(4), 2288–2298 (2017)

    Article  Google Scholar 

  22. Teillet, P.M., Fedosejevs, G., Thome, K.J., et al.: Impacts of spectral band difference effects on radiometric cross-calibration between satellite sensors in the solar-reflective spectral domain. Remote Sens. Environ. 110(3), 393–409 (2007)

    Article  Google Scholar 

  23. Chander, G., Mishra, N., Helder, D.L., et al.: Applications of spectral band adjustment factors (SBAF) for cross-calibration. IEEE Trans. Geosci. Remote Sens. 51(3), 1267–1281 (2013)

    Article  Google Scholar 

  24. Doelling, D.R., Lukashin, C., Minnis, P., et al.: Spectral reflectance corrections for satellite intercalibrations using SCIAMACHY data. IEEE Geosci. Remote Sens. Lett. 9(1), 119–123 (2011)

    Article  Google Scholar 

  25. Munro, R., Lang, R., Klaes, D., et al.: The GOME-2 instrument on the Metop series of satellites: instrument design, calibration, and level 1 data processing–an overview. Polym. Int. 8(8), 8645–8700 (2016)

    Google Scholar 

  26. Hagolle, O., Goloub, P., Deschamps, P.Y., et al.: Results of POLDER in-flight calibration. IEEE Trans Geosci. Remote. Sens. 37(3), 1550–1566 (1999)

    Article  Google Scholar 

  27. Fougnie, B., Bracco, G., Lafrance, B., et al.: PARASOL in-flight calibration and performance. Appl. Opt. 46(22), 5435–5451 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to China Manned Space Engineering for providing the MAI data products of Tiangong-2. This work was co-supported by the TG-2 Mission of the Manned Space Flight Project, the National Natural Science Foundation of China (NSFC41575031), and the China Postdoctoral Science Foundation (2015M580124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, J., Han, Z., Yao, Z., Zhao, Z., Guo, J. (2019). Cross-Calibration of S-NPP/VIIRS and Tiangong-2/MAI Visible Channels Using the SNO Method. In: Gu, Y., Gao, M., Zhao, G. (eds) Proceedings of the Tiangong-2 Remote Sensing Application Conference. Lecture Notes in Electrical Engineering, vol 541. Springer, Singapore. https://doi.org/10.1007/978-981-13-3501-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3501-3_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3500-6

  • Online ISBN: 978-981-13-3501-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics