Skip to main content

Stochastic Dominance Relations for Integer Variables

  • Chapter
  • First Online:
Book cover Poverty, Social Exclusion and Stochastic Dominance

Part of the book series: Themes in Economics ((THIE))

  • 632 Accesses

Abstract

The objective of this paper is to derive some integer-majorization results for variable-sum comparisons. We use an axiomatic framework to establish equivalence between several intuitively reasonable conditions. © 2011 Elsevier Inc. All rights reserved.

Elsevier has been kind enough to allow reprinting of this article published in Journal of Economic Theory, Volume, 147, 2012. Elsevier’s permission in this context is acknowledged with sincere gratitude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Akerlof (1997), Atkinson (1998) and Chakravarty and D’Ambrosio (2006), among others, for alternative approaches to the measurement of social exclusion.

  2. 2.

    For simplicity, we restrict attention to a fixed population set up. But our results can be extended easily to the variable population case under the assumption of replication invariance of the evaluation function in the spirit of Dasgupta et al. (1973).

  3. 3.

    This implication can be obtained as follows: note that the NIME axiom posits that

    $$ E^{n} (x_{1} , \ldots ,x_{j} + 1, \ldots ,x_{i} , \ldots ,x_{n} ) - E^{n} (x_{1} , \ldots ,x_{j} , \ldots ,x_{i} , \ldots ,x_{n} ) $$
    $$ \ge E^{n} (x_{1} , \ldots ,x_{j} , \ldots ,x_{i} + 1, \ldots ,x_{n} ) - E^{n} (x_{1} , \ldots ,x_{j} , \ldots ,x_{i} , \ldots x_{n} ) $$

    while if \( x = T_{\text{MIME}} (y) \), then the conditions \( E^{n} (x) \ge E^{n} (y) \) is

    $$ E^{n} (y_{1} , \ldots ,y_{j} + 1, \ldots ,y_{i-1} , \ldots ,y_{n} ) \ge E^{n} (y_{1} , \ldots ,y_{j} , \ldots ,y_{i} , \ldots, y_{n} ) $$

    Subtracting \( E^{n} (y_{1} , \ldots ,y_{j} , \ldots ,y_{i} - 1 \ldots ,y_{n} ) \) from both sides of the second inequality, we obtain the NIME axiom requirement if \( y_{i} - 1 = x_{i} \) and \( y_{k} = x_{k} \) for all \( k \ne i \).

References

  • Aboudi, R., & Thon, D. (1995). The duality approach to stochastic dominance with standardized random variables. Mimeo.

    Google Scholar 

  • Aboudi, R., & Thon, D. (2006). Refinements of Muirhead’s lemma and income inequality. Mathematical Social Sciences, 51, 201–216.

    Article  Google Scholar 

  • Akerlof, G. A. (1997). Social distance and social decision. Econometrica, 65, 1005–1027.

    Article  Google Scholar 

  • Allison, R. A., & Foster, J. E. (2004). Measuring health inequality using qualitative data. Journal of Health Economics, 23, 505–524.

    Article  Google Scholar 

  • Atkinson, A. B. (1970). On the measurement of inequality. Journal of Economic Theory, 2, 244–263.

    Article  Google Scholar 

  • Atkinson, A. B. (1998). Social exclusion, poverty and unemployment (pp. 1–20). CASE/4, Centre for Analysis of Social Exclusion, London School of Economics.

    Google Scholar 

  • Bossert, W., & Fleurbaey, M. (2002). Equitable insurance premium schemes. Social Choice and Welfare, 19, 113–125.

    Article  Google Scholar 

  • Chakravarty, S. R., & D’Ambrosio, C. (2006). The measurement of social exclusion. Review of Income and Wealth, 52, 377–398.

    Article  Google Scholar 

  • Dasgupta, P., Sen, A. K., & Starrett, D. (1973). Notes on the measurement of inequality. Journal of Economic Theory, 6, 180–187.

    Article  Google Scholar 

  • Deineko, V. G., Klinz, B., & Woeginger, G. J. (2009). The complexity of computing the Muirhead–Dalton distance. Mathematical Social Sciences, 57, 282–284.

    Article  Google Scholar 

  • Fishburn, P., & Lavalle, I. H. (1995). Stochastic dominance on unidimensional grids. Mathematical Operations Research, 20(3), 513–525.

    Article  Google Scholar 

  • Hardy, G. H., Littlewood, J. E., & Pólya, G. (1934). Inequalities. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kolm, S. C. (1969). The optimal production of social justice. In J. Margolis & H. Guitton (Eds.), Public economics (pp. 145–200). London: Macmillan.

    Chapter  Google Scholar 

  • Levy, H. (2006). Stochastic dominance. Investment decision making under uncertainty (2nd ed.). New York: Springer.

    Google Scholar 

  • Marshall, A. W., & Olkin, I. (1979). Inequalities: Theory of majorization and its applications. New York: Academic Press.

    Google Scholar 

  • Milne, F., & Neave, E. (1994). Dominance relations among standardized variables. Management Science, 40(10), 1343–1352.

    Article  Google Scholar 

  • Muirhead, R. F. (1903). Some methods applicable to identities and inequalities of symmetric algebraic functions of letters. Proceedings of the Edinburgh Mathematical Society, 21, 144–167.

    Article  Google Scholar 

  • Rothschild, M., & Stiglitz, J. E. (1970). Increasing risk: I. A definition. Journal of Economic Theory, 3, 225–243.

    Google Scholar 

  • Rothschild, M., & Stiglitz, J. E. (1973). Some further results on the measurement of inequality. Journal of Economic Theory, 6, 188–204.

    Article  Google Scholar 

  • Savaglio, E., & Vannucci, S. (2007). Filtral preorders and opportunity inequality. Journal of Economic Theory, 132, 474–492.

    Article  Google Scholar 

  • Shaked, M., & Shanthikumar, G. (2006). Stochastic orders. New York: Springer.

    Google Scholar 

  • Shorrocks, A. F. (1983). Ranking income distributions. Economica, 50(2), 3–17.

    Article  Google Scholar 

  • Weymark, J. A. (1981). Generalized Gini inequality indices. Mathematical Social Sciences, 1, 409–430.

    Article  Google Scholar 

  • Weymark, J. A. (2003). Generalized Gini indices of equality of opportunity. The Journal of Economic Inequality, 1, 5–24.

    Article  Google Scholar 

  • Yaari, M. E. (1987). The dual theory of choice under risk. Econometrica, 55, 95–115.

    Article  Google Scholar 

Download references

Acknowledgements

For comments and suggestions, we are grateful to two referees, an associate editor of this journal, Vincenzo Denicolò and participants of the JET Symposium on “Inequality and Risk”, Paris, June 25–26, 2010. Chakravarty thanks the Bocconi University, Milan, Italy, for support. Financial support from the Italian Ministero dell’Istruzione, dell’Università e della Ricerca (Prin 2007) is gratefully acknowledged by Claudio Zoli.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Zoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakravarty, S.R., Zoli, C. (2019). Stochastic Dominance Relations for Integer Variables. In: Chakravarty, S. (eds) Poverty, Social Exclusion and Stochastic Dominance. Themes in Economics. Springer, Singapore. https://doi.org/10.1007/978-981-13-3432-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3432-0_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3431-3

  • Online ISBN: 978-981-13-3432-0

  • eBook Packages: Economics and FinanceEconomics and Finance (R0)

Publish with us

Policies and ethics