Skip to main content

Influence of Crystal Phase and Orientation on Electrical Properties of InAs Nanowires

  • Chapter
  • First Online:
Electrical Properties of Indium Arsenide Nanowires and Their Field-Effect Transistors

Part of the book series: Springer Theses ((Springer Theses))

  • 295 Accesses

Abstract

In this chapter, a systematic study on the correlation of the electrical properties with the crystal phase and orientation of single-crystal InAs nanowires (NWs) grown by molecular-beam epitaxy. A new method is developed to allow the same InAs NW to be used for both the electrical measurements and transmission electron microscopy characterization. We find both the crystal phase, wurtzite (WZ) or zinc-blende (ZB), and the orientation of the InAs NWs remarkably affect the electronic properties of the field effect transistors based on these NWs, such as the threshold voltage (VT), ON-OFF ratio, subthreshold swing (SS) and effective barrier height at the off-state (ΦOFF). The SS increases while VT, ON-OFF ratio and ΦOFF decrease one by one in the sequence of WZ <0001>, ZB <131>, ZB <332>, ZB <121> and ZB <011>. The WZ InAs NWs have obvious smaller field-effect mobility, conductivities and electron concentration at VBG = 0 V than the ZB InAs NWs, these parameters are not sensitive to the orientation of the ZB InAs NWs. We also find the diameter ranging from 12 to 33 nm shows much less effect than the crystal phase and orientation on the electrical properties of the InAs NWs. The good ohmic contact between InAs NWs and metal remains regardless of the variation of the crystal phase and orientation through temperature dependent measurements. Our work promotes deeper understanding of InAs NWs and is important for the development of nanowire-based devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dick KA, Thelander C, Samuelson L et al (2010) Crystal phase engineering in single InAs nanowires. Nano Lett 10(9):3494–3499

    Article  ADS  Google Scholar 

  2. Trägårdh J, Persson AI, Wagner JB et al (2007) Measurements of the band gap of wurtzite InAs1−xPx nanowires using photocurrent spectroscopy. J Appl Phys 101(12):123701

    Article  ADS  Google Scholar 

  3. Dayeh SA, Susac D, Kavanagh KL et al (2009) Structural and room-temperature transport properties of zinc blende and wurtzite InAs nanowires. Adv Func Mater 19(13):2102–2108

    Article  Google Scholar 

  4. De A, Pryor CE (2010) Predicted band structures of III-V semiconductors in the wurtzite phase. Phys Rev B 81(15):155210

    Article  ADS  Google Scholar 

  5. Thelander C, Caroff P, Plissard SB et al (2011) Effects of crystal phase mixing on the electrical properties of InAs nanowires. Nano Lett 11(6):2424–2429

    Google Scholar 

  6. Ullah AR, Joyce HJ, Burke AM et al (2013) Electronic comparison of InAs wurtzite and zincblende phases using nanowire transistors. Physica Status Solidi—Rapid Res Lett 7(10):911–914

    Google Scholar 

  7. Hjort M, Lehmann S, Knutsson J et al (2014) Electronic and structural differences between wurtzite and zinc blende InAs nanowire surfaces: experiment and theory. ACS Nano 8(12):12346–12355

    Article  Google Scholar 

  8. Ning F, Tang L-M, Zhang Y et al (2013) First-principles study of quantum confinement and surface effects on the electronic properties of InAs nanowires. J Appl Phys 114(22):224304

    Article  ADS  Google Scholar 

  9. Shimoida K, Yamada Y, Tsuchiya H et al (2013) Orientational dependence in device performances of InAs and Si nanowire MOSFETs under ballistic transport. IEEE Trans Electron Devices 60(1):117–122

    Article  ADS  Google Scholar 

  10. Alam K, Sajjad RN (2010) Electronic properties and orientation-dependent performance of InAs nanowire transistors. IEEE Trans Electron Devices 57(11):2880–2885

    Article  ADS  Google Scholar 

  11. Dick KA, Thelander C, Samuelson L et al (2010) Crystal phase engineering in single InAs nanowires. Nano Lett 10(9):3494–3499

    Article  ADS  Google Scholar 

  12. Ullah AR, Joyce HJ, Burke AM et al (2013) Electronic comparison of InAs wurtzite and zincblende phases using nanowire transistors. Physica Status Solidi—Rapid Res Lett 7(10):911–914

    Google Scholar 

  13. Pan D, Fu M, Yu X et al (2014) Controlled synthesis of phase-pure InAs nanowires on Si(111) by diminishing the diameter to 10 nm. Nano Lett 14(3):1214–1220

    Article  ADS  Google Scholar 

  14. Peng LM, Chen Q, Liang XL et al (2004) Performing probe experiments in the SEM. Micron 35(6):495–502

    Article  Google Scholar 

  15. Wei X, Chen Q, Peng L et al (2010) In situ measurements on individual thin carbon nanotubes using nanomanipulators inside a scanning electron microscopy. Ultramicroscopy 110(3):182–189

    Article  Google Scholar 

  16. Shi T, Fu M, Pan D et al (2015) Contact properties of field-effect transistors based on indium arsenide nanowires thinner than 16 nm. Nanotechnology 26(17):175202

    Article  ADS  Google Scholar 

  17. Fu M, Pan D, Yang Y et al (2014) Electrical characteristics of field-effect transistors based on indium arsenide nanowire thinner than 10 nm. Appl Phys Lett 105(14):143101

    Article  ADS  Google Scholar 

  18. Samiei E, Hoorfar M (2015) Systematic analysis of geometrical based unequal droplet splitting in digital microfluidics. J Micromech Microeng 25(5):055008

    Article  Google Scholar 

  19. Sourribes MJ, Isakov I, Panfilova M et al (2014) Mobility enhancement by Sb-mediated minimisation of stacking fault density in InAs nanowires grown on silicon. Nano Lett 14(3):1643–1650

    Article  ADS  Google Scholar 

  20. Blömers C, Grap T, Lepsa MI et al (2012) Hall effect measurements on InAs nanowires. Appl Phys Lett 101(15):152106

    Article  ADS  Google Scholar 

  21. Olsson LO, Andersson CBM, Hakansson MC et al (1996) Charge accumulation at InAs surfaces. Phys Rev Lett 76(19):3626–3629

    Article  ADS  Google Scholar 

  22. Appenzeller J, Radosavljević M, Knoch J et al (2004) Tunneling versus thermionic emission in one-dimensional semiconductors. Phys Rev Lett 92(4)

    Google Scholar 

  23. Razavieh A, Mohseni PK, Jung K et al (2014) Effect of diameter variation on electrical characteristics of Schottky barrier indium arsenide nanowire field-effect transistors. ACS Nano 8(6):6281–6287

    Article  Google Scholar 

  24. Mead C, Spitzer W (1963) Fermi level position at semiconductor surfaces. Phys Rev Lett 10(11):471–472

    Article  ADS  Google Scholar 

  25. Zhao Y, Candebat D, Delker C et al (2012) Understanding the impact of Schottky barriers on the performance of narrow bandgap nanowire field effect transistors. Nano Lett 12(10):5331–5336

    Article  ADS  Google Scholar 

  26. Niquet Y, Lherbier A, Quang N et al (2006) Electronic structure of semiconductor nanowires. Phys Rev B 73(16)

    Google Scholar 

  27. Cui Z, Perumal R, Ishikura T et al (2014) Characterizing the electron transport properties of a single <110> InAs nanowire. Appl Phys Express 7(8):085001

    Article  ADS  Google Scholar 

  28. Hilner E, Hakanson U, Froberg LE et al (2008) Direct atomic scale imaging of III-V nanowire surfaces. Nano Lett 8(11):3978–3982

    Article  ADS  Google Scholar 

  29. Dayeh SA, Aplin DP, Zhou X et al (2007) High electron mobility InAs nanowire field-effect transistors. Small 3(2):326–332

    Article  Google Scholar 

  30. Xu H, Wang Y, Guo Y et al (2012) Defect-free <110> zinc-blende structured InAs nanowires catalyzed by palladium. Nano Lett 12(11):5744–5749

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengqi Fu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fu, M. (2018). Influence of Crystal Phase and Orientation on Electrical Properties of InAs Nanowires. In: Electrical Properties of Indium Arsenide Nanowires and Their Field-Effect Transistors. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-3444-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3444-3_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3443-6

  • Online ISBN: 978-981-13-3444-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics