Skip to main content

Advances in Colposcopy

  • Chapter
  • First Online:
  • 518 Accesses

Abstract

Various new technologies have been introduced to improve the diagnostic accuracy of colposcopy, objectively guide to the site of biopsy, and measure the dysplastic nature of the epithelium. These include fluorescence spectroscopy, electrical impedance spectroscopy, diffuse reflectance spectroscopy, and/or their combinations. Other technologies like optical coherence tomography and polarimetric imaging have also been used to define the lesions better. Not only the adjunct use of technology but portable user-friendly devices have been developed which have increased the provision of colposcopy in remote areas.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Nazeer S, Shafi MI. Objective perspective in colposcopy. Best Pract Res Clin Obstet Gynaecol. 2011;25(5):631–40.

    Article  Google Scholar 

  2. Mitchell MF, Schottenfeld D, Tortolero-Luna G, et al. Colposcopy for the diagnosis of squamous intraepithelial lesions: a meta-analysis. Obstet Gynecol. 1998;91:626–31.

    CAS  PubMed  Google Scholar 

  3. Hopman EH, Voorhorst FJ, Kenemans P, et al. Observer agreement on interpreting colposcopic images of CIN. Gynecol Oncol. 1995;58:206–9.

    Article  CAS  Google Scholar 

  4. ALTS group. Results of a randomized trial on the management of cytology interpretations of atypical squamous cells of undetermined significance. Am J Obstet Gynecol. 2003;188:1383–92.

    Article  Google Scholar 

  5. Underwood M, et al. Accuracy of colposcopy-directed punch biopsies: a systematic review and meta-analysis. BJOG. 2012;119:1293–301.

    Article  CAS  Google Scholar 

  6. Balas C. A novel optical imaging method for the early detection, quantitative grading, and mapping of cancerous and precancerous lesions of cervix. IEEE Trans Biomed Eng. 2001;548:96–104.

    Article  Google Scholar 

  7. Balas C, Papoutsogglou G, Potirakis A. In vivo molecular imaging of cervical neoplasia using acetic acid as biomarker. IEEE J Sel Top Quantum Electron. 2008;14:29–42.

    Article  CAS  Google Scholar 

  8. Louwers JA, Zaal A, Kocken M, et al. Women’s preferences of dynamic spectral imaging colposcopy. Gynecol Obstet Invest. 2015;79:239–43.

    Article  CAS  Google Scholar 

  9. Soutter WP, Diakomanolis E, Lyons D, et al. Dynamic spectral imaging: improving colposcopy. Clin Cancer Res. 2009;15:1814–20.

    Article  Google Scholar 

  10. Louwers JA, Zaal A, Kochen M, et al. Dynamic spectral imaging colposcopy: higher sensitivity for detection of premalignant cervical lesions. BJOG. 2011;118:309–18.

    Article  Google Scholar 

  11. Roensbo MT. Can dynamic spectral imaging system colposcopy replace conventional colposcopy in the detection of high-grade cervical lesions? Acta Obstet Gynecol Scand. 2015;94(7):781–5.

    Article  Google Scholar 

  12. Coronado PJ, Fasero M. Correlating the accuracy of colposcopy with practitioner experience when diagnosing cervical pathology using the dynamic spectral imaging system. Gynecol Obstet Invest. 2014;78(4):224–9.

    Article  Google Scholar 

  13. Zaal A, Louwers J, Berkhof J, et al. Agreement between colposcopic impression and histological diagnosis among human papillomavirus type 16-positive women: a clinical trial using dynamic spectral imaging colposcopy. BJOG. 2012;119:537–44.

    Article  CAS  Google Scholar 

  14. Wade R, Spackman E, Corbett M, Walker S, Light K, Naik R, et al. Adjunctive colposcopy technologies for examination of the uterine cervix--DySIS, LuViva Advanced Cervical Scan and Niris Imaging System: a systematic review and economic evaluation. Health Technol Assess. 2013;17(8):1–240, v–vi.

    Article  CAS  Google Scholar 

  15. Leeson S. Advances in colposcopy: new technologies to challenge current practice. Eur J Obstet Gynecol Reprod Biol. 2014;182:140–5.

    Article  Google Scholar 

  16. Ferris DG, Lawhead RA, Dickman ED, et al. Multimodal hyperspectral imaging for the noninvasive diagnosis of cervical neoplasia. J Low Genit Tract Dis. 2001;5:65–72.

    CAS  PubMed  Google Scholar 

  17. DeSantis T, Chakhtoura N, Twiggs L, et al. Spectroscopic imaging as a triage test for cervical disease: a prospective multicenter clinical trial. J Low Genit Tract Dis. 2007;11:18–24.

    Article  Google Scholar 

  18. Twiggs LB, Chakhtoura NA, Ferris DG, et al. Multimodal hyperspectroscopy as a triage test for cervical neoplasia: pivotal clinical trial results. Gynecol Oncol. 2013;130:147–51.

    Article  Google Scholar 

  19. Flowers LC, Ault KA, Twiggs LB, et al. Preliminary assessment of cervical spectroscopy for primary screening of moderate and high grade cervical Dysplasia. In: ASCCP conference; 2012. Available at: http://www.guidedinc.com/Pub%20data/ASCCP%202012%20Poster.pdf. Accessed 03 Feb 2018.

  20. Tan JH, Wrede CD. New technologies and advances in colposcopic assessment. Best Pract Res Clin Obstet Gynaecol. 2011;25(5):667–77.

    Article  Google Scholar 

  21. Imaging system helps detect precancerous cervical abnormalities. FDA Consum. 2006;40:4.

    Google Scholar 

  22. Alvarez RD, Wright TC. Effective cervical neoplasia detection with a novel optical detection system: a randomized trial. Gynecol Oncol. 2007;104:281–9.

    Article  CAS  Google Scholar 

  23. Georgakoudi I, Sheets EE, Muller MG, et al. Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo. Am J Obstet Gynecol. 2002;186:374–82.

    Article  Google Scholar 

  24. Tidy JA, Brown BH, Healey TJ, et al. Accuracy of detection of high-grade cervical intraepithelial neoplasia using electrical impedance spectroscopy with colposcopy. BJOG. 2013;120:400–9.

    Article  CAS  Google Scholar 

  25. Abdul S, Brown BH, Milnes P, Tidy JA. The use of electrical impedance spectroscopy in the detection of cervical intraepithelial neoplasia. Int J Gynecol Cancer. 2006;16(5):1823–32.

    Article  CAS  Google Scholar 

  26. Balasubramani L, Brown BH, Healey J, et al. The detection of cervical intraepithelial neoplasia by electrical impedance spectroscopy: the effects of acetic acid and tissue homogeneity. Gynecol Oncol. 2009;115(2):267–71.

    Article  Google Scholar 

  27. Brown BH, Milnes P, Abdul S, Tidy JA. Detection of cervical intraepithelial neoplasia using impedance spectroscopy: a prospective study. BJOG. 2005;112(6):802–6.

    Article  Google Scholar 

  28. Barrow AJ. Wu SM. Impedance measurements for cervical cancer diagnosis. Gynecol Oncol. 2007;107(Suppl. 1):S40–3.

    Article  Google Scholar 

  29. Singer A, Coppleson M, Canfell K, et al. A real time optoelectronic device as an adjunct to the Pap smear for cervical screening: a multicentre evaluation. Int J Gynecol Cancer. 2003;13:804–11.

    Article  CAS  Google Scholar 

  30. Escobar PF, Rojas-Espaillat L, Tisci S, et al. Optical coherence tomography as a diagnostic aid to visual inspection and colposcopy for preinvasive and invasive cancer of the uterine cervix. Int J Gynecol Cancer. 2006;16:1815–22.

    Article  CAS  Google Scholar 

  31. Liu Z, Belinson SE, Li J, et al. Diagnostic efficacy of real-time optical coherence tomography in the management of preinvasive and invasive neoplasia of the uterine cervix. Int J Gynecol Cancer. 2010;20:283–7.

    Article  Google Scholar 

  32. Park SY, Follen M, Milbourne A, et al. Automated image analysis of digital colposcopy for the detection of cervical neoplasia. J Biomed Opt. 2008;13:014029.

    Article  Google Scholar 

  33. Vizet J, Rehbinder J, Deby S, Roussel S, Nazac A, Soufan R, et al. In vivo imaging of uterine cervix with a Mueller polarimetric colposcope. Sci Rep. 2017;7(1):2471.

    Article  Google Scholar 

  34. Novikova T, Pierangelo A, Manhas S, Benali A, Validire P, Gayet B, et al. The origins of polarimetric image contrast between healthy and cancerous human colon tissue. Appl Phys Lett. 2013;102:241103.

    Article  Google Scholar 

  35. Rehbinder J, Haddad H, Deby S, Teig B, Nazac A, Novikova T, et al. Ex vivo Mueller polarimetric imaging of the uterine cervix: a first statistical evaluation. J Biomed Opt. 2016;21(7):71113.

    Article  Google Scholar 

  36. Inoue H, Kudo S, Shiokawa A. Technology insight: laser scanning confocal microscopy and endocytoscopy for cellular observation of the gastrointestinal tract. Nat Clin Pract Gastroenterol Hepatol. 2005;2:31–6.

    Article  Google Scholar 

  37. Tan J, Quinn MA, Pyman JM. Detection of cervical intraepithelial neoplasia in vivo using confocal endomicroscopy. BJOG. 2009;116:1663–70.

    Article  CAS  Google Scholar 

  38. Parashari A, Singh V, Sehgal A, Mehrotra R. BMJ Innov. 2015;1:99–102.

    Article  Google Scholar 

  39. Parashari A, Singh V, Sehgal A, et al. Low-cost technology for screening uterine cervical cancer. Bull World Health Organ. 2000;78:964–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Singh V, Parashari A, Gupta S, et al. Performance of a low cost magnifying device, Magnivisualizer, versus colposcope for detection of pre-cancer and cancerous lesions of uterine cervix. J Gynecol Oncol. 2014;25:282–6.

    Article  CAS  Google Scholar 

  41. Aggarwal P, Batra S, Gandhi G, et al. Can visual inspection with acetic acid under magnification substitute colposcopy in detecting cervical intraepithelial neoplasia in low-resource settings? Arch Gynecol Obstet. 2011;284:397–403.

    Article  Google Scholar 

  42. Nessa A, Roy JS, Chowdhury MA, Khanam Q, Afroz R, Wistrand C, et al. Evaluation of the accuracy in detecting cervical lesions by nurses versus doctors using a stationary colposcope and Gynocular in a low-resource setting. BMJ Open. 2014;4(11):e005313.

    Article  Google Scholar 

  43. Nessa A, Wistrand C, Begum SA, Thuresson M, Shemer I, Thorsell M, Shemer EA. Evaluation of stationary colposcope and the Gynocular, by the swede score systematic colposcopic system in VIA positive women: a crossover randomized trial. Int J Gynecol Cancer. 2014;24(2):339–45.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, B. (2019). Advances in Colposcopy. In: Mehta, S., Singla, A. (eds) Preventive Oncology for the Gynecologist. Springer, Singapore. https://doi.org/10.1007/978-981-13-3438-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3438-2_33

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3437-5

  • Online ISBN: 978-981-13-3438-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics